1//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements Loop Rotation Pass.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/CodeMetrics.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/LoopPass.h"
19#include "llvm/Analysis/ScalarEvolution.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/CFG.h"
23#include "llvm/IR/Dominators.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Transforms/Utils/SSAUpdater.h"
31#include "llvm/Transforms/Utils/ValueMapper.h"
32using namespace llvm;
33
34#define DEBUG_TYPE "loop-rotate"
35
36static cl::opt<unsigned>
37DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
38       cl::desc("The default maximum header size for automatic loop rotation"));
39
40STATISTIC(NumRotated, "Number of loops rotated");
41namespace {
42
43  class LoopRotate : public LoopPass {
44  public:
45    static char ID; // Pass ID, replacement for typeid
46    LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
47      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
48      if (SpecifiedMaxHeaderSize == -1)
49        MaxHeaderSize = DefaultRotationThreshold;
50      else
51        MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
52    }
53
54    // LCSSA form makes instruction renaming easier.
55    void getAnalysisUsage(AnalysisUsage &AU) const override {
56      AU.addPreserved<DominatorTreeWrapperPass>();
57      AU.addRequired<LoopInfo>();
58      AU.addPreserved<LoopInfo>();
59      AU.addRequiredID(LoopSimplifyID);
60      AU.addPreservedID(LoopSimplifyID);
61      AU.addRequiredID(LCSSAID);
62      AU.addPreservedID(LCSSAID);
63      AU.addPreserved<ScalarEvolution>();
64      AU.addRequired<TargetTransformInfo>();
65    }
66
67    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
68    bool simplifyLoopLatch(Loop *L);
69    bool rotateLoop(Loop *L, bool SimplifiedLatch);
70
71  private:
72    unsigned MaxHeaderSize;
73    LoopInfo *LI;
74    const TargetTransformInfo *TTI;
75  };
76}
77
78char LoopRotate::ID = 0;
79INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
80INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
81INITIALIZE_PASS_DEPENDENCY(LoopInfo)
82INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
83INITIALIZE_PASS_DEPENDENCY(LCSSA)
84INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
85
86Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
87  return new LoopRotate(MaxHeaderSize);
88}
89
90/// Rotate Loop L as many times as possible. Return true if
91/// the loop is rotated at least once.
92bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
93  if (skipOptnoneFunction(L))
94    return false;
95
96  // Save the loop metadata.
97  MDNode *LoopMD = L->getLoopID();
98
99  LI = &getAnalysis<LoopInfo>();
100  TTI = &getAnalysis<TargetTransformInfo>();
101
102  // Simplify the loop latch before attempting to rotate the header
103  // upward. Rotation may not be needed if the loop tail can be folded into the
104  // loop exit.
105  bool SimplifiedLatch = simplifyLoopLatch(L);
106
107  // One loop can be rotated multiple times.
108  bool MadeChange = false;
109  while (rotateLoop(L, SimplifiedLatch)) {
110    MadeChange = true;
111    SimplifiedLatch = false;
112  }
113
114  // Restore the loop metadata.
115  // NB! We presume LoopRotation DOESN'T ADD its own metadata.
116  if ((MadeChange || SimplifiedLatch) && LoopMD)
117    L->setLoopID(LoopMD);
118
119  return MadeChange;
120}
121
122/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
123/// old header into the preheader.  If there were uses of the values produced by
124/// these instruction that were outside of the loop, we have to insert PHI nodes
125/// to merge the two values.  Do this now.
126static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
127                                            BasicBlock *OrigPreheader,
128                                            ValueToValueMapTy &ValueMap) {
129  // Remove PHI node entries that are no longer live.
130  BasicBlock::iterator I, E = OrigHeader->end();
131  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
132    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
133
134  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
135  // as necessary.
136  SSAUpdater SSA;
137  for (I = OrigHeader->begin(); I != E; ++I) {
138    Value *OrigHeaderVal = I;
139
140    // If there are no uses of the value (e.g. because it returns void), there
141    // is nothing to rewrite.
142    if (OrigHeaderVal->use_empty())
143      continue;
144
145    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
146
147    // The value now exits in two versions: the initial value in the preheader
148    // and the loop "next" value in the original header.
149    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
150    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
151    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
152
153    // Visit each use of the OrigHeader instruction.
154    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
155         UE = OrigHeaderVal->use_end(); UI != UE; ) {
156      // Grab the use before incrementing the iterator.
157      Use &U = *UI;
158
159      // Increment the iterator before removing the use from the list.
160      ++UI;
161
162      // SSAUpdater can't handle a non-PHI use in the same block as an
163      // earlier def. We can easily handle those cases manually.
164      Instruction *UserInst = cast<Instruction>(U.getUser());
165      if (!isa<PHINode>(UserInst)) {
166        BasicBlock *UserBB = UserInst->getParent();
167
168        // The original users in the OrigHeader are already using the
169        // original definitions.
170        if (UserBB == OrigHeader)
171          continue;
172
173        // Users in the OrigPreHeader need to use the value to which the
174        // original definitions are mapped.
175        if (UserBB == OrigPreheader) {
176          U = OrigPreHeaderVal;
177          continue;
178        }
179      }
180
181      // Anything else can be handled by SSAUpdater.
182      SSA.RewriteUse(U);
183    }
184  }
185}
186
187/// Determine whether the instructions in this range my be safely and cheaply
188/// speculated. This is not an important enough situation to develop complex
189/// heuristics. We handle a single arithmetic instruction along with any type
190/// conversions.
191static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
192                                  BasicBlock::iterator End) {
193  bool seenIncrement = false;
194  for (BasicBlock::iterator I = Begin; I != End; ++I) {
195
196    if (!isSafeToSpeculativelyExecute(I))
197      return false;
198
199    if (isa<DbgInfoIntrinsic>(I))
200      continue;
201
202    switch (I->getOpcode()) {
203    default:
204      return false;
205    case Instruction::GetElementPtr:
206      // GEPs are cheap if all indices are constant.
207      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
208        return false;
209      // fall-thru to increment case
210    case Instruction::Add:
211    case Instruction::Sub:
212    case Instruction::And:
213    case Instruction::Or:
214    case Instruction::Xor:
215    case Instruction::Shl:
216    case Instruction::LShr:
217    case Instruction::AShr:
218      if (seenIncrement)
219        return false;
220      seenIncrement = true;
221      break;
222    case Instruction::Trunc:
223    case Instruction::ZExt:
224    case Instruction::SExt:
225      // ignore type conversions
226      break;
227    }
228  }
229  return true;
230}
231
232/// Fold the loop tail into the loop exit by speculating the loop tail
233/// instructions. Typically, this is a single post-increment. In the case of a
234/// simple 2-block loop, hoisting the increment can be much better than
235/// duplicating the entire loop header. In the cast of loops with early exits,
236/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
237/// canonical form so downstream passes can handle it.
238///
239/// I don't believe this invalidates SCEV.
240bool LoopRotate::simplifyLoopLatch(Loop *L) {
241  BasicBlock *Latch = L->getLoopLatch();
242  if (!Latch || Latch->hasAddressTaken())
243    return false;
244
245  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
246  if (!Jmp || !Jmp->isUnconditional())
247    return false;
248
249  BasicBlock *LastExit = Latch->getSinglePredecessor();
250  if (!LastExit || !L->isLoopExiting(LastExit))
251    return false;
252
253  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
254  if (!BI)
255    return false;
256
257  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
258    return false;
259
260  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
261        << LastExit->getName() << "\n");
262
263  // Hoist the instructions from Latch into LastExit.
264  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
265
266  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
267  BasicBlock *Header = Jmp->getSuccessor(0);
268  assert(Header == L->getHeader() && "expected a backward branch");
269
270  // Remove Latch from the CFG so that LastExit becomes the new Latch.
271  BI->setSuccessor(FallThruPath, Header);
272  Latch->replaceSuccessorsPhiUsesWith(LastExit);
273  Jmp->eraseFromParent();
274
275  // Nuke the Latch block.
276  assert(Latch->empty() && "unable to evacuate Latch");
277  LI->removeBlock(Latch);
278  if (DominatorTreeWrapperPass *DTWP =
279          getAnalysisIfAvailable<DominatorTreeWrapperPass>())
280    DTWP->getDomTree().eraseNode(Latch);
281  Latch->eraseFromParent();
282  return true;
283}
284
285/// Rotate loop LP. Return true if the loop is rotated.
286///
287/// \param SimplifiedLatch is true if the latch was just folded into the final
288/// loop exit. In this case we may want to rotate even though the new latch is
289/// now an exiting branch. This rotation would have happened had the latch not
290/// been simplified. However, if SimplifiedLatch is false, then we avoid
291/// rotating loops in which the latch exits to avoid excessive or endless
292/// rotation. LoopRotate should be repeatable and converge to a canonical
293/// form. This property is satisfied because simplifying the loop latch can only
294/// happen once across multiple invocations of the LoopRotate pass.
295bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
296  // If the loop has only one block then there is not much to rotate.
297  if (L->getBlocks().size() == 1)
298    return false;
299
300  BasicBlock *OrigHeader = L->getHeader();
301  BasicBlock *OrigLatch = L->getLoopLatch();
302
303  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
304  if (!BI || BI->isUnconditional())
305    return false;
306
307  // If the loop header is not one of the loop exiting blocks then
308  // either this loop is already rotated or it is not
309  // suitable for loop rotation transformations.
310  if (!L->isLoopExiting(OrigHeader))
311    return false;
312
313  // If the loop latch already contains a branch that leaves the loop then the
314  // loop is already rotated.
315  if (!OrigLatch)
316    return false;
317
318  // Rotate if either the loop latch does *not* exit the loop, or if the loop
319  // latch was just simplified.
320  if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
321    return false;
322
323  // Check size of original header and reject loop if it is very big or we can't
324  // duplicate blocks inside it.
325  {
326    CodeMetrics Metrics;
327    Metrics.analyzeBasicBlock(OrigHeader, *TTI);
328    if (Metrics.notDuplicatable) {
329      DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
330            << " instructions: "; L->dump());
331      return false;
332    }
333    if (Metrics.NumInsts > MaxHeaderSize)
334      return false;
335  }
336
337  // Now, this loop is suitable for rotation.
338  BasicBlock *OrigPreheader = L->getLoopPreheader();
339
340  // If the loop could not be converted to canonical form, it must have an
341  // indirectbr in it, just give up.
342  if (!OrigPreheader)
343    return false;
344
345  // Anything ScalarEvolution may know about this loop or the PHI nodes
346  // in its header will soon be invalidated.
347  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
348    SE->forgetLoop(L);
349
350  DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
351
352  // Find new Loop header. NewHeader is a Header's one and only successor
353  // that is inside loop.  Header's other successor is outside the
354  // loop.  Otherwise loop is not suitable for rotation.
355  BasicBlock *Exit = BI->getSuccessor(0);
356  BasicBlock *NewHeader = BI->getSuccessor(1);
357  if (L->contains(Exit))
358    std::swap(Exit, NewHeader);
359  assert(NewHeader && "Unable to determine new loop header");
360  assert(L->contains(NewHeader) && !L->contains(Exit) &&
361         "Unable to determine loop header and exit blocks");
362
363  // This code assumes that the new header has exactly one predecessor.
364  // Remove any single-entry PHI nodes in it.
365  assert(NewHeader->getSinglePredecessor() &&
366         "New header doesn't have one pred!");
367  FoldSingleEntryPHINodes(NewHeader);
368
369  // Begin by walking OrigHeader and populating ValueMap with an entry for
370  // each Instruction.
371  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
372  ValueToValueMapTy ValueMap;
373
374  // For PHI nodes, the value available in OldPreHeader is just the
375  // incoming value from OldPreHeader.
376  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
377    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
378
379  // For the rest of the instructions, either hoist to the OrigPreheader if
380  // possible or create a clone in the OldPreHeader if not.
381  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
382  while (I != E) {
383    Instruction *Inst = I++;
384
385    // If the instruction's operands are invariant and it doesn't read or write
386    // memory, then it is safe to hoist.  Doing this doesn't change the order of
387    // execution in the preheader, but does prevent the instruction from
388    // executing in each iteration of the loop.  This means it is safe to hoist
389    // something that might trap, but isn't safe to hoist something that reads
390    // memory (without proving that the loop doesn't write).
391    if (L->hasLoopInvariantOperands(Inst) &&
392        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
393        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
394        !isa<AllocaInst>(Inst)) {
395      Inst->moveBefore(LoopEntryBranch);
396      continue;
397    }
398
399    // Otherwise, create a duplicate of the instruction.
400    Instruction *C = Inst->clone();
401
402    // Eagerly remap the operands of the instruction.
403    RemapInstruction(C, ValueMap,
404                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
405
406    // With the operands remapped, see if the instruction constant folds or is
407    // otherwise simplifyable.  This commonly occurs because the entry from PHI
408    // nodes allows icmps and other instructions to fold.
409    Value *V = SimplifyInstruction(C);
410    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
411      // If so, then delete the temporary instruction and stick the folded value
412      // in the map.
413      delete C;
414      ValueMap[Inst] = V;
415    } else {
416      // Otherwise, stick the new instruction into the new block!
417      C->setName(Inst->getName());
418      C->insertBefore(LoopEntryBranch);
419      ValueMap[Inst] = C;
420    }
421  }
422
423  // Along with all the other instructions, we just cloned OrigHeader's
424  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
425  // successors by duplicating their incoming values for OrigHeader.
426  TerminatorInst *TI = OrigHeader->getTerminator();
427  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
428    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
429         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
430      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
431
432  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
433  // OrigPreHeader's old terminator (the original branch into the loop), and
434  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
435  LoopEntryBranch->eraseFromParent();
436
437  // If there were any uses of instructions in the duplicated block outside the
438  // loop, update them, inserting PHI nodes as required
439  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
440
441  // NewHeader is now the header of the loop.
442  L->moveToHeader(NewHeader);
443  assert(L->getHeader() == NewHeader && "Latch block is our new header");
444
445
446  // At this point, we've finished our major CFG changes.  As part of cloning
447  // the loop into the preheader we've simplified instructions and the
448  // duplicated conditional branch may now be branching on a constant.  If it is
449  // branching on a constant and if that constant means that we enter the loop,
450  // then we fold away the cond branch to an uncond branch.  This simplifies the
451  // loop in cases important for nested loops, and it also means we don't have
452  // to split as many edges.
453  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
454  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
455  if (!isa<ConstantInt>(PHBI->getCondition()) ||
456      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
457          != NewHeader) {
458    // The conditional branch can't be folded, handle the general case.
459    // Update DominatorTree to reflect the CFG change we just made.  Then split
460    // edges as necessary to preserve LoopSimplify form.
461    if (DominatorTreeWrapperPass *DTWP =
462            getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
463      DominatorTree &DT = DTWP->getDomTree();
464      // Everything that was dominated by the old loop header is now dominated
465      // by the original loop preheader. Conceptually the header was merged
466      // into the preheader, even though we reuse the actual block as a new
467      // loop latch.
468      DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
469      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
470                                                   OrigHeaderNode->end());
471      DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader);
472      for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
473        DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
474
475      assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode);
476      assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode);
477
478      // Update OrigHeader to be dominated by the new header block.
479      DT.changeImmediateDominator(OrigHeader, OrigLatch);
480    }
481
482    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
483    // thus is not a preheader anymore.
484    // Split the edge to form a real preheader.
485    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
486    NewPH->setName(NewHeader->getName() + ".lr.ph");
487
488    // Preserve canonical loop form, which means that 'Exit' should have only
489    // one predecessor. Note that Exit could be an exit block for multiple
490    // nested loops, causing both of the edges to now be critical and need to
491    // be split.
492    SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
493    bool SplitLatchEdge = false;
494    for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
495                                                 PE = ExitPreds.end();
496         PI != PE; ++PI) {
497      // We only need to split loop exit edges.
498      Loop *PredLoop = LI->getLoopFor(*PI);
499      if (!PredLoop || PredLoop->contains(Exit))
500        continue;
501      SplitLatchEdge |= L->getLoopLatch() == *PI;
502      BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this);
503      ExitSplit->moveBefore(Exit);
504    }
505    assert(SplitLatchEdge &&
506           "Despite splitting all preds, failed to split latch exit?");
507  } else {
508    // We can fold the conditional branch in the preheader, this makes things
509    // simpler. The first step is to remove the extra edge to the Exit block.
510    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
511    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
512    NewBI->setDebugLoc(PHBI->getDebugLoc());
513    PHBI->eraseFromParent();
514
515    // With our CFG finalized, update DomTree if it is available.
516    if (DominatorTreeWrapperPass *DTWP =
517            getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
518      DominatorTree &DT = DTWP->getDomTree();
519      // Update OrigHeader to be dominated by the new header block.
520      DT.changeImmediateDominator(NewHeader, OrigPreheader);
521      DT.changeImmediateDominator(OrigHeader, OrigLatch);
522
523      // Brute force incremental dominator tree update. Call
524      // findNearestCommonDominator on all CFG predecessors of each child of the
525      // original header.
526      DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
527      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
528                                                   OrigHeaderNode->end());
529      bool Changed;
530      do {
531        Changed = false;
532        for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
533          DomTreeNode *Node = HeaderChildren[I];
534          BasicBlock *BB = Node->getBlock();
535
536          pred_iterator PI = pred_begin(BB);
537          BasicBlock *NearestDom = *PI;
538          for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
539            NearestDom = DT.findNearestCommonDominator(NearestDom, *PI);
540
541          // Remember if this changes the DomTree.
542          if (Node->getIDom()->getBlock() != NearestDom) {
543            DT.changeImmediateDominator(BB, NearestDom);
544            Changed = true;
545          }
546        }
547
548      // If the dominator changed, this may have an effect on other
549      // predecessors, continue until we reach a fixpoint.
550      } while (Changed);
551    }
552  }
553
554  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
555  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
556
557  // Now that the CFG and DomTree are in a consistent state again, try to merge
558  // the OrigHeader block into OrigLatch.  This will succeed if they are
559  // connected by an unconditional branch.  This is just a cleanup so the
560  // emitted code isn't too gross in this common case.
561  MergeBlockIntoPredecessor(OrigHeader, this);
562
563  DEBUG(dbgs() << "LoopRotation: into "; L->dump());
564
565  ++NumRotated;
566  return true;
567}
568