LoopRerollPass.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/AliasSetTracker.h"
20#include "llvm/Analysis/LoopPass.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/Analysis/ScalarEvolutionExpander.h"
23#include "llvm/Analysis/ScalarEvolutionExpressions.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Dominators.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Transforms/Utils/LoopUtils.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE "loop-reroll"
39
40STATISTIC(NumRerolledLoops, "Number of rerolled loops");
41
42static cl::opt<unsigned>
43MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
44  cl::desc("The maximum increment for loop rerolling"));
45
46// This loop re-rolling transformation aims to transform loops like this:
47//
48// int foo(int a);
49// void bar(int *x) {
50//   for (int i = 0; i < 500; i += 3) {
51//     foo(i);
52//     foo(i+1);
53//     foo(i+2);
54//   }
55// }
56//
57// into a loop like this:
58//
59// void bar(int *x) {
60//   for (int i = 0; i < 500; ++i)
61//     foo(i);
62// }
63//
64// It does this by looking for loops that, besides the latch code, are composed
65// of isomorphic DAGs of instructions, with each DAG rooted at some increment
66// to the induction variable, and where each DAG is isomorphic to the DAG
67// rooted at the induction variable (excepting the sub-DAGs which root the
68// other induction-variable increments). In other words, we're looking for loop
69// bodies of the form:
70//
71// %iv = phi [ (preheader, ...), (body, %iv.next) ]
72// f(%iv)
73// %iv.1 = add %iv, 1                <-- a root increment
74// f(%iv.1)
75// %iv.2 = add %iv, 2                <-- a root increment
76// f(%iv.2)
77// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
78// f(%iv.scale_m_1)
79// ...
80// %iv.next = add %iv, scale
81// %cmp = icmp(%iv, ...)
82// br %cmp, header, exit
83//
84// where each f(i) is a set of instructions that, collectively, are a function
85// only of i (and other loop-invariant values).
86//
87// As a special case, we can also reroll loops like this:
88//
89// int foo(int);
90// void bar(int *x) {
91//   for (int i = 0; i < 500; ++i) {
92//     x[3*i] = foo(0);
93//     x[3*i+1] = foo(0);
94//     x[3*i+2] = foo(0);
95//   }
96// }
97//
98// into this:
99//
100// void bar(int *x) {
101//   for (int i = 0; i < 1500; ++i)
102//     x[i] = foo(0);
103// }
104//
105// in which case, we're looking for inputs like this:
106//
107// %iv = phi [ (preheader, ...), (body, %iv.next) ]
108// %scaled.iv = mul %iv, scale
109// f(%scaled.iv)
110// %scaled.iv.1 = add %scaled.iv, 1
111// f(%scaled.iv.1)
112// %scaled.iv.2 = add %scaled.iv, 2
113// f(%scaled.iv.2)
114// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
115// f(%scaled.iv.scale_m_1)
116// ...
117// %iv.next = add %iv, 1
118// %cmp = icmp(%iv, ...)
119// br %cmp, header, exit
120
121namespace {
122  class LoopReroll : public LoopPass {
123  public:
124    static char ID; // Pass ID, replacement for typeid
125    LoopReroll() : LoopPass(ID) {
126      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
127    }
128
129    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
130
131    void getAnalysisUsage(AnalysisUsage &AU) const override {
132      AU.addRequired<AliasAnalysis>();
133      AU.addRequired<LoopInfo>();
134      AU.addPreserved<LoopInfo>();
135      AU.addRequired<DominatorTreeWrapperPass>();
136      AU.addPreserved<DominatorTreeWrapperPass>();
137      AU.addRequired<ScalarEvolution>();
138      AU.addRequired<TargetLibraryInfo>();
139    }
140
141protected:
142    AliasAnalysis *AA;
143    LoopInfo *LI;
144    ScalarEvolution *SE;
145    const DataLayout *DL;
146    TargetLibraryInfo *TLI;
147    DominatorTree *DT;
148
149    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
150    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
151
152    // A chain of isomorphic instructions, indentified by a single-use PHI,
153    // representing a reduction. Only the last value may be used outside the
154    // loop.
155    struct SimpleLoopReduction {
156      SimpleLoopReduction(Instruction *P, Loop *L)
157        : Valid(false), Instructions(1, P) {
158        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
159        add(L);
160      }
161
162      bool valid() const {
163        return Valid;
164      }
165
166      Instruction *getPHI() const {
167        assert(Valid && "Using invalid reduction");
168        return Instructions.front();
169      }
170
171      Instruction *getReducedValue() const {
172        assert(Valid && "Using invalid reduction");
173        return Instructions.back();
174      }
175
176      Instruction *get(size_t i) const {
177        assert(Valid && "Using invalid reduction");
178        return Instructions[i+1];
179      }
180
181      Instruction *operator [] (size_t i) const { return get(i); }
182
183      // The size, ignoring the initial PHI.
184      size_t size() const {
185        assert(Valid && "Using invalid reduction");
186        return Instructions.size()-1;
187      }
188
189      typedef SmallInstructionVector::iterator iterator;
190      typedef SmallInstructionVector::const_iterator const_iterator;
191
192      iterator begin() {
193        assert(Valid && "Using invalid reduction");
194        return std::next(Instructions.begin());
195      }
196
197      const_iterator begin() const {
198        assert(Valid && "Using invalid reduction");
199        return std::next(Instructions.begin());
200      }
201
202      iterator end() { return Instructions.end(); }
203      const_iterator end() const { return Instructions.end(); }
204
205    protected:
206      bool Valid;
207      SmallInstructionVector Instructions;
208
209      void add(Loop *L);
210    };
211
212    // The set of all reductions, and state tracking of possible reductions
213    // during loop instruction processing.
214    struct ReductionTracker {
215      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
216
217      // Add a new possible reduction.
218      void addSLR(SimpleLoopReduction &SLR) {
219        PossibleReds.push_back(SLR);
220      }
221
222      // Setup to track possible reductions corresponding to the provided
223      // rerolling scale. Only reductions with a number of non-PHI instructions
224      // that is divisible by the scale are considered. Three instructions sets
225      // are filled in:
226      //   - A set of all possible instructions in eligible reductions.
227      //   - A set of all PHIs in eligible reductions
228      //   - A set of all reduced values (last instructions) in eligible reductions.
229      void restrictToScale(uint64_t Scale,
230                           SmallInstructionSet &PossibleRedSet,
231                           SmallInstructionSet &PossibleRedPHISet,
232                           SmallInstructionSet &PossibleRedLastSet) {
233        PossibleRedIdx.clear();
234        PossibleRedIter.clear();
235        Reds.clear();
236
237        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
238          if (PossibleReds[i].size() % Scale == 0) {
239            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
240            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
241
242            PossibleRedSet.insert(PossibleReds[i].getPHI());
243            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
244            for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
245                 JE = PossibleReds[i].end(); J != JE; ++J) {
246              PossibleRedSet.insert(*J);
247              PossibleRedIdx[*J] = i;
248            }
249          }
250      }
251
252      // The functions below are used while processing the loop instructions.
253
254      // Are the two instructions both from reductions, and furthermore, from
255      // the same reduction?
256      bool isPairInSame(Instruction *J1, Instruction *J2) {
257        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
258        if (J1I != PossibleRedIdx.end()) {
259          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
260          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
261            return true;
262        }
263
264        return false;
265      }
266
267      // The two provided instructions, the first from the base iteration, and
268      // the second from iteration i, form a matched pair. If these are part of
269      // a reduction, record that fact.
270      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
271        if (PossibleRedIdx.count(J1)) {
272          assert(PossibleRedIdx.count(J2) &&
273                 "Recording reduction vs. non-reduction instruction?");
274
275          PossibleRedIter[J1] = 0;
276          PossibleRedIter[J2] = i;
277
278          int Idx = PossibleRedIdx[J1];
279          assert(Idx == PossibleRedIdx[J2] &&
280                 "Recording pair from different reductions?");
281          Reds.insert(Idx);
282        }
283      }
284
285      // The functions below can be called after we've finished processing all
286      // instructions in the loop, and we know which reductions were selected.
287
288      // Is the provided instruction the PHI of a reduction selected for
289      // rerolling?
290      bool isSelectedPHI(Instruction *J) {
291        if (!isa<PHINode>(J))
292          return false;
293
294        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
295             RI != RIE; ++RI) {
296          int i = *RI;
297          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
298            return true;
299        }
300
301        return false;
302      }
303
304      bool validateSelected();
305      void replaceSelected();
306
307    protected:
308      // The vector of all possible reductions (for any scale).
309      SmallReductionVector PossibleReds;
310
311      DenseMap<Instruction *, int> PossibleRedIdx;
312      DenseMap<Instruction *, int> PossibleRedIter;
313      DenseSet<int> Reds;
314    };
315
316    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
317    void collectPossibleReductions(Loop *L,
318           ReductionTracker &Reductions);
319    void collectInLoopUserSet(Loop *L,
320           const SmallInstructionVector &Roots,
321           const SmallInstructionSet &Exclude,
322           const SmallInstructionSet &Final,
323           DenseSet<Instruction *> &Users);
324    void collectInLoopUserSet(Loop *L,
325           Instruction * Root,
326           const SmallInstructionSet &Exclude,
327           const SmallInstructionSet &Final,
328           DenseSet<Instruction *> &Users);
329    bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
330                          Instruction *&IV,
331                          SmallInstructionVector &LoopIncs);
332    bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
333                         SmallVector<SmallInstructionVector, 32> &Roots,
334                         SmallInstructionSet &AllRoots,
335                         SmallInstructionVector &LoopIncs);
336    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
337                ReductionTracker &Reductions);
338  };
339}
340
341char LoopReroll::ID = 0;
342INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
343INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
344INITIALIZE_PASS_DEPENDENCY(LoopInfo)
345INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
346INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
347INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
348INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
349
350Pass *llvm::createLoopRerollPass() {
351  return new LoopReroll;
352}
353
354// Returns true if the provided instruction is used outside the given loop.
355// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
356// non-loop blocks to be outside the loop.
357static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
358  for (User *U : I->users())
359    if (!L->contains(cast<Instruction>(U)))
360      return true;
361
362  return false;
363}
364
365// Collect the list of loop induction variables with respect to which it might
366// be possible to reroll the loop.
367void LoopReroll::collectPossibleIVs(Loop *L,
368                                    SmallInstructionVector &PossibleIVs) {
369  BasicBlock *Header = L->getHeader();
370  for (BasicBlock::iterator I = Header->begin(),
371       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
372    if (!isa<PHINode>(I))
373      continue;
374    if (!I->getType()->isIntegerTy())
375      continue;
376
377    if (const SCEVAddRecExpr *PHISCEV =
378        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
379      if (PHISCEV->getLoop() != L)
380        continue;
381      if (!PHISCEV->isAffine())
382        continue;
383      if (const SCEVConstant *IncSCEV =
384          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
385        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
386          continue;
387        if (IncSCEV->getValue()->uge(MaxInc))
388          continue;
389
390        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
391              *PHISCEV << "\n");
392        PossibleIVs.push_back(I);
393      }
394    }
395  }
396}
397
398// Add the remainder of the reduction-variable chain to the instruction vector
399// (the initial PHINode has already been added). If successful, the object is
400// marked as valid.
401void LoopReroll::SimpleLoopReduction::add(Loop *L) {
402  assert(!Valid && "Cannot add to an already-valid chain");
403
404  // The reduction variable must be a chain of single-use instructions
405  // (including the PHI), except for the last value (which is used by the PHI
406  // and also outside the loop).
407  Instruction *C = Instructions.front();
408
409  do {
410    C = cast<Instruction>(*C->user_begin());
411    if (C->hasOneUse()) {
412      if (!C->isBinaryOp())
413        return;
414
415      if (!(isa<PHINode>(Instructions.back()) ||
416            C->isSameOperationAs(Instructions.back())))
417        return;
418
419      Instructions.push_back(C);
420    }
421  } while (C->hasOneUse());
422
423  if (Instructions.size() < 2 ||
424      !C->isSameOperationAs(Instructions.back()) ||
425      C->use_empty())
426    return;
427
428  // C is now the (potential) last instruction in the reduction chain.
429  for (User *U : C->users())
430    // The only in-loop user can be the initial PHI.
431    if (L->contains(cast<Instruction>(U)))
432      if (cast<Instruction>(U) != Instructions.front())
433        return;
434
435  Instructions.push_back(C);
436  Valid = true;
437}
438
439// Collect the vector of possible reduction variables.
440void LoopReroll::collectPossibleReductions(Loop *L,
441  ReductionTracker &Reductions) {
442  BasicBlock *Header = L->getHeader();
443  for (BasicBlock::iterator I = Header->begin(),
444       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
445    if (!isa<PHINode>(I))
446      continue;
447    if (!I->getType()->isSingleValueType())
448      continue;
449
450    SimpleLoopReduction SLR(I, L);
451    if (!SLR.valid())
452      continue;
453
454    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
455          SLR.size() << " chained instructions)\n");
456    Reductions.addSLR(SLR);
457  }
458}
459
460// Collect the set of all users of the provided root instruction. This set of
461// users contains not only the direct users of the root instruction, but also
462// all users of those users, and so on. There are two exceptions:
463//
464//   1. Instructions in the set of excluded instructions are never added to the
465//   use set (even if they are users). This is used, for example, to exclude
466//   including root increments in the use set of the primary IV.
467//
468//   2. Instructions in the set of final instructions are added to the use set
469//   if they are users, but their users are not added. This is used, for
470//   example, to prevent a reduction update from forcing all later reduction
471//   updates into the use set.
472void LoopReroll::collectInLoopUserSet(Loop *L,
473  Instruction *Root, const SmallInstructionSet &Exclude,
474  const SmallInstructionSet &Final,
475  DenseSet<Instruction *> &Users) {
476  SmallInstructionVector Queue(1, Root);
477  while (!Queue.empty()) {
478    Instruction *I = Queue.pop_back_val();
479    if (!Users.insert(I).second)
480      continue;
481
482    if (!Final.count(I))
483      for (Use &U : I->uses()) {
484        Instruction *User = cast<Instruction>(U.getUser());
485        if (PHINode *PN = dyn_cast<PHINode>(User)) {
486          // Ignore "wrap-around" uses to PHIs of this loop's header.
487          if (PN->getIncomingBlock(U) == L->getHeader())
488            continue;
489        }
490
491        if (L->contains(User) && !Exclude.count(User)) {
492          Queue.push_back(User);
493        }
494      }
495
496    // We also want to collect single-user "feeder" values.
497    for (User::op_iterator OI = I->op_begin(),
498         OIE = I->op_end(); OI != OIE; ++OI) {
499      if (Instruction *Op = dyn_cast<Instruction>(*OI))
500        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
501            !Final.count(Op))
502          Queue.push_back(Op);
503    }
504  }
505}
506
507// Collect all of the users of all of the provided root instructions (combined
508// into a single set).
509void LoopReroll::collectInLoopUserSet(Loop *L,
510  const SmallInstructionVector &Roots,
511  const SmallInstructionSet &Exclude,
512  const SmallInstructionSet &Final,
513  DenseSet<Instruction *> &Users) {
514  for (SmallInstructionVector::const_iterator I = Roots.begin(),
515       IE = Roots.end(); I != IE; ++I)
516    collectInLoopUserSet(L, *I, Exclude, Final, Users);
517}
518
519static bool isSimpleLoadStore(Instruction *I) {
520  if (LoadInst *LI = dyn_cast<LoadInst>(I))
521    return LI->isSimple();
522  if (StoreInst *SI = dyn_cast<StoreInst>(I))
523    return SI->isSimple();
524  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
525    return !MI->isVolatile();
526  return false;
527}
528
529// Recognize loops that are setup like this:
530//
531// %iv = phi [ (preheader, ...), (body, %iv.next) ]
532// %scaled.iv = mul %iv, scale
533// f(%scaled.iv)
534// %scaled.iv.1 = add %scaled.iv, 1
535// f(%scaled.iv.1)
536// %scaled.iv.2 = add %scaled.iv, 2
537// f(%scaled.iv.2)
538// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
539// f(%scaled.iv.scale_m_1)
540// ...
541// %iv.next = add %iv, 1
542// %cmp = icmp(%iv, ...)
543// br %cmp, header, exit
544//
545// and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
546bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
547                                  Instruction *&IV,
548                                  SmallInstructionVector &LoopIncs) {
549  // This is a special case: here we're looking for all uses (except for
550  // the increment) to be multiplied by a common factor. The increment must
551  // be by one. This is to capture loops like:
552  //   for (int i = 0; i < 500; ++i) {
553  //     foo(3*i); foo(3*i+1); foo(3*i+2);
554  //   }
555  if (RealIV->getNumUses() != 2)
556    return false;
557  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
558  Instruction *User1 = cast<Instruction>(*RealIV->user_begin()),
559              *User2 = cast<Instruction>(*std::next(RealIV->user_begin()));
560  if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
561    return false;
562  const SCEVAddRecExpr *User1SCEV =
563                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
564                       *User2SCEV =
565                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
566  if (!User1SCEV || !User1SCEV->isAffine() ||
567      !User2SCEV || !User2SCEV->isAffine())
568    return false;
569
570  // We assume below that User1 is the scale multiply and User2 is the
571  // increment. If this can't be true, then swap them.
572  if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
573    std::swap(User1, User2);
574    std::swap(User1SCEV, User2SCEV);
575  }
576
577  if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
578    return false;
579  assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
580         "Invalid non-unit step for multiplicative scaling");
581  LoopIncs.push_back(User2);
582
583  if (const SCEVConstant *MulScale =
584      dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
585    // Make sure that both the start and step have the same multiplier.
586    if (RealIVSCEV->getStart()->getType() != MulScale->getType())
587      return false;
588    if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
589        User1SCEV->getStart())
590      return false;
591
592    ConstantInt *MulScaleCI = MulScale->getValue();
593    if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
594      return false;
595    Scale = MulScaleCI->getZExtValue();
596    IV = User1;
597  } else
598    return false;
599
600  DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
601  return true;
602}
603
604// Collect all root increments with respect to the provided induction variable
605// (normally the PHI, but sometimes a multiply). A root increment is an
606// instruction, normally an add, with a positive constant less than Scale. In a
607// rerollable loop, each of these increments is the root of an instruction
608// graph isomorphic to the others. Also, we collect the final induction
609// increment (the increment equal to the Scale), and its users in LoopIncs.
610bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
611                                 Instruction *IV,
612                                 SmallVector<SmallInstructionVector, 32> &Roots,
613                                 SmallInstructionSet &AllRoots,
614                                 SmallInstructionVector &LoopIncs) {
615  for (User *U : IV->users()) {
616    Instruction *UI = cast<Instruction>(U);
617    if (!SE->isSCEVable(UI->getType()))
618      continue;
619    if (UI->getType() != IV->getType())
620      continue;
621    if (!L->contains(UI))
622      continue;
623    if (hasUsesOutsideLoop(UI, L))
624      continue;
625
626    if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
627          SE->getSCEV(UI), SE->getSCEV(IV)))) {
628      uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
629      if (Idx > 0 && Idx < Scale) {
630        Roots[Idx-1].push_back(UI);
631        AllRoots.insert(UI);
632      } else if (Idx == Scale && Inc > 1) {
633        LoopIncs.push_back(UI);
634      }
635    }
636  }
637
638  if (Roots[0].empty())
639    return false;
640  bool AllSame = true;
641  for (unsigned i = 1; i < Scale-1; ++i)
642    if (Roots[i].size() != Roots[0].size()) {
643      AllSame = false;
644      break;
645    }
646
647  if (!AllSame)
648    return false;
649
650  return true;
651}
652
653// Validate the selected reductions. All iterations must have an isomorphic
654// part of the reduction chain and, for non-associative reductions, the chain
655// entries must appear in order.
656bool LoopReroll::ReductionTracker::validateSelected() {
657  // For a non-associative reduction, the chain entries must appear in order.
658  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
659       RI != RIE; ++RI) {
660    int i = *RI;
661    int PrevIter = 0, BaseCount = 0, Count = 0;
662    for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
663         JE = PossibleReds[i].end(); J != JE; ++J) {
664	// Note that all instructions in the chain must have been found because
665	// all instructions in the function must have been assigned to some
666	// iteration.
667      int Iter = PossibleRedIter[*J];
668      if (Iter != PrevIter && Iter != PrevIter + 1 &&
669          !PossibleReds[i].getReducedValue()->isAssociative()) {
670        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
671                        *J << "\n");
672        return false;
673      }
674
675      if (Iter != PrevIter) {
676        if (Count != BaseCount) {
677          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
678                " reduction use count " << Count <<
679                " is not equal to the base use count " <<
680                BaseCount << "\n");
681          return false;
682        }
683
684        Count = 0;
685      }
686
687      ++Count;
688      if (Iter == 0)
689        ++BaseCount;
690
691      PrevIter = Iter;
692    }
693  }
694
695  return true;
696}
697
698// For all selected reductions, remove all parts except those in the first
699// iteration (and the PHI). Replace outside uses of the reduced value with uses
700// of the first-iteration reduced value (in other words, reroll the selected
701// reductions).
702void LoopReroll::ReductionTracker::replaceSelected() {
703  // Fixup reductions to refer to the last instruction associated with the
704  // first iteration (not the last).
705  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
706       RI != RIE; ++RI) {
707    int i = *RI;
708    int j = 0;
709    for (int e = PossibleReds[i].size(); j != e; ++j)
710      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
711        --j;
712        break;
713      }
714
715    // Replace users with the new end-of-chain value.
716    SmallInstructionVector Users;
717    for (User *U : PossibleReds[i].getReducedValue()->users())
718      Users.push_back(cast<Instruction>(U));
719
720    for (SmallInstructionVector::iterator J = Users.begin(),
721         JE = Users.end(); J != JE; ++J)
722      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
723                              PossibleReds[i][j]);
724  }
725}
726
727// Reroll the provided loop with respect to the provided induction variable.
728// Generally, we're looking for a loop like this:
729//
730// %iv = phi [ (preheader, ...), (body, %iv.next) ]
731// f(%iv)
732// %iv.1 = add %iv, 1                <-- a root increment
733// f(%iv.1)
734// %iv.2 = add %iv, 2                <-- a root increment
735// f(%iv.2)
736// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
737// f(%iv.scale_m_1)
738// ...
739// %iv.next = add %iv, scale
740// %cmp = icmp(%iv, ...)
741// br %cmp, header, exit
742//
743// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
744// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
745// be intermixed with eachother. The restriction imposed by this algorithm is
746// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
747// etc. be the same.
748//
749// First, we collect the use set of %iv, excluding the other increment roots.
750// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
751// times, having collected the use set of f(%iv.(i+1)), during which we:
752//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
753//     the next unmatched instruction in f(%iv.(i+1)).
754//   - Ensure that both matched instructions don't have any external users
755//     (with the exception of last-in-chain reduction instructions).
756//   - Track the (aliasing) write set, and other side effects, of all
757//     instructions that belong to future iterations that come before the matched
758//     instructions. If the matched instructions read from that write set, then
759//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
760//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
761//     if any of these future instructions had side effects (could not be
762//     speculatively executed), and so do the matched instructions, when we
763//     cannot reorder those side-effect-producing instructions, and rerolling
764//     fails.
765//
766// Finally, we make sure that all loop instructions are either loop increment
767// roots, belong to simple latch code, parts of validated reductions, part of
768// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
769// have been validated), then we reroll the loop.
770bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
771                        const SCEV *IterCount,
772                        ReductionTracker &Reductions) {
773  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
774  uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
775                   getValue()->getZExtValue();
776  // The collection of loop increment instructions.
777  SmallInstructionVector LoopIncs;
778  uint64_t Scale = Inc;
779
780  // The effective induction variable, IV, is normally also the real induction
781  // variable. When we're dealing with a loop like:
782  //   for (int i = 0; i < 500; ++i)
783  //     x[3*i] = ...;
784  //     x[3*i+1] = ...;
785  //     x[3*i+2] = ...;
786  // then the real IV is still i, but the effective IV is (3*i).
787  Instruction *RealIV = IV;
788  if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
789    return false;
790
791  assert(Scale <= MaxInc && "Scale is too large");
792  assert(Scale > 1 && "Scale must be at least 2");
793
794  // The set of increment instructions for each increment value.
795  SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
796  SmallInstructionSet AllRoots;
797  if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
798    return false;
799
800  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
801                  *RealIV << "\n");
802
803  // An array of just the possible reductions for this scale factor. When we
804  // collect the set of all users of some root instructions, these reduction
805  // instructions are treated as 'final' (their uses are not considered).
806  // This is important because we don't want the root use set to search down
807  // the reduction chain.
808  SmallInstructionSet PossibleRedSet;
809  SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
810  Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
811                             PossibleRedLastSet);
812
813  // We now need to check for equivalence of the use graph of each root with
814  // that of the primary induction variable (excluding the roots). Our goal
815  // here is not to solve the full graph isomorphism problem, but rather to
816  // catch common cases without a lot of work. As a result, we will assume
817  // that the relative order of the instructions in each unrolled iteration
818  // is the same (although we will not make an assumption about how the
819  // different iterations are intermixed). Note that while the order must be
820  // the same, the instructions may not be in the same basic block.
821  SmallInstructionSet Exclude(AllRoots);
822  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
823
824  DenseSet<Instruction *> BaseUseSet;
825  collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
826
827  DenseSet<Instruction *> AllRootUses;
828  std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
829
830  bool MatchFailed = false;
831  for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
832    DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
833    collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
834                         PossibleRedSet, RootUseSet);
835
836    DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
837                    " vs. iteration increment " << (i+1) <<
838                    " use set size: " << RootUseSet.size() << "\n");
839
840    if (BaseUseSet.size() != RootUseSet.size()) {
841      MatchFailed = true;
842      break;
843    }
844
845    // In addition to regular aliasing information, we need to look for
846    // instructions from later (future) iterations that have side effects
847    // preventing us from reordering them past other instructions with side
848    // effects.
849    bool FutureSideEffects = false;
850    AliasSetTracker AST(*AA);
851
852    // The map between instructions in f(%iv.(i+1)) and f(%iv).
853    DenseMap<Value *, Value *> BaseMap;
854
855    assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
856    for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
857         JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
858      if (cast<Instruction>(J1) == RealIV)
859        continue;
860      if (cast<Instruction>(J1) == IV)
861        continue;
862      if (!BaseUseSet.count(J1))
863        continue;
864      if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
865        continue;
866
867      while (J2 != JE && (!RootUseSet.count(J2) ||
868             std::find(Roots[i].begin(), Roots[i].end(), J2) !=
869               Roots[i].end())) {
870        // As we iterate through the instructions, instructions that don't
871        // belong to previous iterations (or the base case), must belong to
872        // future iterations. We want to track the alias set of writes from
873        // previous iterations.
874        if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
875            !AllRootUses.count(J2)) {
876          if (J2->mayWriteToMemory())
877            AST.add(J2);
878
879          // Note: This is specifically guarded by a check on isa<PHINode>,
880          // which while a valid (somewhat arbitrary) micro-optimization, is
881          // needed because otherwise isSafeToSpeculativelyExecute returns
882          // false on PHI nodes.
883          if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
884            FutureSideEffects = true;
885        }
886
887        ++J2;
888      }
889
890      if (!J1->isSameOperationAs(J2)) {
891        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
892                        " vs. " << *J2 << "\n");
893        MatchFailed = true;
894        break;
895      }
896
897      // Make sure that this instruction, which is in the use set of this
898      // root instruction, does not also belong to the base set or the set of
899      // some previous root instruction.
900      if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
901        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
902                        " vs. " << *J2 << " (prev. case overlap)\n");
903        MatchFailed = true;
904        break;
905      }
906
907      // Make sure that we don't alias with any instruction in the alias set
908      // tracker. If we do, then we depend on a future iteration, and we
909      // can't reroll.
910      if (J2->mayReadFromMemory()) {
911        for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
912             K != KE && !MatchFailed; ++K) {
913          if (K->aliasesUnknownInst(J2, *AA)) {
914            DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
915                            " vs. " << *J2 << " (depends on future store)\n");
916            MatchFailed = true;
917            break;
918          }
919        }
920      }
921
922      // If we've past an instruction from a future iteration that may have
923      // side effects, and this instruction might also, then we can't reorder
924      // them, and this matching fails. As an exception, we allow the alias
925      // set tracker to handle regular (simple) load/store dependencies.
926      if (FutureSideEffects &&
927            ((!isSimpleLoadStore(J1) &&
928              !isSafeToSpeculativelyExecute(J1, DL)) ||
929             (!isSimpleLoadStore(J2) &&
930              !isSafeToSpeculativelyExecute(J2, DL)))) {
931        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
932                        " vs. " << *J2 <<
933                        " (side effects prevent reordering)\n");
934        MatchFailed = true;
935        break;
936      }
937
938      // For instructions that are part of a reduction, if the operation is
939      // associative, then don't bother matching the operands (because we
940      // already know that the instructions are isomorphic, and the order
941      // within the iteration does not matter). For non-associative reductions,
942      // we do need to match the operands, because we need to reject
943      // out-of-order instructions within an iteration!
944      // For example (assume floating-point addition), we need to reject this:
945      //   x += a[i]; x += b[i];
946      //   x += a[i+1]; x += b[i+1];
947      //   x += b[i+2]; x += a[i+2];
948      bool InReduction = Reductions.isPairInSame(J1, J2);
949
950      if (!(InReduction && J1->isAssociative())) {
951        bool Swapped = false, SomeOpMatched = false;
952        for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
953          Value *Op2 = J2->getOperand(j);
954
955	  // If this is part of a reduction (and the operation is not
956	  // associatve), then we match all operands, but not those that are
957	  // part of the reduction.
958          if (InReduction)
959            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
960              if (Reductions.isPairInSame(J2, Op2I))
961                continue;
962
963          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
964          if (BMI != BaseMap.end())
965            Op2 = BMI->second;
966          else if (std::find(Roots[i].begin(), Roots[i].end(),
967                             (Instruction*) Op2) != Roots[i].end())
968            Op2 = IV;
969
970          if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
971	    // If we've not already decided to swap the matched operands, and
972	    // we've not already matched our first operand (note that we could
973	    // have skipped matching the first operand because it is part of a
974	    // reduction above), and the instruction is commutative, then try
975	    // the swapped match.
976            if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
977                J1->getOperand(!j) == Op2) {
978              Swapped = true;
979            } else {
980              DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
981                              " vs. " << *J2 << " (operand " << j << ")\n");
982              MatchFailed = true;
983              break;
984            }
985          }
986
987          SomeOpMatched = true;
988        }
989      }
990
991      if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
992          (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
993        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
994                        " vs. " << *J2 << " (uses outside loop)\n");
995        MatchFailed = true;
996        break;
997      }
998
999      if (!MatchFailed)
1000        BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
1001
1002      AllRootUses.insert(J2);
1003      Reductions.recordPair(J1, J2, i+1);
1004
1005      ++J2;
1006    }
1007  }
1008
1009  if (MatchFailed)
1010    return false;
1011
1012  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1013                  *RealIV << "\n");
1014
1015  DenseSet<Instruction *> LoopIncUseSet;
1016  collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
1017                       SmallInstructionSet(), LoopIncUseSet);
1018  DEBUG(dbgs() << "LRR: Loop increment set size: " <<
1019                  LoopIncUseSet.size() << "\n");
1020
1021  // Make sure that all instructions in the loop have been included in some
1022  // use set.
1023  for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
1024       J != JE; ++J) {
1025    if (isa<DbgInfoIntrinsic>(J))
1026      continue;
1027    if (cast<Instruction>(J) == RealIV)
1028      continue;
1029    if (cast<Instruction>(J) == IV)
1030      continue;
1031    if (BaseUseSet.count(J) || AllRootUses.count(J) ||
1032        (LoopIncUseSet.count(J) && (J->isTerminator() ||
1033                                    isSafeToSpeculativelyExecute(J, DL))))
1034      continue;
1035
1036    if (AllRoots.count(J))
1037      continue;
1038
1039    if (Reductions.isSelectedPHI(J))
1040      continue;
1041
1042    DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
1043                    " unprocessed instruction found: " << *J << "\n");
1044    MatchFailed = true;
1045    break;
1046  }
1047
1048  if (MatchFailed)
1049    return false;
1050
1051  DEBUG(dbgs() << "LRR: all instructions processed from " <<
1052                  *RealIV << "\n");
1053
1054  if (!Reductions.validateSelected())
1055    return false;
1056
1057  // At this point, we've validated the rerolling, and we're committed to
1058  // making changes!
1059
1060  Reductions.replaceSelected();
1061
1062  // Remove instructions associated with non-base iterations.
1063  for (BasicBlock::reverse_iterator J = Header->rbegin();
1064       J != Header->rend();) {
1065    if (AllRootUses.count(&*J)) {
1066      Instruction *D = &*J;
1067      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1068      D->eraseFromParent();
1069      continue;
1070    }
1071
1072    ++J;
1073  }
1074
1075  // Insert the new induction variable.
1076  const SCEV *Start = RealIVSCEV->getStart();
1077  if (Inc == 1)
1078    Start = SE->getMulExpr(Start,
1079                           SE->getConstant(Start->getType(), Scale));
1080  const SCEVAddRecExpr *H =
1081    cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
1082                           SE->getConstant(RealIVSCEV->getType(), 1),
1083                           L, SCEV::FlagAnyWrap));
1084  { // Limit the lifetime of SCEVExpander.
1085    SCEVExpander Expander(*SE, "reroll");
1086    Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
1087
1088    for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
1089         JE = BaseUseSet.end(); J != JE; ++J)
1090      (*J)->replaceUsesOfWith(IV, NewIV);
1091
1092    if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1093      if (LoopIncUseSet.count(BI)) {
1094        const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1095        if (Inc == 1)
1096          ICSCEV =
1097            SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
1098        // Iteration count SCEV minus 1
1099        const SCEV *ICMinus1SCEV =
1100          SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
1101
1102        Value *ICMinus1; // Iteration count minus 1
1103        if (isa<SCEVConstant>(ICMinus1SCEV)) {
1104          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
1105        } else {
1106          BasicBlock *Preheader = L->getLoopPreheader();
1107          if (!Preheader)
1108            Preheader = InsertPreheaderForLoop(L, this);
1109
1110          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
1111                                            Preheader->getTerminator());
1112        }
1113
1114        Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
1115                                   "exitcond");
1116        BI->setCondition(Cond);
1117
1118        if (BI->getSuccessor(1) != Header)
1119          BI->swapSuccessors();
1120      }
1121    }
1122  }
1123
1124  SimplifyInstructionsInBlock(Header, DL, TLI);
1125  DeleteDeadPHIs(Header, TLI);
1126  ++NumRerolledLoops;
1127  return true;
1128}
1129
1130bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1131  if (skipOptnoneFunction(L))
1132    return false;
1133
1134  AA = &getAnalysis<AliasAnalysis>();
1135  LI = &getAnalysis<LoopInfo>();
1136  SE = &getAnalysis<ScalarEvolution>();
1137  TLI = &getAnalysis<TargetLibraryInfo>();
1138  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1139  DL = DLP ? &DLP->getDataLayout() : nullptr;
1140  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1141
1142  BasicBlock *Header = L->getHeader();
1143  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1144        "] Loop %" << Header->getName() << " (" <<
1145        L->getNumBlocks() << " block(s))\n");
1146
1147  bool Changed = false;
1148
1149  // For now, we'll handle only single BB loops.
1150  if (L->getNumBlocks() > 1)
1151    return Changed;
1152
1153  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1154    return Changed;
1155
1156  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1157  const SCEV *IterCount =
1158    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
1159  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1160
1161  // First, we need to find the induction variable with respect to which we can
1162  // reroll (there may be several possible options).
1163  SmallInstructionVector PossibleIVs;
1164  collectPossibleIVs(L, PossibleIVs);
1165
1166  if (PossibleIVs.empty()) {
1167    DEBUG(dbgs() << "LRR: No possible IVs found\n");
1168    return Changed;
1169  }
1170
1171  ReductionTracker Reductions;
1172  collectPossibleReductions(L, Reductions);
1173
1174  // For each possible IV, collect the associated possible set of 'root' nodes
1175  // (i+1, i+2, etc.).
1176  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1177       IE = PossibleIVs.end(); I != IE; ++I)
1178    if (reroll(*I, L, Header, IterCount, Reductions)) {
1179      Changed = true;
1180      break;
1181    }
1182
1183  return Changed;
1184}
1185
1186