LoopStrengthReduce.cpp revision 05fecbe42e835b30274a7b38af27687a8abbd114
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/ValueHandle.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Target/TargetLowering.h"
77#include <algorithm>
78using namespace llvm;
79
80// Temporary flag to cleanup congruent phis after LSR phi expansion.
81// It's currently disabled until we can determine whether it's truly useful or
82// not. The flag should be removed after the v3.0 release.
83// This is now needed for ivchains.
84static cl::opt<bool> EnablePhiElim(
85  "enable-lsr-phielim", cl::Hidden, cl::init(true),
86  cl::desc("Enable LSR phi elimination"));
87
88#ifndef NDEBUG
89// Stress test IV chain generation.
90static cl::opt<bool> StressIVChain(
91  "stress-ivchain", cl::Hidden, cl::init(false),
92  cl::desc("Stress test LSR IV chains"));
93#else
94static bool StressIVChain = false;
95#endif
96
97namespace {
98
99/// RegSortData - This class holds data which is used to order reuse candidates.
100class RegSortData {
101public:
102  /// UsedByIndices - This represents the set of LSRUse indices which reference
103  /// a particular register.
104  SmallBitVector UsedByIndices;
105
106  RegSortData() {}
107
108  void print(raw_ostream &OS) const;
109  void dump() const;
110};
111
112}
113
114void RegSortData::print(raw_ostream &OS) const {
115  OS << "[NumUses=" << UsedByIndices.count() << ']';
116}
117
118void RegSortData::dump() const {
119  print(errs()); errs() << '\n';
120}
121
122namespace {
123
124/// RegUseTracker - Map register candidates to information about how they are
125/// used.
126class RegUseTracker {
127  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
128
129  RegUsesTy RegUsesMap;
130  SmallVector<const SCEV *, 16> RegSequence;
131
132public:
133  void CountRegister(const SCEV *Reg, size_t LUIdx);
134  void DropRegister(const SCEV *Reg, size_t LUIdx);
135  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
136
137  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
138
139  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
140
141  void clear();
142
143  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
144  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
145  iterator begin() { return RegSequence.begin(); }
146  iterator end()   { return RegSequence.end(); }
147  const_iterator begin() const { return RegSequence.begin(); }
148  const_iterator end() const   { return RegSequence.end(); }
149};
150
151}
152
153void
154RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
155  std::pair<RegUsesTy::iterator, bool> Pair =
156    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
157  RegSortData &RSD = Pair.first->second;
158  if (Pair.second)
159    RegSequence.push_back(Reg);
160  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
161  RSD.UsedByIndices.set(LUIdx);
162}
163
164void
165RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
166  RegUsesTy::iterator It = RegUsesMap.find(Reg);
167  assert(It != RegUsesMap.end());
168  RegSortData &RSD = It->second;
169  assert(RSD.UsedByIndices.size() > LUIdx);
170  RSD.UsedByIndices.reset(LUIdx);
171}
172
173void
174RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
175  assert(LUIdx <= LastLUIdx);
176
177  // Update RegUses. The data structure is not optimized for this purpose;
178  // we must iterate through it and update each of the bit vectors.
179  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
180       I != E; ++I) {
181    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
182    if (LUIdx < UsedByIndices.size())
183      UsedByIndices[LUIdx] =
184        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
185    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
186  }
187}
188
189bool
190RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
191  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
192  if (I == RegUsesMap.end())
193    return false;
194  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
195  int i = UsedByIndices.find_first();
196  if (i == -1) return false;
197  if ((size_t)i != LUIdx) return true;
198  return UsedByIndices.find_next(i) != -1;
199}
200
201const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
202  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
203  assert(I != RegUsesMap.end() && "Unknown register!");
204  return I->second.UsedByIndices;
205}
206
207void RegUseTracker::clear() {
208  RegUsesMap.clear();
209  RegSequence.clear();
210}
211
212namespace {
213
214/// Formula - This class holds information that describes a formula for
215/// computing satisfying a use. It may include broken-out immediates and scaled
216/// registers.
217struct Formula {
218  /// AM - This is used to represent complex addressing, as well as other kinds
219  /// of interesting uses.
220  TargetLowering::AddrMode AM;
221
222  /// BaseRegs - The list of "base" registers for this use. When this is
223  /// non-empty, AM.HasBaseReg should be set to true.
224  SmallVector<const SCEV *, 2> BaseRegs;
225
226  /// ScaledReg - The 'scaled' register for this use. This should be non-null
227  /// when AM.Scale is not zero.
228  const SCEV *ScaledReg;
229
230  /// UnfoldedOffset - An additional constant offset which added near the
231  /// use. This requires a temporary register, but the offset itself can
232  /// live in an add immediate field rather than a register.
233  int64_t UnfoldedOffset;
234
235  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
236
237  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
238
239  unsigned getNumRegs() const;
240  Type *getType() const;
241
242  void DeleteBaseReg(const SCEV *&S);
243
244  bool referencesReg(const SCEV *S) const;
245  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
246                                  const RegUseTracker &RegUses) const;
247
248  void print(raw_ostream &OS) const;
249  void dump() const;
250};
251
252}
253
254/// DoInitialMatch - Recursion helper for InitialMatch.
255static void DoInitialMatch(const SCEV *S, Loop *L,
256                           SmallVectorImpl<const SCEV *> &Good,
257                           SmallVectorImpl<const SCEV *> &Bad,
258                           ScalarEvolution &SE) {
259  // Collect expressions which properly dominate the loop header.
260  if (SE.properlyDominates(S, L->getHeader())) {
261    Good.push_back(S);
262    return;
263  }
264
265  // Look at add operands.
266  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
267    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
268         I != E; ++I)
269      DoInitialMatch(*I, L, Good, Bad, SE);
270    return;
271  }
272
273  // Look at addrec operands.
274  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
275    if (!AR->getStart()->isZero()) {
276      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
277      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
278                                      AR->getStepRecurrence(SE),
279                                      // FIXME: AR->getNoWrapFlags()
280                                      AR->getLoop(), SCEV::FlagAnyWrap),
281                     L, Good, Bad, SE);
282      return;
283    }
284
285  // Handle a multiplication by -1 (negation) if it didn't fold.
286  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
287    if (Mul->getOperand(0)->isAllOnesValue()) {
288      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
289      const SCEV *NewMul = SE.getMulExpr(Ops);
290
291      SmallVector<const SCEV *, 4> MyGood;
292      SmallVector<const SCEV *, 4> MyBad;
293      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
294      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
295        SE.getEffectiveSCEVType(NewMul->getType())));
296      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
297           E = MyGood.end(); I != E; ++I)
298        Good.push_back(SE.getMulExpr(NegOne, *I));
299      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
300           E = MyBad.end(); I != E; ++I)
301        Bad.push_back(SE.getMulExpr(NegOne, *I));
302      return;
303    }
304
305  // Ok, we can't do anything interesting. Just stuff the whole thing into a
306  // register and hope for the best.
307  Bad.push_back(S);
308}
309
310/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
311/// attempting to keep all loop-invariant and loop-computable values in a
312/// single base register.
313void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
314  SmallVector<const SCEV *, 4> Good;
315  SmallVector<const SCEV *, 4> Bad;
316  DoInitialMatch(S, L, Good, Bad, SE);
317  if (!Good.empty()) {
318    const SCEV *Sum = SE.getAddExpr(Good);
319    if (!Sum->isZero())
320      BaseRegs.push_back(Sum);
321    AM.HasBaseReg = true;
322  }
323  if (!Bad.empty()) {
324    const SCEV *Sum = SE.getAddExpr(Bad);
325    if (!Sum->isZero())
326      BaseRegs.push_back(Sum);
327    AM.HasBaseReg = true;
328  }
329}
330
331/// getNumRegs - Return the total number of register operands used by this
332/// formula. This does not include register uses implied by non-constant
333/// addrec strides.
334unsigned Formula::getNumRegs() const {
335  return !!ScaledReg + BaseRegs.size();
336}
337
338/// getType - Return the type of this formula, if it has one, or null
339/// otherwise. This type is meaningless except for the bit size.
340Type *Formula::getType() const {
341  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
342         ScaledReg ? ScaledReg->getType() :
343         AM.BaseGV ? AM.BaseGV->getType() :
344         0;
345}
346
347/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
348void Formula::DeleteBaseReg(const SCEV *&S) {
349  if (&S != &BaseRegs.back())
350    std::swap(S, BaseRegs.back());
351  BaseRegs.pop_back();
352}
353
354/// referencesReg - Test if this formula references the given register.
355bool Formula::referencesReg(const SCEV *S) const {
356  return S == ScaledReg ||
357         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
358}
359
360/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
361/// which are used by uses other than the use with the given index.
362bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
363                                         const RegUseTracker &RegUses) const {
364  if (ScaledReg)
365    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
366      return true;
367  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
368       E = BaseRegs.end(); I != E; ++I)
369    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
370      return true;
371  return false;
372}
373
374void Formula::print(raw_ostream &OS) const {
375  bool First = true;
376  if (AM.BaseGV) {
377    if (!First) OS << " + "; else First = false;
378    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
379  }
380  if (AM.BaseOffs != 0) {
381    if (!First) OS << " + "; else First = false;
382    OS << AM.BaseOffs;
383  }
384  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
385       E = BaseRegs.end(); I != E; ++I) {
386    if (!First) OS << " + "; else First = false;
387    OS << "reg(" << **I << ')';
388  }
389  if (AM.HasBaseReg && BaseRegs.empty()) {
390    if (!First) OS << " + "; else First = false;
391    OS << "**error: HasBaseReg**";
392  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
393    if (!First) OS << " + "; else First = false;
394    OS << "**error: !HasBaseReg**";
395  }
396  if (AM.Scale != 0) {
397    if (!First) OS << " + "; else First = false;
398    OS << AM.Scale << "*reg(";
399    if (ScaledReg)
400      OS << *ScaledReg;
401    else
402      OS << "<unknown>";
403    OS << ')';
404  }
405  if (UnfoldedOffset != 0) {
406    if (!First) OS << " + "; else First = false;
407    OS << "imm(" << UnfoldedOffset << ')';
408  }
409}
410
411void Formula::dump() const {
412  print(errs()); errs() << '\n';
413}
414
415/// isAddRecSExtable - Return true if the given addrec can be sign-extended
416/// without changing its value.
417static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
418  Type *WideTy =
419    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
420  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
421}
422
423/// isAddSExtable - Return true if the given add can be sign-extended
424/// without changing its value.
425static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
426  Type *WideTy =
427    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
428  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
429}
430
431/// isMulSExtable - Return true if the given mul can be sign-extended
432/// without changing its value.
433static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
434  Type *WideTy =
435    IntegerType::get(SE.getContext(),
436                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
437  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
438}
439
440/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
441/// and if the remainder is known to be zero,  or null otherwise. If
442/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
443/// to Y, ignoring that the multiplication may overflow, which is useful when
444/// the result will be used in a context where the most significant bits are
445/// ignored.
446static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
447                                ScalarEvolution &SE,
448                                bool IgnoreSignificantBits = false) {
449  // Handle the trivial case, which works for any SCEV type.
450  if (LHS == RHS)
451    return SE.getConstant(LHS->getType(), 1);
452
453  // Handle a few RHS special cases.
454  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
455  if (RC) {
456    const APInt &RA = RC->getValue()->getValue();
457    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
458    // some folding.
459    if (RA.isAllOnesValue())
460      return SE.getMulExpr(LHS, RC);
461    // Handle x /s 1 as x.
462    if (RA == 1)
463      return LHS;
464  }
465
466  // Check for a division of a constant by a constant.
467  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
468    if (!RC)
469      return 0;
470    const APInt &LA = C->getValue()->getValue();
471    const APInt &RA = RC->getValue()->getValue();
472    if (LA.srem(RA) != 0)
473      return 0;
474    return SE.getConstant(LA.sdiv(RA));
475  }
476
477  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
478  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
479    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
480      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
481                                      IgnoreSignificantBits);
482      if (!Step) return 0;
483      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
484                                       IgnoreSignificantBits);
485      if (!Start) return 0;
486      // FlagNW is independent of the start value, step direction, and is
487      // preserved with smaller magnitude steps.
488      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
489      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
490    }
491    return 0;
492  }
493
494  // Distribute the sdiv over add operands, if the add doesn't overflow.
495  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
496    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
497      SmallVector<const SCEV *, 8> Ops;
498      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
499           I != E; ++I) {
500        const SCEV *Op = getExactSDiv(*I, RHS, SE,
501                                      IgnoreSignificantBits);
502        if (!Op) return 0;
503        Ops.push_back(Op);
504      }
505      return SE.getAddExpr(Ops);
506    }
507    return 0;
508  }
509
510  // Check for a multiply operand that we can pull RHS out of.
511  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
512    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
513      SmallVector<const SCEV *, 4> Ops;
514      bool Found = false;
515      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
516           I != E; ++I) {
517        const SCEV *S = *I;
518        if (!Found)
519          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
520                                           IgnoreSignificantBits)) {
521            S = Q;
522            Found = true;
523          }
524        Ops.push_back(S);
525      }
526      return Found ? SE.getMulExpr(Ops) : 0;
527    }
528    return 0;
529  }
530
531  // Otherwise we don't know.
532  return 0;
533}
534
535/// ExtractImmediate - If S involves the addition of a constant integer value,
536/// return that integer value, and mutate S to point to a new SCEV with that
537/// value excluded.
538static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
539  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
540    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
541      S = SE.getConstant(C->getType(), 0);
542      return C->getValue()->getSExtValue();
543    }
544  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
545    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
546    int64_t Result = ExtractImmediate(NewOps.front(), SE);
547    if (Result != 0)
548      S = SE.getAddExpr(NewOps);
549    return Result;
550  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
551    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
552    int64_t Result = ExtractImmediate(NewOps.front(), SE);
553    if (Result != 0)
554      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
555                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
556                           SCEV::FlagAnyWrap);
557    return Result;
558  }
559  return 0;
560}
561
562/// ExtractSymbol - If S involves the addition of a GlobalValue address,
563/// return that symbol, and mutate S to point to a new SCEV with that
564/// value excluded.
565static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
566  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
567    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
568      S = SE.getConstant(GV->getType(), 0);
569      return GV;
570    }
571  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
572    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
573    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
574    if (Result)
575      S = SE.getAddExpr(NewOps);
576    return Result;
577  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
578    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
579    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
580    if (Result)
581      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
582                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
583                           SCEV::FlagAnyWrap);
584    return Result;
585  }
586  return 0;
587}
588
589/// isAddressUse - Returns true if the specified instruction is using the
590/// specified value as an address.
591static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
592  bool isAddress = isa<LoadInst>(Inst);
593  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
594    if (SI->getOperand(1) == OperandVal)
595      isAddress = true;
596  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
597    // Addressing modes can also be folded into prefetches and a variety
598    // of intrinsics.
599    switch (II->getIntrinsicID()) {
600      default: break;
601      case Intrinsic::prefetch:
602      case Intrinsic::x86_sse_storeu_ps:
603      case Intrinsic::x86_sse2_storeu_pd:
604      case Intrinsic::x86_sse2_storeu_dq:
605      case Intrinsic::x86_sse2_storel_dq:
606        if (II->getArgOperand(0) == OperandVal)
607          isAddress = true;
608        break;
609    }
610  }
611  return isAddress;
612}
613
614/// getAccessType - Return the type of the memory being accessed.
615static Type *getAccessType(const Instruction *Inst) {
616  Type *AccessTy = Inst->getType();
617  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
618    AccessTy = SI->getOperand(0)->getType();
619  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
620    // Addressing modes can also be folded into prefetches and a variety
621    // of intrinsics.
622    switch (II->getIntrinsicID()) {
623    default: break;
624    case Intrinsic::x86_sse_storeu_ps:
625    case Intrinsic::x86_sse2_storeu_pd:
626    case Intrinsic::x86_sse2_storeu_dq:
627    case Intrinsic::x86_sse2_storel_dq:
628      AccessTy = II->getArgOperand(0)->getType();
629      break;
630    }
631  }
632
633  // All pointers have the same requirements, so canonicalize them to an
634  // arbitrary pointer type to minimize variation.
635  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
636    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
637                                PTy->getAddressSpace());
638
639  return AccessTy;
640}
641
642/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
643static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
644  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
645       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
646    if (SE.isSCEVable(PN->getType()) &&
647        (SE.getEffectiveSCEVType(PN->getType()) ==
648         SE.getEffectiveSCEVType(AR->getType())) &&
649        SE.getSCEV(PN) == AR)
650      return true;
651  }
652  return false;
653}
654
655/// Check if expanding this expression is likely to incur significant cost. This
656/// is tricky because SCEV doesn't track which expressions are actually computed
657/// by the current IR.
658///
659/// We currently allow expansion of IV increments that involve adds,
660/// multiplication by constants, and AddRecs from existing phis.
661///
662/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
663/// obvious multiple of the UDivExpr.
664static bool isHighCostExpansion(const SCEV *S,
665                                SmallPtrSet<const SCEV*, 8> &Processed,
666                                ScalarEvolution &SE) {
667  // Zero/One operand expressions
668  switch (S->getSCEVType()) {
669  case scUnknown:
670  case scConstant:
671    return false;
672  case scTruncate:
673    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
674                               Processed, SE);
675  case scZeroExtend:
676    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
677                               Processed, SE);
678  case scSignExtend:
679    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
680                               Processed, SE);
681  }
682
683  if (!Processed.insert(S))
684    return false;
685
686  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
687    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
688         I != E; ++I) {
689      if (isHighCostExpansion(*I, Processed, SE))
690        return true;
691    }
692    return false;
693  }
694
695  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
696    if (Mul->getNumOperands() == 2) {
697      // Multiplication by a constant is ok
698      if (isa<SCEVConstant>(Mul->getOperand(0)))
699        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
700
701      // If we have the value of one operand, check if an existing
702      // multiplication already generates this expression.
703      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
704        Value *UVal = U->getValue();
705        for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
706             UI != UE; ++UI) {
707          // If U is a constant, it may be used by a ConstantExpr.
708          Instruction *User = dyn_cast<Instruction>(*UI);
709          if (User && User->getOpcode() == Instruction::Mul
710              && SE.isSCEVable(User->getType())) {
711            return SE.getSCEV(User) == Mul;
712          }
713        }
714      }
715    }
716  }
717
718  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
719    if (isExistingPhi(AR, SE))
720      return false;
721  }
722
723  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
724  return true;
725}
726
727/// DeleteTriviallyDeadInstructions - If any of the instructions is the
728/// specified set are trivially dead, delete them and see if this makes any of
729/// their operands subsequently dead.
730static bool
731DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
732  bool Changed = false;
733
734  while (!DeadInsts.empty()) {
735    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
736
737    if (I == 0 || !isInstructionTriviallyDead(I))
738      continue;
739
740    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
741      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
742        *OI = 0;
743        if (U->use_empty())
744          DeadInsts.push_back(U);
745      }
746
747    I->eraseFromParent();
748    Changed = true;
749  }
750
751  return Changed;
752}
753
754namespace {
755
756/// Cost - This class is used to measure and compare candidate formulae.
757class Cost {
758  /// TODO: Some of these could be merged. Also, a lexical ordering
759  /// isn't always optimal.
760  unsigned NumRegs;
761  unsigned AddRecCost;
762  unsigned NumIVMuls;
763  unsigned NumBaseAdds;
764  unsigned ImmCost;
765  unsigned SetupCost;
766
767public:
768  Cost()
769    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
770      SetupCost(0) {}
771
772  bool operator<(const Cost &Other) const;
773
774  void Loose();
775
776#ifndef NDEBUG
777  // Once any of the metrics loses, they must all remain losers.
778  bool isValid() {
779    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
780             | ImmCost | SetupCost) != ~0u)
781      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
782           & ImmCost & SetupCost) == ~0u);
783  }
784#endif
785
786  bool isLoser() {
787    assert(isValid() && "invalid cost");
788    return NumRegs == ~0u;
789  }
790
791  void RateFormula(const Formula &F,
792                   SmallPtrSet<const SCEV *, 16> &Regs,
793                   const DenseSet<const SCEV *> &VisitedRegs,
794                   const Loop *L,
795                   const SmallVectorImpl<int64_t> &Offsets,
796                   ScalarEvolution &SE, DominatorTree &DT,
797                   SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
798
799  void print(raw_ostream &OS) const;
800  void dump() const;
801
802private:
803  void RateRegister(const SCEV *Reg,
804                    SmallPtrSet<const SCEV *, 16> &Regs,
805                    const Loop *L,
806                    ScalarEvolution &SE, DominatorTree &DT);
807  void RatePrimaryRegister(const SCEV *Reg,
808                           SmallPtrSet<const SCEV *, 16> &Regs,
809                           const Loop *L,
810                           ScalarEvolution &SE, DominatorTree &DT,
811                           SmallPtrSet<const SCEV *, 16> *LoserRegs);
812};
813
814}
815
816/// RateRegister - Tally up interesting quantities from the given register.
817void Cost::RateRegister(const SCEV *Reg,
818                        SmallPtrSet<const SCEV *, 16> &Regs,
819                        const Loop *L,
820                        ScalarEvolution &SE, DominatorTree &DT) {
821  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
822    // If this is an addrec for another loop, don't second-guess its addrec phi
823    // nodes. LSR isn't currently smart enough to reason about more than one
824    // loop at a time. LSR has already run on inner loops, will not run on outer
825    // loops, and cannot be expected to change sibling loops.
826    if (AR->getLoop() != L) {
827      // If the AddRec exists, consider it's register free and leave it alone.
828      if (isExistingPhi(AR, SE))
829        return;
830
831      // Otherwise, do not consider this formula at all.
832      Loose();
833      return;
834    }
835    AddRecCost += 1; /// TODO: This should be a function of the stride.
836
837    // Add the step value register, if it needs one.
838    // TODO: The non-affine case isn't precisely modeled here.
839    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
840      if (!Regs.count(AR->getOperand(1))) {
841        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
842        if (isLoser())
843          return;
844      }
845    }
846  }
847  ++NumRegs;
848
849  // Rough heuristic; favor registers which don't require extra setup
850  // instructions in the preheader.
851  if (!isa<SCEVUnknown>(Reg) &&
852      !isa<SCEVConstant>(Reg) &&
853      !(isa<SCEVAddRecExpr>(Reg) &&
854        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
855         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
856    ++SetupCost;
857
858    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
859                 SE.hasComputableLoopEvolution(Reg, L);
860}
861
862/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
863/// before, rate it. Optional LoserRegs provides a way to declare any formula
864/// that refers to one of those regs an instant loser.
865void Cost::RatePrimaryRegister(const SCEV *Reg,
866                               SmallPtrSet<const SCEV *, 16> &Regs,
867                               const Loop *L,
868                               ScalarEvolution &SE, DominatorTree &DT,
869                               SmallPtrSet<const SCEV *, 16> *LoserRegs) {
870  if (LoserRegs && LoserRegs->count(Reg)) {
871    Loose();
872    return;
873  }
874  if (Regs.insert(Reg)) {
875    RateRegister(Reg, Regs, L, SE, DT);
876    if (isLoser())
877      LoserRegs->insert(Reg);
878  }
879}
880
881void Cost::RateFormula(const Formula &F,
882                       SmallPtrSet<const SCEV *, 16> &Regs,
883                       const DenseSet<const SCEV *> &VisitedRegs,
884                       const Loop *L,
885                       const SmallVectorImpl<int64_t> &Offsets,
886                       ScalarEvolution &SE, DominatorTree &DT,
887                       SmallPtrSet<const SCEV *, 16> *LoserRegs) {
888  // Tally up the registers.
889  if (const SCEV *ScaledReg = F.ScaledReg) {
890    if (VisitedRegs.count(ScaledReg)) {
891      Loose();
892      return;
893    }
894    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
895    if (isLoser())
896      return;
897  }
898  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
899       E = F.BaseRegs.end(); I != E; ++I) {
900    const SCEV *BaseReg = *I;
901    if (VisitedRegs.count(BaseReg)) {
902      Loose();
903      return;
904    }
905    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
906    if (isLoser())
907      return;
908  }
909
910  // Determine how many (unfolded) adds we'll need inside the loop.
911  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
912  if (NumBaseParts > 1)
913    NumBaseAdds += NumBaseParts - 1;
914
915  // Tally up the non-zero immediates.
916  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
917       E = Offsets.end(); I != E; ++I) {
918    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
919    if (F.AM.BaseGV)
920      ImmCost += 64; // Handle symbolic values conservatively.
921                     // TODO: This should probably be the pointer size.
922    else if (Offset != 0)
923      ImmCost += APInt(64, Offset, true).getMinSignedBits();
924  }
925  assert(isValid() && "invalid cost");
926}
927
928/// Loose - Set this cost to a losing value.
929void Cost::Loose() {
930  NumRegs = ~0u;
931  AddRecCost = ~0u;
932  NumIVMuls = ~0u;
933  NumBaseAdds = ~0u;
934  ImmCost = ~0u;
935  SetupCost = ~0u;
936}
937
938/// operator< - Choose the lower cost.
939bool Cost::operator<(const Cost &Other) const {
940  if (NumRegs != Other.NumRegs)
941    return NumRegs < Other.NumRegs;
942  if (AddRecCost != Other.AddRecCost)
943    return AddRecCost < Other.AddRecCost;
944  if (NumIVMuls != Other.NumIVMuls)
945    return NumIVMuls < Other.NumIVMuls;
946  if (NumBaseAdds != Other.NumBaseAdds)
947    return NumBaseAdds < Other.NumBaseAdds;
948  if (ImmCost != Other.ImmCost)
949    return ImmCost < Other.ImmCost;
950  if (SetupCost != Other.SetupCost)
951    return SetupCost < Other.SetupCost;
952  return false;
953}
954
955void Cost::print(raw_ostream &OS) const {
956  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
957  if (AddRecCost != 0)
958    OS << ", with addrec cost " << AddRecCost;
959  if (NumIVMuls != 0)
960    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
961  if (NumBaseAdds != 0)
962    OS << ", plus " << NumBaseAdds << " base add"
963       << (NumBaseAdds == 1 ? "" : "s");
964  if (ImmCost != 0)
965    OS << ", plus " << ImmCost << " imm cost";
966  if (SetupCost != 0)
967    OS << ", plus " << SetupCost << " setup cost";
968}
969
970void Cost::dump() const {
971  print(errs()); errs() << '\n';
972}
973
974namespace {
975
976/// LSRFixup - An operand value in an instruction which is to be replaced
977/// with some equivalent, possibly strength-reduced, replacement.
978struct LSRFixup {
979  /// UserInst - The instruction which will be updated.
980  Instruction *UserInst;
981
982  /// OperandValToReplace - The operand of the instruction which will
983  /// be replaced. The operand may be used more than once; every instance
984  /// will be replaced.
985  Value *OperandValToReplace;
986
987  /// PostIncLoops - If this user is to use the post-incremented value of an
988  /// induction variable, this variable is non-null and holds the loop
989  /// associated with the induction variable.
990  PostIncLoopSet PostIncLoops;
991
992  /// LUIdx - The index of the LSRUse describing the expression which
993  /// this fixup needs, minus an offset (below).
994  size_t LUIdx;
995
996  /// Offset - A constant offset to be added to the LSRUse expression.
997  /// This allows multiple fixups to share the same LSRUse with different
998  /// offsets, for example in an unrolled loop.
999  int64_t Offset;
1000
1001  bool isUseFullyOutsideLoop(const Loop *L) const;
1002
1003  LSRFixup();
1004
1005  void print(raw_ostream &OS) const;
1006  void dump() const;
1007};
1008
1009}
1010
1011LSRFixup::LSRFixup()
1012  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1013
1014/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1015/// value outside of the given loop.
1016bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1017  // PHI nodes use their value in their incoming blocks.
1018  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1019    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1020      if (PN->getIncomingValue(i) == OperandValToReplace &&
1021          L->contains(PN->getIncomingBlock(i)))
1022        return false;
1023    return true;
1024  }
1025
1026  return !L->contains(UserInst);
1027}
1028
1029void LSRFixup::print(raw_ostream &OS) const {
1030  OS << "UserInst=";
1031  // Store is common and interesting enough to be worth special-casing.
1032  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1033    OS << "store ";
1034    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1035  } else if (UserInst->getType()->isVoidTy())
1036    OS << UserInst->getOpcodeName();
1037  else
1038    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1039
1040  OS << ", OperandValToReplace=";
1041  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1042
1043  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1044       E = PostIncLoops.end(); I != E; ++I) {
1045    OS << ", PostIncLoop=";
1046    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1047  }
1048
1049  if (LUIdx != ~size_t(0))
1050    OS << ", LUIdx=" << LUIdx;
1051
1052  if (Offset != 0)
1053    OS << ", Offset=" << Offset;
1054}
1055
1056void LSRFixup::dump() const {
1057  print(errs()); errs() << '\n';
1058}
1059
1060namespace {
1061
1062/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1063/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1064struct UniquifierDenseMapInfo {
1065  static SmallVector<const SCEV *, 2> getEmptyKey() {
1066    SmallVector<const SCEV *, 2> V;
1067    V.push_back(reinterpret_cast<const SCEV *>(-1));
1068    return V;
1069  }
1070
1071  static SmallVector<const SCEV *, 2> getTombstoneKey() {
1072    SmallVector<const SCEV *, 2> V;
1073    V.push_back(reinterpret_cast<const SCEV *>(-2));
1074    return V;
1075  }
1076
1077  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1078    unsigned Result = 0;
1079    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1080         E = V.end(); I != E; ++I)
1081      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1082    return Result;
1083  }
1084
1085  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1086                      const SmallVector<const SCEV *, 2> &RHS) {
1087    return LHS == RHS;
1088  }
1089};
1090
1091/// LSRUse - This class holds the state that LSR keeps for each use in
1092/// IVUsers, as well as uses invented by LSR itself. It includes information
1093/// about what kinds of things can be folded into the user, information about
1094/// the user itself, and information about how the use may be satisfied.
1095/// TODO: Represent multiple users of the same expression in common?
1096class LSRUse {
1097  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1098
1099public:
1100  /// KindType - An enum for a kind of use, indicating what types of
1101  /// scaled and immediate operands it might support.
1102  enum KindType {
1103    Basic,   ///< A normal use, with no folding.
1104    Special, ///< A special case of basic, allowing -1 scales.
1105    Address, ///< An address use; folding according to TargetLowering
1106    ICmpZero ///< An equality icmp with both operands folded into one.
1107    // TODO: Add a generic icmp too?
1108  };
1109
1110  KindType Kind;
1111  Type *AccessTy;
1112
1113  SmallVector<int64_t, 8> Offsets;
1114  int64_t MinOffset;
1115  int64_t MaxOffset;
1116
1117  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1118  /// LSRUse are outside of the loop, in which case some special-case heuristics
1119  /// may be used.
1120  bool AllFixupsOutsideLoop;
1121
1122  /// WidestFixupType - This records the widest use type for any fixup using
1123  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1124  /// max fixup widths to be equivalent, because the narrower one may be relying
1125  /// on the implicit truncation to truncate away bogus bits.
1126  Type *WidestFixupType;
1127
1128  /// Formulae - A list of ways to build a value that can satisfy this user.
1129  /// After the list is populated, one of these is selected heuristically and
1130  /// used to formulate a replacement for OperandValToReplace in UserInst.
1131  SmallVector<Formula, 12> Formulae;
1132
1133  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1134  SmallPtrSet<const SCEV *, 4> Regs;
1135
1136  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1137                                      MinOffset(INT64_MAX),
1138                                      MaxOffset(INT64_MIN),
1139                                      AllFixupsOutsideLoop(true),
1140                                      WidestFixupType(0) {}
1141
1142  bool HasFormulaWithSameRegs(const Formula &F) const;
1143  bool InsertFormula(const Formula &F);
1144  void DeleteFormula(Formula &F);
1145  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1146
1147  void print(raw_ostream &OS) const;
1148  void dump() const;
1149};
1150
1151}
1152
1153/// HasFormula - Test whether this use as a formula which has the same
1154/// registers as the given formula.
1155bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1156  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1157  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1158  // Unstable sort by host order ok, because this is only used for uniquifying.
1159  std::sort(Key.begin(), Key.end());
1160  return Uniquifier.count(Key);
1161}
1162
1163/// InsertFormula - If the given formula has not yet been inserted, add it to
1164/// the list, and return true. Return false otherwise.
1165bool LSRUse::InsertFormula(const Formula &F) {
1166  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1167  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1168  // Unstable sort by host order ok, because this is only used for uniquifying.
1169  std::sort(Key.begin(), Key.end());
1170
1171  if (!Uniquifier.insert(Key).second)
1172    return false;
1173
1174  // Using a register to hold the value of 0 is not profitable.
1175  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1176         "Zero allocated in a scaled register!");
1177#ifndef NDEBUG
1178  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1179       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1180    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1181#endif
1182
1183  // Add the formula to the list.
1184  Formulae.push_back(F);
1185
1186  // Record registers now being used by this use.
1187  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1188
1189  return true;
1190}
1191
1192/// DeleteFormula - Remove the given formula from this use's list.
1193void LSRUse::DeleteFormula(Formula &F) {
1194  if (&F != &Formulae.back())
1195    std::swap(F, Formulae.back());
1196  Formulae.pop_back();
1197}
1198
1199/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1200void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1201  // Now that we've filtered out some formulae, recompute the Regs set.
1202  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1203  Regs.clear();
1204  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1205       E = Formulae.end(); I != E; ++I) {
1206    const Formula &F = *I;
1207    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1208    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1209  }
1210
1211  // Update the RegTracker.
1212  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1213       E = OldRegs.end(); I != E; ++I)
1214    if (!Regs.count(*I))
1215      RegUses.DropRegister(*I, LUIdx);
1216}
1217
1218void LSRUse::print(raw_ostream &OS) const {
1219  OS << "LSR Use: Kind=";
1220  switch (Kind) {
1221  case Basic:    OS << "Basic"; break;
1222  case Special:  OS << "Special"; break;
1223  case ICmpZero: OS << "ICmpZero"; break;
1224  case Address:
1225    OS << "Address of ";
1226    if (AccessTy->isPointerTy())
1227      OS << "pointer"; // the full pointer type could be really verbose
1228    else
1229      OS << *AccessTy;
1230  }
1231
1232  OS << ", Offsets={";
1233  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1234       E = Offsets.end(); I != E; ++I) {
1235    OS << *I;
1236    if (llvm::next(I) != E)
1237      OS << ',';
1238  }
1239  OS << '}';
1240
1241  if (AllFixupsOutsideLoop)
1242    OS << ", all-fixups-outside-loop";
1243
1244  if (WidestFixupType)
1245    OS << ", widest fixup type: " << *WidestFixupType;
1246}
1247
1248void LSRUse::dump() const {
1249  print(errs()); errs() << '\n';
1250}
1251
1252/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1253/// be completely folded into the user instruction at isel time. This includes
1254/// address-mode folding and special icmp tricks.
1255static bool isLegalUse(const TargetLowering::AddrMode &AM,
1256                       LSRUse::KindType Kind, Type *AccessTy,
1257                       const TargetLowering *TLI) {
1258  switch (Kind) {
1259  case LSRUse::Address:
1260    // If we have low-level target information, ask the target if it can
1261    // completely fold this address.
1262    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1263
1264    // Otherwise, just guess that reg+reg addressing is legal.
1265    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1266
1267  case LSRUse::ICmpZero:
1268    // There's not even a target hook for querying whether it would be legal to
1269    // fold a GV into an ICmp.
1270    if (AM.BaseGV)
1271      return false;
1272
1273    // ICmp only has two operands; don't allow more than two non-trivial parts.
1274    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1275      return false;
1276
1277    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1278    // putting the scaled register in the other operand of the icmp.
1279    if (AM.Scale != 0 && AM.Scale != -1)
1280      return false;
1281
1282    // If we have low-level target information, ask the target if it can fold an
1283    // integer immediate on an icmp.
1284    if (AM.BaseOffs != 0) {
1285      if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
1286      return false;
1287    }
1288
1289    return true;
1290
1291  case LSRUse::Basic:
1292    // Only handle single-register values.
1293    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1294
1295  case LSRUse::Special:
1296    // Only handle -1 scales, or no scale.
1297    return AM.Scale == 0 || AM.Scale == -1;
1298  }
1299
1300  llvm_unreachable("Invalid LSRUse Kind!");
1301}
1302
1303static bool isLegalUse(TargetLowering::AddrMode AM,
1304                       int64_t MinOffset, int64_t MaxOffset,
1305                       LSRUse::KindType Kind, Type *AccessTy,
1306                       const TargetLowering *TLI) {
1307  // Check for overflow.
1308  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1309      (MinOffset > 0))
1310    return false;
1311  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1312  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1313    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1314    // Check for overflow.
1315    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1316        (MaxOffset > 0))
1317      return false;
1318    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1319    return isLegalUse(AM, Kind, AccessTy, TLI);
1320  }
1321  return false;
1322}
1323
1324static bool isAlwaysFoldable(int64_t BaseOffs,
1325                             GlobalValue *BaseGV,
1326                             bool HasBaseReg,
1327                             LSRUse::KindType Kind, Type *AccessTy,
1328                             const TargetLowering *TLI) {
1329  // Fast-path: zero is always foldable.
1330  if (BaseOffs == 0 && !BaseGV) return true;
1331
1332  // Conservatively, create an address with an immediate and a
1333  // base and a scale.
1334  TargetLowering::AddrMode AM;
1335  AM.BaseOffs = BaseOffs;
1336  AM.BaseGV = BaseGV;
1337  AM.HasBaseReg = HasBaseReg;
1338  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1339
1340  // Canonicalize a scale of 1 to a base register if the formula doesn't
1341  // already have a base register.
1342  if (!AM.HasBaseReg && AM.Scale == 1) {
1343    AM.Scale = 0;
1344    AM.HasBaseReg = true;
1345  }
1346
1347  return isLegalUse(AM, Kind, AccessTy, TLI);
1348}
1349
1350static bool isAlwaysFoldable(const SCEV *S,
1351                             int64_t MinOffset, int64_t MaxOffset,
1352                             bool HasBaseReg,
1353                             LSRUse::KindType Kind, Type *AccessTy,
1354                             const TargetLowering *TLI,
1355                             ScalarEvolution &SE) {
1356  // Fast-path: zero is always foldable.
1357  if (S->isZero()) return true;
1358
1359  // Conservatively, create an address with an immediate and a
1360  // base and a scale.
1361  int64_t BaseOffs = ExtractImmediate(S, SE);
1362  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1363
1364  // If there's anything else involved, it's not foldable.
1365  if (!S->isZero()) return false;
1366
1367  // Fast-path: zero is always foldable.
1368  if (BaseOffs == 0 && !BaseGV) return true;
1369
1370  // Conservatively, create an address with an immediate and a
1371  // base and a scale.
1372  TargetLowering::AddrMode AM;
1373  AM.BaseOffs = BaseOffs;
1374  AM.BaseGV = BaseGV;
1375  AM.HasBaseReg = HasBaseReg;
1376  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1377
1378  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1379}
1380
1381namespace {
1382
1383/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1384/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1385struct UseMapDenseMapInfo {
1386  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1387    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1388  }
1389
1390  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1391    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1392  }
1393
1394  static unsigned
1395  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1396    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1397    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1398    return Result;
1399  }
1400
1401  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1402                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1403    return LHS == RHS;
1404  }
1405};
1406
1407/// IVInc - An individual increment in a Chain of IV increments.
1408/// Relate an IV user to an expression that computes the IV it uses from the IV
1409/// used by the previous link in the Chain.
1410///
1411/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1412/// original IVOperand. The head of the chain's IVOperand is only valid during
1413/// chain collection, before LSR replaces IV users. During chain generation,
1414/// IncExpr can be used to find the new IVOperand that computes the same
1415/// expression.
1416struct IVInc {
1417  Instruction *UserInst;
1418  Value* IVOperand;
1419  const SCEV *IncExpr;
1420
1421  IVInc(Instruction *U, Value *O, const SCEV *E):
1422    UserInst(U), IVOperand(O), IncExpr(E) {}
1423};
1424
1425// IVChain - The list of IV increments in program order.
1426// We typically add the head of a chain without finding subsequent links.
1427typedef SmallVector<IVInc,1> IVChain;
1428
1429/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1430/// Distinguish between FarUsers that definitely cross IV increments and
1431/// NearUsers that may be used between IV increments.
1432struct ChainUsers {
1433  SmallPtrSet<Instruction*, 4> FarUsers;
1434  SmallPtrSet<Instruction*, 4> NearUsers;
1435};
1436
1437/// LSRInstance - This class holds state for the main loop strength reduction
1438/// logic.
1439class LSRInstance {
1440  IVUsers &IU;
1441  ScalarEvolution &SE;
1442  DominatorTree &DT;
1443  LoopInfo &LI;
1444  const TargetLowering *const TLI;
1445  Loop *const L;
1446  bool Changed;
1447
1448  /// IVIncInsertPos - This is the insert position that the current loop's
1449  /// induction variable increment should be placed. In simple loops, this is
1450  /// the latch block's terminator. But in more complicated cases, this is a
1451  /// position which will dominate all the in-loop post-increment users.
1452  Instruction *IVIncInsertPos;
1453
1454  /// Factors - Interesting factors between use strides.
1455  SmallSetVector<int64_t, 8> Factors;
1456
1457  /// Types - Interesting use types, to facilitate truncation reuse.
1458  SmallSetVector<Type *, 4> Types;
1459
1460  /// Fixups - The list of operands which are to be replaced.
1461  SmallVector<LSRFixup, 16> Fixups;
1462
1463  /// Uses - The list of interesting uses.
1464  SmallVector<LSRUse, 16> Uses;
1465
1466  /// RegUses - Track which uses use which register candidates.
1467  RegUseTracker RegUses;
1468
1469  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1470  // have more than a few IV increment chains in a loop. Missing a Chain falls
1471  // back to normal LSR behavior for those uses.
1472  static const unsigned MaxChains = 8;
1473
1474  /// IVChainVec - IV users can form a chain of IV increments.
1475  SmallVector<IVChain, MaxChains> IVChainVec;
1476
1477  /// IVIncSet - IV users that belong to profitable IVChains.
1478  SmallPtrSet<Use*, MaxChains> IVIncSet;
1479
1480  void OptimizeShadowIV();
1481  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1482  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1483  void OptimizeLoopTermCond();
1484
1485  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1486                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1487  void FinalizeChain(IVChain &Chain);
1488  void CollectChains();
1489  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1490                       SmallVectorImpl<WeakVH> &DeadInsts);
1491
1492  void CollectInterestingTypesAndFactors();
1493  void CollectFixupsAndInitialFormulae();
1494
1495  LSRFixup &getNewFixup() {
1496    Fixups.push_back(LSRFixup());
1497    return Fixups.back();
1498  }
1499
1500  // Support for sharing of LSRUses between LSRFixups.
1501  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1502                   size_t,
1503                   UseMapDenseMapInfo> UseMapTy;
1504  UseMapTy UseMap;
1505
1506  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1507                          LSRUse::KindType Kind, Type *AccessTy);
1508
1509  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1510                                    LSRUse::KindType Kind,
1511                                    Type *AccessTy);
1512
1513  void DeleteUse(LSRUse &LU, size_t LUIdx);
1514
1515  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1516
1517  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1518  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1519  void CountRegisters(const Formula &F, size_t LUIdx);
1520  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1521
1522  void CollectLoopInvariantFixupsAndFormulae();
1523
1524  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1525                              unsigned Depth = 0);
1526  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1527  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1528  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1529  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1530  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1531  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1532  void GenerateCrossUseConstantOffsets();
1533  void GenerateAllReuseFormulae();
1534
1535  void FilterOutUndesirableDedicatedRegisters();
1536
1537  size_t EstimateSearchSpaceComplexity() const;
1538  void NarrowSearchSpaceByDetectingSupersets();
1539  void NarrowSearchSpaceByCollapsingUnrolledCode();
1540  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1541  void NarrowSearchSpaceByPickingWinnerRegs();
1542  void NarrowSearchSpaceUsingHeuristics();
1543
1544  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1545                    Cost &SolutionCost,
1546                    SmallVectorImpl<const Formula *> &Workspace,
1547                    const Cost &CurCost,
1548                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1549                    DenseSet<const SCEV *> &VisitedRegs) const;
1550  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1551
1552  BasicBlock::iterator
1553    HoistInsertPosition(BasicBlock::iterator IP,
1554                        const SmallVectorImpl<Instruction *> &Inputs) const;
1555  BasicBlock::iterator
1556    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1557                                  const LSRFixup &LF,
1558                                  const LSRUse &LU,
1559                                  SCEVExpander &Rewriter) const;
1560
1561  Value *Expand(const LSRFixup &LF,
1562                const Formula &F,
1563                BasicBlock::iterator IP,
1564                SCEVExpander &Rewriter,
1565                SmallVectorImpl<WeakVH> &DeadInsts) const;
1566  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1567                     const Formula &F,
1568                     SCEVExpander &Rewriter,
1569                     SmallVectorImpl<WeakVH> &DeadInsts,
1570                     Pass *P) const;
1571  void Rewrite(const LSRFixup &LF,
1572               const Formula &F,
1573               SCEVExpander &Rewriter,
1574               SmallVectorImpl<WeakVH> &DeadInsts,
1575               Pass *P) const;
1576  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1577                         Pass *P);
1578
1579public:
1580  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1581
1582  bool getChanged() const { return Changed; }
1583
1584  void print_factors_and_types(raw_ostream &OS) const;
1585  void print_fixups(raw_ostream &OS) const;
1586  void print_uses(raw_ostream &OS) const;
1587  void print(raw_ostream &OS) const;
1588  void dump() const;
1589};
1590
1591}
1592
1593/// OptimizeShadowIV - If IV is used in a int-to-float cast
1594/// inside the loop then try to eliminate the cast operation.
1595void LSRInstance::OptimizeShadowIV() {
1596  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1597  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1598    return;
1599
1600  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1601       UI != E; /* empty */) {
1602    IVUsers::const_iterator CandidateUI = UI;
1603    ++UI;
1604    Instruction *ShadowUse = CandidateUI->getUser();
1605    Type *DestTy = NULL;
1606    bool IsSigned = false;
1607
1608    /* If shadow use is a int->float cast then insert a second IV
1609       to eliminate this cast.
1610
1611         for (unsigned i = 0; i < n; ++i)
1612           foo((double)i);
1613
1614       is transformed into
1615
1616         double d = 0.0;
1617         for (unsigned i = 0; i < n; ++i, ++d)
1618           foo(d);
1619    */
1620    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1621      IsSigned = false;
1622      DestTy = UCast->getDestTy();
1623    }
1624    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1625      IsSigned = true;
1626      DestTy = SCast->getDestTy();
1627    }
1628    if (!DestTy) continue;
1629
1630    if (TLI) {
1631      // If target does not support DestTy natively then do not apply
1632      // this transformation.
1633      EVT DVT = TLI->getValueType(DestTy);
1634      if (!TLI->isTypeLegal(DVT)) continue;
1635    }
1636
1637    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1638    if (!PH) continue;
1639    if (PH->getNumIncomingValues() != 2) continue;
1640
1641    Type *SrcTy = PH->getType();
1642    int Mantissa = DestTy->getFPMantissaWidth();
1643    if (Mantissa == -1) continue;
1644    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1645      continue;
1646
1647    unsigned Entry, Latch;
1648    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1649      Entry = 0;
1650      Latch = 1;
1651    } else {
1652      Entry = 1;
1653      Latch = 0;
1654    }
1655
1656    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1657    if (!Init) continue;
1658    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1659                                        (double)Init->getSExtValue() :
1660                                        (double)Init->getZExtValue());
1661
1662    BinaryOperator *Incr =
1663      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1664    if (!Incr) continue;
1665    if (Incr->getOpcode() != Instruction::Add
1666        && Incr->getOpcode() != Instruction::Sub)
1667      continue;
1668
1669    /* Initialize new IV, double d = 0.0 in above example. */
1670    ConstantInt *C = NULL;
1671    if (Incr->getOperand(0) == PH)
1672      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1673    else if (Incr->getOperand(1) == PH)
1674      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1675    else
1676      continue;
1677
1678    if (!C) continue;
1679
1680    // Ignore negative constants, as the code below doesn't handle them
1681    // correctly. TODO: Remove this restriction.
1682    if (!C->getValue().isStrictlyPositive()) continue;
1683
1684    /* Add new PHINode. */
1685    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1686
1687    /* create new increment. '++d' in above example. */
1688    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1689    BinaryOperator *NewIncr =
1690      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1691                               Instruction::FAdd : Instruction::FSub,
1692                             NewPH, CFP, "IV.S.next.", Incr);
1693
1694    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1695    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1696
1697    /* Remove cast operation */
1698    ShadowUse->replaceAllUsesWith(NewPH);
1699    ShadowUse->eraseFromParent();
1700    Changed = true;
1701    break;
1702  }
1703}
1704
1705/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1706/// set the IV user and stride information and return true, otherwise return
1707/// false.
1708bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1709  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1710    if (UI->getUser() == Cond) {
1711      // NOTE: we could handle setcc instructions with multiple uses here, but
1712      // InstCombine does it as well for simple uses, it's not clear that it
1713      // occurs enough in real life to handle.
1714      CondUse = UI;
1715      return true;
1716    }
1717  return false;
1718}
1719
1720/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1721/// a max computation.
1722///
1723/// This is a narrow solution to a specific, but acute, problem. For loops
1724/// like this:
1725///
1726///   i = 0;
1727///   do {
1728///     p[i] = 0.0;
1729///   } while (++i < n);
1730///
1731/// the trip count isn't just 'n', because 'n' might not be positive. And
1732/// unfortunately this can come up even for loops where the user didn't use
1733/// a C do-while loop. For example, seemingly well-behaved top-test loops
1734/// will commonly be lowered like this:
1735//
1736///   if (n > 0) {
1737///     i = 0;
1738///     do {
1739///       p[i] = 0.0;
1740///     } while (++i < n);
1741///   }
1742///
1743/// and then it's possible for subsequent optimization to obscure the if
1744/// test in such a way that indvars can't find it.
1745///
1746/// When indvars can't find the if test in loops like this, it creates a
1747/// max expression, which allows it to give the loop a canonical
1748/// induction variable:
1749///
1750///   i = 0;
1751///   max = n < 1 ? 1 : n;
1752///   do {
1753///     p[i] = 0.0;
1754///   } while (++i != max);
1755///
1756/// Canonical induction variables are necessary because the loop passes
1757/// are designed around them. The most obvious example of this is the
1758/// LoopInfo analysis, which doesn't remember trip count values. It
1759/// expects to be able to rediscover the trip count each time it is
1760/// needed, and it does this using a simple analysis that only succeeds if
1761/// the loop has a canonical induction variable.
1762///
1763/// However, when it comes time to generate code, the maximum operation
1764/// can be quite costly, especially if it's inside of an outer loop.
1765///
1766/// This function solves this problem by detecting this type of loop and
1767/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1768/// the instructions for the maximum computation.
1769///
1770ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1771  // Check that the loop matches the pattern we're looking for.
1772  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1773      Cond->getPredicate() != CmpInst::ICMP_NE)
1774    return Cond;
1775
1776  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1777  if (!Sel || !Sel->hasOneUse()) return Cond;
1778
1779  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1780  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1781    return Cond;
1782  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1783
1784  // Add one to the backedge-taken count to get the trip count.
1785  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1786  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1787
1788  // Check for a max calculation that matches the pattern. There's no check
1789  // for ICMP_ULE here because the comparison would be with zero, which
1790  // isn't interesting.
1791  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1792  const SCEVNAryExpr *Max = 0;
1793  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1794    Pred = ICmpInst::ICMP_SLE;
1795    Max = S;
1796  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1797    Pred = ICmpInst::ICMP_SLT;
1798    Max = S;
1799  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1800    Pred = ICmpInst::ICMP_ULT;
1801    Max = U;
1802  } else {
1803    // No match; bail.
1804    return Cond;
1805  }
1806
1807  // To handle a max with more than two operands, this optimization would
1808  // require additional checking and setup.
1809  if (Max->getNumOperands() != 2)
1810    return Cond;
1811
1812  const SCEV *MaxLHS = Max->getOperand(0);
1813  const SCEV *MaxRHS = Max->getOperand(1);
1814
1815  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1816  // for a comparison with 1. For <= and >=, a comparison with zero.
1817  if (!MaxLHS ||
1818      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1819    return Cond;
1820
1821  // Check the relevant induction variable for conformance to
1822  // the pattern.
1823  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1824  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1825  if (!AR || !AR->isAffine() ||
1826      AR->getStart() != One ||
1827      AR->getStepRecurrence(SE) != One)
1828    return Cond;
1829
1830  assert(AR->getLoop() == L &&
1831         "Loop condition operand is an addrec in a different loop!");
1832
1833  // Check the right operand of the select, and remember it, as it will
1834  // be used in the new comparison instruction.
1835  Value *NewRHS = 0;
1836  if (ICmpInst::isTrueWhenEqual(Pred)) {
1837    // Look for n+1, and grab n.
1838    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1839      if (isa<ConstantInt>(BO->getOperand(1)) &&
1840          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1841          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1842        NewRHS = BO->getOperand(0);
1843    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1844      if (isa<ConstantInt>(BO->getOperand(1)) &&
1845          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1846          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1847        NewRHS = BO->getOperand(0);
1848    if (!NewRHS)
1849      return Cond;
1850  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1851    NewRHS = Sel->getOperand(1);
1852  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1853    NewRHS = Sel->getOperand(2);
1854  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1855    NewRHS = SU->getValue();
1856  else
1857    // Max doesn't match expected pattern.
1858    return Cond;
1859
1860  // Determine the new comparison opcode. It may be signed or unsigned,
1861  // and the original comparison may be either equality or inequality.
1862  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1863    Pred = CmpInst::getInversePredicate(Pred);
1864
1865  // Ok, everything looks ok to change the condition into an SLT or SGE and
1866  // delete the max calculation.
1867  ICmpInst *NewCond =
1868    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1869
1870  // Delete the max calculation instructions.
1871  Cond->replaceAllUsesWith(NewCond);
1872  CondUse->setUser(NewCond);
1873  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1874  Cond->eraseFromParent();
1875  Sel->eraseFromParent();
1876  if (Cmp->use_empty())
1877    Cmp->eraseFromParent();
1878  return NewCond;
1879}
1880
1881/// OptimizeLoopTermCond - Change loop terminating condition to use the
1882/// postinc iv when possible.
1883void
1884LSRInstance::OptimizeLoopTermCond() {
1885  SmallPtrSet<Instruction *, 4> PostIncs;
1886
1887  BasicBlock *LatchBlock = L->getLoopLatch();
1888  SmallVector<BasicBlock*, 8> ExitingBlocks;
1889  L->getExitingBlocks(ExitingBlocks);
1890
1891  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1892    BasicBlock *ExitingBlock = ExitingBlocks[i];
1893
1894    // Get the terminating condition for the loop if possible.  If we
1895    // can, we want to change it to use a post-incremented version of its
1896    // induction variable, to allow coalescing the live ranges for the IV into
1897    // one register value.
1898
1899    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1900    if (!TermBr)
1901      continue;
1902    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1903    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1904      continue;
1905
1906    // Search IVUsesByStride to find Cond's IVUse if there is one.
1907    IVStrideUse *CondUse = 0;
1908    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1909    if (!FindIVUserForCond(Cond, CondUse))
1910      continue;
1911
1912    // If the trip count is computed in terms of a max (due to ScalarEvolution
1913    // being unable to find a sufficient guard, for example), change the loop
1914    // comparison to use SLT or ULT instead of NE.
1915    // One consequence of doing this now is that it disrupts the count-down
1916    // optimization. That's not always a bad thing though, because in such
1917    // cases it may still be worthwhile to avoid a max.
1918    Cond = OptimizeMax(Cond, CondUse);
1919
1920    // If this exiting block dominates the latch block, it may also use
1921    // the post-inc value if it won't be shared with other uses.
1922    // Check for dominance.
1923    if (!DT.dominates(ExitingBlock, LatchBlock))
1924      continue;
1925
1926    // Conservatively avoid trying to use the post-inc value in non-latch
1927    // exits if there may be pre-inc users in intervening blocks.
1928    if (LatchBlock != ExitingBlock)
1929      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1930        // Test if the use is reachable from the exiting block. This dominator
1931        // query is a conservative approximation of reachability.
1932        if (&*UI != CondUse &&
1933            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1934          // Conservatively assume there may be reuse if the quotient of their
1935          // strides could be a legal scale.
1936          const SCEV *A = IU.getStride(*CondUse, L);
1937          const SCEV *B = IU.getStride(*UI, L);
1938          if (!A || !B) continue;
1939          if (SE.getTypeSizeInBits(A->getType()) !=
1940              SE.getTypeSizeInBits(B->getType())) {
1941            if (SE.getTypeSizeInBits(A->getType()) >
1942                SE.getTypeSizeInBits(B->getType()))
1943              B = SE.getSignExtendExpr(B, A->getType());
1944            else
1945              A = SE.getSignExtendExpr(A, B->getType());
1946          }
1947          if (const SCEVConstant *D =
1948                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1949            const ConstantInt *C = D->getValue();
1950            // Stride of one or negative one can have reuse with non-addresses.
1951            if (C->isOne() || C->isAllOnesValue())
1952              goto decline_post_inc;
1953            // Avoid weird situations.
1954            if (C->getValue().getMinSignedBits() >= 64 ||
1955                C->getValue().isMinSignedValue())
1956              goto decline_post_inc;
1957            // Without TLI, assume that any stride might be valid, and so any
1958            // use might be shared.
1959            if (!TLI)
1960              goto decline_post_inc;
1961            // Check for possible scaled-address reuse.
1962            Type *AccessTy = getAccessType(UI->getUser());
1963            TargetLowering::AddrMode AM;
1964            AM.Scale = C->getSExtValue();
1965            if (TLI->isLegalAddressingMode(AM, AccessTy))
1966              goto decline_post_inc;
1967            AM.Scale = -AM.Scale;
1968            if (TLI->isLegalAddressingMode(AM, AccessTy))
1969              goto decline_post_inc;
1970          }
1971        }
1972
1973    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1974                 << *Cond << '\n');
1975
1976    // It's possible for the setcc instruction to be anywhere in the loop, and
1977    // possible for it to have multiple users.  If it is not immediately before
1978    // the exiting block branch, move it.
1979    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1980      if (Cond->hasOneUse()) {
1981        Cond->moveBefore(TermBr);
1982      } else {
1983        // Clone the terminating condition and insert into the loopend.
1984        ICmpInst *OldCond = Cond;
1985        Cond = cast<ICmpInst>(Cond->clone());
1986        Cond->setName(L->getHeader()->getName() + ".termcond");
1987        ExitingBlock->getInstList().insert(TermBr, Cond);
1988
1989        // Clone the IVUse, as the old use still exists!
1990        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1991        TermBr->replaceUsesOfWith(OldCond, Cond);
1992      }
1993    }
1994
1995    // If we get to here, we know that we can transform the setcc instruction to
1996    // use the post-incremented version of the IV, allowing us to coalesce the
1997    // live ranges for the IV correctly.
1998    CondUse->transformToPostInc(L);
1999    Changed = true;
2000
2001    PostIncs.insert(Cond);
2002  decline_post_inc:;
2003  }
2004
2005  // Determine an insertion point for the loop induction variable increment. It
2006  // must dominate all the post-inc comparisons we just set up, and it must
2007  // dominate the loop latch edge.
2008  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2009  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2010       E = PostIncs.end(); I != E; ++I) {
2011    BasicBlock *BB =
2012      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2013                                    (*I)->getParent());
2014    if (BB == (*I)->getParent())
2015      IVIncInsertPos = *I;
2016    else if (BB != IVIncInsertPos->getParent())
2017      IVIncInsertPos = BB->getTerminator();
2018  }
2019}
2020
2021/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2022/// at the given offset and other details. If so, update the use and
2023/// return true.
2024bool
2025LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2026                                LSRUse::KindType Kind, Type *AccessTy) {
2027  int64_t NewMinOffset = LU.MinOffset;
2028  int64_t NewMaxOffset = LU.MaxOffset;
2029  Type *NewAccessTy = AccessTy;
2030
2031  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2032  // something conservative, however this can pessimize in the case that one of
2033  // the uses will have all its uses outside the loop, for example.
2034  if (LU.Kind != Kind)
2035    return false;
2036  // Conservatively assume HasBaseReg is true for now.
2037  if (NewOffset < LU.MinOffset) {
2038    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
2039                          Kind, AccessTy, TLI))
2040      return false;
2041    NewMinOffset = NewOffset;
2042  } else if (NewOffset > LU.MaxOffset) {
2043    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
2044                          Kind, AccessTy, TLI))
2045      return false;
2046    NewMaxOffset = NewOffset;
2047  }
2048  // Check for a mismatched access type, and fall back conservatively as needed.
2049  // TODO: Be less conservative when the type is similar and can use the same
2050  // addressing modes.
2051  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2052    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2053
2054  // Update the use.
2055  LU.MinOffset = NewMinOffset;
2056  LU.MaxOffset = NewMaxOffset;
2057  LU.AccessTy = NewAccessTy;
2058  if (NewOffset != LU.Offsets.back())
2059    LU.Offsets.push_back(NewOffset);
2060  return true;
2061}
2062
2063/// getUse - Return an LSRUse index and an offset value for a fixup which
2064/// needs the given expression, with the given kind and optional access type.
2065/// Either reuse an existing use or create a new one, as needed.
2066std::pair<size_t, int64_t>
2067LSRInstance::getUse(const SCEV *&Expr,
2068                    LSRUse::KindType Kind, Type *AccessTy) {
2069  const SCEV *Copy = Expr;
2070  int64_t Offset = ExtractImmediate(Expr, SE);
2071
2072  // Basic uses can't accept any offset, for example.
2073  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
2074    Expr = Copy;
2075    Offset = 0;
2076  }
2077
2078  std::pair<UseMapTy::iterator, bool> P =
2079    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2080  if (!P.second) {
2081    // A use already existed with this base.
2082    size_t LUIdx = P.first->second;
2083    LSRUse &LU = Uses[LUIdx];
2084    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2085      // Reuse this use.
2086      return std::make_pair(LUIdx, Offset);
2087  }
2088
2089  // Create a new use.
2090  size_t LUIdx = Uses.size();
2091  P.first->second = LUIdx;
2092  Uses.push_back(LSRUse(Kind, AccessTy));
2093  LSRUse &LU = Uses[LUIdx];
2094
2095  // We don't need to track redundant offsets, but we don't need to go out
2096  // of our way here to avoid them.
2097  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2098    LU.Offsets.push_back(Offset);
2099
2100  LU.MinOffset = Offset;
2101  LU.MaxOffset = Offset;
2102  return std::make_pair(LUIdx, Offset);
2103}
2104
2105/// DeleteUse - Delete the given use from the Uses list.
2106void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2107  if (&LU != &Uses.back())
2108    std::swap(LU, Uses.back());
2109  Uses.pop_back();
2110
2111  // Update RegUses.
2112  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2113}
2114
2115/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2116/// a formula that has the same registers as the given formula.
2117LSRUse *
2118LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2119                                       const LSRUse &OrigLU) {
2120  // Search all uses for the formula. This could be more clever.
2121  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2122    LSRUse &LU = Uses[LUIdx];
2123    // Check whether this use is close enough to OrigLU, to see whether it's
2124    // worthwhile looking through its formulae.
2125    // Ignore ICmpZero uses because they may contain formulae generated by
2126    // GenerateICmpZeroScales, in which case adding fixup offsets may
2127    // be invalid.
2128    if (&LU != &OrigLU &&
2129        LU.Kind != LSRUse::ICmpZero &&
2130        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2131        LU.WidestFixupType == OrigLU.WidestFixupType &&
2132        LU.HasFormulaWithSameRegs(OrigF)) {
2133      // Scan through this use's formulae.
2134      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2135           E = LU.Formulae.end(); I != E; ++I) {
2136        const Formula &F = *I;
2137        // Check to see if this formula has the same registers and symbols
2138        // as OrigF.
2139        if (F.BaseRegs == OrigF.BaseRegs &&
2140            F.ScaledReg == OrigF.ScaledReg &&
2141            F.AM.BaseGV == OrigF.AM.BaseGV &&
2142            F.AM.Scale == OrigF.AM.Scale &&
2143            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2144          if (F.AM.BaseOffs == 0)
2145            return &LU;
2146          // This is the formula where all the registers and symbols matched;
2147          // there aren't going to be any others. Since we declined it, we
2148          // can skip the rest of the formulae and procede to the next LSRUse.
2149          break;
2150        }
2151      }
2152    }
2153  }
2154
2155  // Nothing looked good.
2156  return 0;
2157}
2158
2159void LSRInstance::CollectInterestingTypesAndFactors() {
2160  SmallSetVector<const SCEV *, 4> Strides;
2161
2162  // Collect interesting types and strides.
2163  SmallVector<const SCEV *, 4> Worklist;
2164  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2165    const SCEV *Expr = IU.getExpr(*UI);
2166
2167    // Collect interesting types.
2168    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2169
2170    // Add strides for mentioned loops.
2171    Worklist.push_back(Expr);
2172    do {
2173      const SCEV *S = Worklist.pop_back_val();
2174      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2175        if (AR->getLoop() == L)
2176          Strides.insert(AR->getStepRecurrence(SE));
2177        Worklist.push_back(AR->getStart());
2178      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2179        Worklist.append(Add->op_begin(), Add->op_end());
2180      }
2181    } while (!Worklist.empty());
2182  }
2183
2184  // Compute interesting factors from the set of interesting strides.
2185  for (SmallSetVector<const SCEV *, 4>::const_iterator
2186       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2187    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2188         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2189      const SCEV *OldStride = *I;
2190      const SCEV *NewStride = *NewStrideIter;
2191
2192      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2193          SE.getTypeSizeInBits(NewStride->getType())) {
2194        if (SE.getTypeSizeInBits(OldStride->getType()) >
2195            SE.getTypeSizeInBits(NewStride->getType()))
2196          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2197        else
2198          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2199      }
2200      if (const SCEVConstant *Factor =
2201            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2202                                                        SE, true))) {
2203        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2204          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2205      } else if (const SCEVConstant *Factor =
2206                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2207                                                               NewStride,
2208                                                               SE, true))) {
2209        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2210          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2211      }
2212    }
2213
2214  // If all uses use the same type, don't bother looking for truncation-based
2215  // reuse.
2216  if (Types.size() == 1)
2217    Types.clear();
2218
2219  DEBUG(print_factors_and_types(dbgs()));
2220}
2221
2222/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2223/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2224/// Instructions to IVStrideUses, we could partially skip this.
2225static User::op_iterator
2226findIVOperand(User::op_iterator OI, User::op_iterator OE,
2227              Loop *L, ScalarEvolution &SE) {
2228  for(; OI != OE; ++OI) {
2229    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2230      if (!SE.isSCEVable(Oper->getType()))
2231        continue;
2232
2233      if (const SCEVAddRecExpr *AR =
2234          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2235        if (AR->getLoop() == L)
2236          break;
2237      }
2238    }
2239  }
2240  return OI;
2241}
2242
2243/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2244/// operands, so wrap it in a convenient helper.
2245static Value *getWideOperand(Value *Oper) {
2246  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2247    return Trunc->getOperand(0);
2248  return Oper;
2249}
2250
2251/// isCompatibleIVType - Return true if we allow an IV chain to include both
2252/// types.
2253static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2254  Type *LType = LVal->getType();
2255  Type *RType = RVal->getType();
2256  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2257}
2258
2259/// getExprBase - Return an approximation of this SCEV expression's "base", or
2260/// NULL for any constant. Returning the expression itself is
2261/// conservative. Returning a deeper subexpression is more precise and valid as
2262/// long as it isn't less complex than another subexpression. For expressions
2263/// involving multiple unscaled values, we need to return the pointer-type
2264/// SCEVUnknown. This avoids forming chains across objects, such as:
2265/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2266///
2267/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2268/// SCEVUnknown, we simply return the rightmost SCEV operand.
2269static const SCEV *getExprBase(const SCEV *S) {
2270  switch (S->getSCEVType()) {
2271  default: // uncluding scUnknown.
2272    return S;
2273  case scConstant:
2274    return 0;
2275  case scTruncate:
2276    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2277  case scZeroExtend:
2278    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2279  case scSignExtend:
2280    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2281  case scAddExpr: {
2282    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2283    // there's nothing more complex.
2284    // FIXME: not sure if we want to recognize negation.
2285    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2286    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2287           E(Add->op_begin()); I != E; ++I) {
2288      const SCEV *SubExpr = *I;
2289      if (SubExpr->getSCEVType() == scAddExpr)
2290        return getExprBase(SubExpr);
2291
2292      if (SubExpr->getSCEVType() != scMulExpr)
2293        return SubExpr;
2294    }
2295    return S; // all operands are scaled, be conservative.
2296  }
2297  case scAddRecExpr:
2298    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2299  }
2300}
2301
2302/// Return true if the chain increment is profitable to expand into a loop
2303/// invariant value, which may require its own register. A profitable chain
2304/// increment will be an offset relative to the same base. We allow such offsets
2305/// to potentially be used as chain increment as long as it's not obviously
2306/// expensive to expand using real instructions.
2307static const SCEV *
2308getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
2309                            const IVChain &Chain, Loop *L,
2310                            ScalarEvolution &SE, const TargetLowering *TLI) {
2311  // Prune the solution space aggressively by checking that both IV operands
2312  // are expressions that operate on the same unscaled SCEVUnknown. This
2313  // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
2314  // avoids creating extra SCEV expressions.
2315  const SCEV *OperExpr = SE.getSCEV(NextIV);
2316  const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2317  if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
2318    return 0;
2319
2320  const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2321  if (!SE.isLoopInvariant(IncExpr, L))
2322    return 0;
2323
2324  // We are not able to expand an increment unless it is loop invariant,
2325  // however, the following checks are purely for profitability.
2326  if (StressIVChain)
2327    return IncExpr;
2328
2329  // Do not replace a constant offset from IV head with a nonconstant IV
2330  // increment.
2331  if (!isa<SCEVConstant>(IncExpr)) {
2332    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
2333    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2334      return 0;
2335  }
2336
2337  SmallPtrSet<const SCEV*, 8> Processed;
2338  if (isHighCostExpansion(IncExpr, Processed, SE))
2339    return 0;
2340
2341  return IncExpr;
2342}
2343
2344/// Return true if the number of registers needed for the chain is estimated to
2345/// be less than the number required for the individual IV users. First prohibit
2346/// any IV users that keep the IV live across increments (the Users set should
2347/// be empty). Next count the number and type of increments in the chain.
2348///
2349/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2350/// effectively use postinc addressing modes. Only consider it profitable it the
2351/// increments can be computed in fewer registers when chained.
2352///
2353/// TODO: Consider IVInc free if it's already used in another chains.
2354static bool
2355isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2356                  ScalarEvolution &SE, const TargetLowering *TLI) {
2357  if (StressIVChain)
2358    return true;
2359
2360  if (Chain.size() <= 2)
2361    return false;
2362
2363  if (!Users.empty()) {
2364    DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
2365          for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2366                 E = Users.end(); I != E; ++I) {
2367            dbgs() << "  " << **I << "\n";
2368          });
2369    return false;
2370  }
2371  assert(!Chain.empty() && "empty IV chains are not allowed");
2372
2373  // The chain itself may require a register, so intialize cost to 1.
2374  int cost = 1;
2375
2376  // A complete chain likely eliminates the need for keeping the original IV in
2377  // a register. LSR does not currently know how to form a complete chain unless
2378  // the header phi already exists.
2379  if (isa<PHINode>(Chain.back().UserInst)
2380      && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
2381    --cost;
2382  }
2383  const SCEV *LastIncExpr = 0;
2384  unsigned NumConstIncrements = 0;
2385  unsigned NumVarIncrements = 0;
2386  unsigned NumReusedIncrements = 0;
2387  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2388       I != E; ++I) {
2389
2390    if (I->IncExpr->isZero())
2391      continue;
2392
2393    // Incrementing by zero or some constant is neutral. We assume constants can
2394    // be folded into an addressing mode or an add's immediate operand.
2395    if (isa<SCEVConstant>(I->IncExpr)) {
2396      ++NumConstIncrements;
2397      continue;
2398    }
2399
2400    if (I->IncExpr == LastIncExpr)
2401      ++NumReusedIncrements;
2402    else
2403      ++NumVarIncrements;
2404
2405    LastIncExpr = I->IncExpr;
2406  }
2407  // An IV chain with a single increment is handled by LSR's postinc
2408  // uses. However, a chain with multiple increments requires keeping the IV's
2409  // value live longer than it needs to be if chained.
2410  if (NumConstIncrements > 1)
2411    --cost;
2412
2413  // Materializing increment expressions in the preheader that didn't exist in
2414  // the original code may cost a register. For example, sign-extended array
2415  // indices can produce ridiculous increments like this:
2416  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2417  cost += NumVarIncrements;
2418
2419  // Reusing variable increments likely saves a register to hold the multiple of
2420  // the stride.
2421  cost -= NumReusedIncrements;
2422
2423  DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
2424
2425  return cost < 0;
2426}
2427
2428/// ChainInstruction - Add this IV user to an existing chain or make it the head
2429/// of a new chain.
2430void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2431                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2432  // When IVs are used as types of varying widths, they are generally converted
2433  // to a wider type with some uses remaining narrow under a (free) trunc.
2434  Value *NextIV = getWideOperand(IVOper);
2435
2436  // Visit all existing chains. Check if its IVOper can be computed as a
2437  // profitable loop invariant increment from the last link in the Chain.
2438  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2439  const SCEV *LastIncExpr = 0;
2440  for (; ChainIdx < NChains; ++ChainIdx) {
2441    Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
2442    if (!isCompatibleIVType(PrevIV, NextIV))
2443      continue;
2444
2445    // A phi node terminates a chain.
2446    if (isa<PHINode>(UserInst)
2447        && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
2448      continue;
2449
2450    if (const SCEV *IncExpr =
2451        getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
2452                                    L, SE, TLI)) {
2453      LastIncExpr = IncExpr;
2454      break;
2455    }
2456  }
2457  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2458  // bother for phi nodes, because they must be last in the chain.
2459  if (ChainIdx == NChains) {
2460    if (isa<PHINode>(UserInst))
2461      return;
2462    if (NChains >= MaxChains && !StressIVChain) {
2463      DEBUG(dbgs() << "IV Chain Limit\n");
2464      return;
2465    }
2466    LastIncExpr = SE.getSCEV(NextIV);
2467    // IVUsers may have skipped over sign/zero extensions. We don't currently
2468    // attempt to form chains involving extensions unless they can be hoisted
2469    // into this loop's AddRec.
2470    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2471      return;
2472    ++NChains;
2473    IVChainVec.resize(NChains);
2474    ChainUsersVec.resize(NChains);
2475    DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
2476          << "\n");
2477  }
2478  else
2479    DEBUG(dbgs() << "IV  Inc: (" << *UserInst << ") IV+" << *LastIncExpr
2480          << "\n");
2481
2482  // Add this IV user to the end of the chain.
2483  IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
2484
2485  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2486  // This chain's NearUsers become FarUsers.
2487  if (!LastIncExpr->isZero()) {
2488    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2489                                            NearUsers.end());
2490    NearUsers.clear();
2491  }
2492
2493  // All other uses of IVOperand become near uses of the chain.
2494  // We currently ignore intermediate values within SCEV expressions, assuming
2495  // they will eventually be used be the current chain, or can be computed
2496  // from one of the chain increments. To be more precise we could
2497  // transitively follow its user and only add leaf IV users to the set.
2498  for (Value::use_iterator UseIter = IVOper->use_begin(),
2499         UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2500    Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2501    if (!OtherUse || OtherUse == UserInst)
2502      continue;
2503    if (SE.isSCEVable(OtherUse->getType())
2504        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2505        && IU.isIVUserOrOperand(OtherUse)) {
2506      continue;
2507    }
2508    NearUsers.insert(OtherUse);
2509  }
2510
2511  // Since this user is part of the chain, it's no longer considered a use
2512  // of the chain.
2513  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2514}
2515
2516/// CollectChains - Populate the vector of Chains.
2517///
2518/// This decreases ILP at the architecture level. Targets with ample registers,
2519/// multiple memory ports, and no register renaming probably don't want
2520/// this. However, such targets should probably disable LSR altogether.
2521///
2522/// The job of LSR is to make a reasonable choice of induction variables across
2523/// the loop. Subsequent passes can easily "unchain" computation exposing more
2524/// ILP *within the loop* if the target wants it.
2525///
2526/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2527/// will not reorder memory operations, it will recognize this as a chain, but
2528/// will generate redundant IV increments. Ideally this would be corrected later
2529/// by a smart scheduler:
2530///        = A[i]
2531///        = A[i+x]
2532/// A[i]   =
2533/// A[i+x] =
2534///
2535/// TODO: Walk the entire domtree within this loop, not just the path to the
2536/// loop latch. This will discover chains on side paths, but requires
2537/// maintaining multiple copies of the Chains state.
2538void LSRInstance::CollectChains() {
2539  SmallVector<ChainUsers, 8> ChainUsersVec;
2540
2541  SmallVector<BasicBlock *,8> LatchPath;
2542  BasicBlock *LoopHeader = L->getHeader();
2543  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2544       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2545    LatchPath.push_back(Rung->getBlock());
2546  }
2547  LatchPath.push_back(LoopHeader);
2548
2549  // Walk the instruction stream from the loop header to the loop latch.
2550  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2551         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2552       BBIter != BBEnd; ++BBIter) {
2553    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2554         I != E; ++I) {
2555      // Skip instructions that weren't seen by IVUsers analysis.
2556      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2557        continue;
2558
2559      // Ignore users that are part of a SCEV expression. This way we only
2560      // consider leaf IV Users. This effectively rediscovers a portion of
2561      // IVUsers analysis but in program order this time.
2562      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2563        continue;
2564
2565      // Remove this instruction from any NearUsers set it may be in.
2566      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2567           ChainIdx < NChains; ++ChainIdx) {
2568        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2569      }
2570      // Search for operands that can be chained.
2571      SmallPtrSet<Instruction*, 4> UniqueOperands;
2572      User::op_iterator IVOpEnd = I->op_end();
2573      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2574      while (IVOpIter != IVOpEnd) {
2575        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2576        if (UniqueOperands.insert(IVOpInst))
2577          ChainInstruction(I, IVOpInst, ChainUsersVec);
2578        IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2579      }
2580    } // Continue walking down the instructions.
2581  } // Continue walking down the domtree.
2582  // Visit phi backedges to determine if the chain can generate the IV postinc.
2583  for (BasicBlock::iterator I = L->getHeader()->begin();
2584       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2585    if (!SE.isSCEVable(PN->getType()))
2586      continue;
2587
2588    Instruction *IncV =
2589      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2590    if (IncV)
2591      ChainInstruction(PN, IncV, ChainUsersVec);
2592  }
2593  // Remove any unprofitable chains.
2594  unsigned ChainIdx = 0;
2595  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2596       UsersIdx < NChains; ++UsersIdx) {
2597    if (!isProfitableChain(IVChainVec[UsersIdx],
2598                           ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2599      continue;
2600    // Preserve the chain at UsesIdx.
2601    if (ChainIdx != UsersIdx)
2602      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2603    FinalizeChain(IVChainVec[ChainIdx]);
2604    ++ChainIdx;
2605  }
2606  IVChainVec.resize(ChainIdx);
2607}
2608
2609void LSRInstance::FinalizeChain(IVChain &Chain) {
2610  assert(!Chain.empty() && "empty IV chains are not allowed");
2611  DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
2612
2613  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2614       I != E; ++I) {
2615    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2616    User::op_iterator UseI =
2617      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2618    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2619    IVIncSet.insert(UseI);
2620  }
2621}
2622
2623/// Return true if the IVInc can be folded into an addressing mode.
2624static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2625                             Value *Operand, const TargetLowering *TLI) {
2626  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2627  if (!IncConst || !isAddressUse(UserInst, Operand))
2628    return false;
2629
2630  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2631    return false;
2632
2633  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2634  if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2635                       LSRUse::Address, getAccessType(UserInst), TLI))
2636    return false;
2637
2638  return true;
2639}
2640
2641/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2642/// materialize the IV user's operand from the previous IV user's operand.
2643void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2644                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2645  // Find the new IVOperand for the head of the chain. It may have been replaced
2646  // by LSR.
2647  const IVInc &Head = Chain[0];
2648  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2649  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2650                                             IVOpEnd, L, SE);
2651  Value *IVSrc = 0;
2652  while (IVOpIter != IVOpEnd) {
2653    IVSrc = getWideOperand(*IVOpIter);
2654
2655    // If this operand computes the expression that the chain needs, we may use
2656    // it. (Check this after setting IVSrc which is used below.)
2657    //
2658    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2659    // narrow for the chain, so we can no longer use it. We do allow using a
2660    // wider phi, assuming the LSR checked for free truncation. In that case we
2661    // should already have a truncate on this operand such that
2662    // getSCEV(IVSrc) == IncExpr.
2663    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2664        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2665      break;
2666    }
2667    IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2668  }
2669  if (IVOpIter == IVOpEnd) {
2670    // Gracefully give up on this chain.
2671    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2672    return;
2673  }
2674
2675  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2676  Type *IVTy = IVSrc->getType();
2677  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2678  const SCEV *LeftOverExpr = 0;
2679  for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
2680         IncE = Chain.end(); IncI != IncE; ++IncI) {
2681
2682    Instruction *InsertPt = IncI->UserInst;
2683    if (isa<PHINode>(InsertPt))
2684      InsertPt = L->getLoopLatch()->getTerminator();
2685
2686    // IVOper will replace the current IV User's operand. IVSrc is the IV
2687    // value currently held in a register.
2688    Value *IVOper = IVSrc;
2689    if (!IncI->IncExpr->isZero()) {
2690      // IncExpr was the result of subtraction of two narrow values, so must
2691      // be signed.
2692      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2693      LeftOverExpr = LeftOverExpr ?
2694        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2695    }
2696    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2697      // Expand the IV increment.
2698      Rewriter.clearPostInc();
2699      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2700      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2701                                             SE.getUnknown(IncV));
2702      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2703
2704      // If an IV increment can't be folded, use it as the next IV value.
2705      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2706                            TLI)) {
2707        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2708        IVSrc = IVOper;
2709        LeftOverExpr = 0;
2710      }
2711    }
2712    Type *OperTy = IncI->IVOperand->getType();
2713    if (IVTy != OperTy) {
2714      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2715             "cannot extend a chained IV");
2716      IRBuilder<> Builder(InsertPt);
2717      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2718    }
2719    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2720    DeadInsts.push_back(IncI->IVOperand);
2721  }
2722  // If LSR created a new, wider phi, we may also replace its postinc. We only
2723  // do this if we also found a wide value for the head of the chain.
2724  if (isa<PHINode>(Chain.back().UserInst)) {
2725    for (BasicBlock::iterator I = L->getHeader()->begin();
2726         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2727      if (!isCompatibleIVType(Phi, IVSrc))
2728        continue;
2729      Instruction *PostIncV = dyn_cast<Instruction>(
2730        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2731      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2732        continue;
2733      Value *IVOper = IVSrc;
2734      Type *PostIncTy = PostIncV->getType();
2735      if (IVTy != PostIncTy) {
2736        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2737        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2738        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2739        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2740      }
2741      Phi->replaceUsesOfWith(PostIncV, IVOper);
2742      DeadInsts.push_back(PostIncV);
2743    }
2744  }
2745}
2746
2747void LSRInstance::CollectFixupsAndInitialFormulae() {
2748  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2749    Instruction *UserInst = UI->getUser();
2750    // Skip IV users that are part of profitable IV Chains.
2751    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2752                                       UI->getOperandValToReplace());
2753    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2754    if (IVIncSet.count(UseI))
2755      continue;
2756
2757    // Record the uses.
2758    LSRFixup &LF = getNewFixup();
2759    LF.UserInst = UserInst;
2760    LF.OperandValToReplace = UI->getOperandValToReplace();
2761    LF.PostIncLoops = UI->getPostIncLoops();
2762
2763    LSRUse::KindType Kind = LSRUse::Basic;
2764    Type *AccessTy = 0;
2765    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2766      Kind = LSRUse::Address;
2767      AccessTy = getAccessType(LF.UserInst);
2768    }
2769
2770    const SCEV *S = IU.getExpr(*UI);
2771
2772    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2773    // (N - i == 0), and this allows (N - i) to be the expression that we work
2774    // with rather than just N or i, so we can consider the register
2775    // requirements for both N and i at the same time. Limiting this code to
2776    // equality icmps is not a problem because all interesting loops use
2777    // equality icmps, thanks to IndVarSimplify.
2778    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2779      if (CI->isEquality()) {
2780        // Swap the operands if needed to put the OperandValToReplace on the
2781        // left, for consistency.
2782        Value *NV = CI->getOperand(1);
2783        if (NV == LF.OperandValToReplace) {
2784          CI->setOperand(1, CI->getOperand(0));
2785          CI->setOperand(0, NV);
2786          NV = CI->getOperand(1);
2787          Changed = true;
2788        }
2789
2790        // x == y  -->  x - y == 0
2791        const SCEV *N = SE.getSCEV(NV);
2792        if (SE.isLoopInvariant(N, L)) {
2793          // S is normalized, so normalize N before folding it into S
2794          // to keep the result normalized.
2795          N = TransformForPostIncUse(Normalize, N, CI, 0,
2796                                     LF.PostIncLoops, SE, DT);
2797          Kind = LSRUse::ICmpZero;
2798          S = SE.getMinusSCEV(N, S);
2799        }
2800
2801        // -1 and the negations of all interesting strides (except the negation
2802        // of -1) are now also interesting.
2803        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2804          if (Factors[i] != -1)
2805            Factors.insert(-(uint64_t)Factors[i]);
2806        Factors.insert(-1);
2807      }
2808
2809    // Set up the initial formula for this use.
2810    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2811    LF.LUIdx = P.first;
2812    LF.Offset = P.second;
2813    LSRUse &LU = Uses[LF.LUIdx];
2814    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2815    if (!LU.WidestFixupType ||
2816        SE.getTypeSizeInBits(LU.WidestFixupType) <
2817        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2818      LU.WidestFixupType = LF.OperandValToReplace->getType();
2819
2820    // If this is the first use of this LSRUse, give it a formula.
2821    if (LU.Formulae.empty()) {
2822      InsertInitialFormula(S, LU, LF.LUIdx);
2823      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2824    }
2825  }
2826
2827  DEBUG(print_fixups(dbgs()));
2828}
2829
2830/// InsertInitialFormula - Insert a formula for the given expression into
2831/// the given use, separating out loop-variant portions from loop-invariant
2832/// and loop-computable portions.
2833void
2834LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2835  Formula F;
2836  F.InitialMatch(S, L, SE);
2837  bool Inserted = InsertFormula(LU, LUIdx, F);
2838  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2839}
2840
2841/// InsertSupplementalFormula - Insert a simple single-register formula for
2842/// the given expression into the given use.
2843void
2844LSRInstance::InsertSupplementalFormula(const SCEV *S,
2845                                       LSRUse &LU, size_t LUIdx) {
2846  Formula F;
2847  F.BaseRegs.push_back(S);
2848  F.AM.HasBaseReg = true;
2849  bool Inserted = InsertFormula(LU, LUIdx, F);
2850  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2851}
2852
2853/// CountRegisters - Note which registers are used by the given formula,
2854/// updating RegUses.
2855void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2856  if (F.ScaledReg)
2857    RegUses.CountRegister(F.ScaledReg, LUIdx);
2858  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2859       E = F.BaseRegs.end(); I != E; ++I)
2860    RegUses.CountRegister(*I, LUIdx);
2861}
2862
2863/// InsertFormula - If the given formula has not yet been inserted, add it to
2864/// the list, and return true. Return false otherwise.
2865bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2866  if (!LU.InsertFormula(F))
2867    return false;
2868
2869  CountRegisters(F, LUIdx);
2870  return true;
2871}
2872
2873/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2874/// loop-invariant values which we're tracking. These other uses will pin these
2875/// values in registers, making them less profitable for elimination.
2876/// TODO: This currently misses non-constant addrec step registers.
2877/// TODO: Should this give more weight to users inside the loop?
2878void
2879LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2880  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2881  SmallPtrSet<const SCEV *, 8> Inserted;
2882
2883  while (!Worklist.empty()) {
2884    const SCEV *S = Worklist.pop_back_val();
2885
2886    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2887      Worklist.append(N->op_begin(), N->op_end());
2888    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2889      Worklist.push_back(C->getOperand());
2890    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2891      Worklist.push_back(D->getLHS());
2892      Worklist.push_back(D->getRHS());
2893    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2894      if (!Inserted.insert(U)) continue;
2895      const Value *V = U->getValue();
2896      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2897        // Look for instructions defined outside the loop.
2898        if (L->contains(Inst)) continue;
2899      } else if (isa<UndefValue>(V))
2900        // Undef doesn't have a live range, so it doesn't matter.
2901        continue;
2902      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2903           UI != UE; ++UI) {
2904        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2905        // Ignore non-instructions.
2906        if (!UserInst)
2907          continue;
2908        // Ignore instructions in other functions (as can happen with
2909        // Constants).
2910        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2911          continue;
2912        // Ignore instructions not dominated by the loop.
2913        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2914          UserInst->getParent() :
2915          cast<PHINode>(UserInst)->getIncomingBlock(
2916            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2917        if (!DT.dominates(L->getHeader(), UseBB))
2918          continue;
2919        // Ignore uses which are part of other SCEV expressions, to avoid
2920        // analyzing them multiple times.
2921        if (SE.isSCEVable(UserInst->getType())) {
2922          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2923          // If the user is a no-op, look through to its uses.
2924          if (!isa<SCEVUnknown>(UserS))
2925            continue;
2926          if (UserS == U) {
2927            Worklist.push_back(
2928              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2929            continue;
2930          }
2931        }
2932        // Ignore icmp instructions which are already being analyzed.
2933        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2934          unsigned OtherIdx = !UI.getOperandNo();
2935          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2936          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2937            continue;
2938        }
2939
2940        LSRFixup &LF = getNewFixup();
2941        LF.UserInst = const_cast<Instruction *>(UserInst);
2942        LF.OperandValToReplace = UI.getUse();
2943        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2944        LF.LUIdx = P.first;
2945        LF.Offset = P.second;
2946        LSRUse &LU = Uses[LF.LUIdx];
2947        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2948        if (!LU.WidestFixupType ||
2949            SE.getTypeSizeInBits(LU.WidestFixupType) <
2950            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2951          LU.WidestFixupType = LF.OperandValToReplace->getType();
2952        InsertSupplementalFormula(U, LU, LF.LUIdx);
2953        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2954        break;
2955      }
2956    }
2957  }
2958}
2959
2960/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2961/// separate registers. If C is non-null, multiply each subexpression by C.
2962static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2963                            SmallVectorImpl<const SCEV *> &Ops,
2964                            const Loop *L,
2965                            ScalarEvolution &SE) {
2966  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2967    // Break out add operands.
2968    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2969         I != E; ++I)
2970      CollectSubexprs(*I, C, Ops, L, SE);
2971    return;
2972  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2973    // Split a non-zero base out of an addrec.
2974    if (!AR->getStart()->isZero()) {
2975      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2976                                       AR->getStepRecurrence(SE),
2977                                       AR->getLoop(),
2978                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2979                                       SCEV::FlagAnyWrap),
2980                      C, Ops, L, SE);
2981      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2982      return;
2983    }
2984  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2985    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2986    if (Mul->getNumOperands() == 2)
2987      if (const SCEVConstant *Op0 =
2988            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2989        CollectSubexprs(Mul->getOperand(1),
2990                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2991                        Ops, L, SE);
2992        return;
2993      }
2994  }
2995
2996  // Otherwise use the value itself, optionally with a scale applied.
2997  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2998}
2999
3000/// GenerateReassociations - Split out subexpressions from adds and the bases of
3001/// addrecs.
3002void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3003                                         Formula Base,
3004                                         unsigned Depth) {
3005  // Arbitrarily cap recursion to protect compile time.
3006  if (Depth >= 3) return;
3007
3008  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3009    const SCEV *BaseReg = Base.BaseRegs[i];
3010
3011    SmallVector<const SCEV *, 8> AddOps;
3012    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3013
3014    if (AddOps.size() == 1) continue;
3015
3016    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3017         JE = AddOps.end(); J != JE; ++J) {
3018
3019      // Loop-variant "unknown" values are uninteresting; we won't be able to
3020      // do anything meaningful with them.
3021      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3022        continue;
3023
3024      // Don't pull a constant into a register if the constant could be folded
3025      // into an immediate field.
3026      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3027                           Base.getNumRegs() > 1,
3028                           LU.Kind, LU.AccessTy, TLI, SE))
3029        continue;
3030
3031      // Collect all operands except *J.
3032      SmallVector<const SCEV *, 8> InnerAddOps
3033        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3034      InnerAddOps.append
3035        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3036
3037      // Don't leave just a constant behind in a register if the constant could
3038      // be folded into an immediate field.
3039      if (InnerAddOps.size() == 1 &&
3040          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3041                           Base.getNumRegs() > 1,
3042                           LU.Kind, LU.AccessTy, TLI, SE))
3043        continue;
3044
3045      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3046      if (InnerSum->isZero())
3047        continue;
3048      Formula F = Base;
3049
3050      // Add the remaining pieces of the add back into the new formula.
3051      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3052      if (TLI && InnerSumSC &&
3053          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3054          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3055                                   InnerSumSC->getValue()->getZExtValue())) {
3056        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3057                           InnerSumSC->getValue()->getZExtValue();
3058        F.BaseRegs.erase(F.BaseRegs.begin() + i);
3059      } else
3060        F.BaseRegs[i] = InnerSum;
3061
3062      // Add J as its own register, or an unfolded immediate.
3063      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3064      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3065          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3066                                   SC->getValue()->getZExtValue()))
3067        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3068                           SC->getValue()->getZExtValue();
3069      else
3070        F.BaseRegs.push_back(*J);
3071
3072      if (InsertFormula(LU, LUIdx, F))
3073        // If that formula hadn't been seen before, recurse to find more like
3074        // it.
3075        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3076    }
3077  }
3078}
3079
3080/// GenerateCombinations - Generate a formula consisting of all of the
3081/// loop-dominating registers added into a single register.
3082void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3083                                       Formula Base) {
3084  // This method is only interesting on a plurality of registers.
3085  if (Base.BaseRegs.size() <= 1) return;
3086
3087  Formula F = Base;
3088  F.BaseRegs.clear();
3089  SmallVector<const SCEV *, 4> Ops;
3090  for (SmallVectorImpl<const SCEV *>::const_iterator
3091       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3092    const SCEV *BaseReg = *I;
3093    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3094        !SE.hasComputableLoopEvolution(BaseReg, L))
3095      Ops.push_back(BaseReg);
3096    else
3097      F.BaseRegs.push_back(BaseReg);
3098  }
3099  if (Ops.size() > 1) {
3100    const SCEV *Sum = SE.getAddExpr(Ops);
3101    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3102    // opportunity to fold something. For now, just ignore such cases
3103    // rather than proceed with zero in a register.
3104    if (!Sum->isZero()) {
3105      F.BaseRegs.push_back(Sum);
3106      (void)InsertFormula(LU, LUIdx, F);
3107    }
3108  }
3109}
3110
3111/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3112void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3113                                          Formula Base) {
3114  // We can't add a symbolic offset if the address already contains one.
3115  if (Base.AM.BaseGV) return;
3116
3117  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3118    const SCEV *G = Base.BaseRegs[i];
3119    GlobalValue *GV = ExtractSymbol(G, SE);
3120    if (G->isZero() || !GV)
3121      continue;
3122    Formula F = Base;
3123    F.AM.BaseGV = GV;
3124    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3125                    LU.Kind, LU.AccessTy, TLI))
3126      continue;
3127    F.BaseRegs[i] = G;
3128    (void)InsertFormula(LU, LUIdx, F);
3129  }
3130}
3131
3132/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3133void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3134                                          Formula Base) {
3135  // TODO: For now, just add the min and max offset, because it usually isn't
3136  // worthwhile looking at everything inbetween.
3137  SmallVector<int64_t, 2> Worklist;
3138  Worklist.push_back(LU.MinOffset);
3139  if (LU.MaxOffset != LU.MinOffset)
3140    Worklist.push_back(LU.MaxOffset);
3141
3142  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3143    const SCEV *G = Base.BaseRegs[i];
3144
3145    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3146         E = Worklist.end(); I != E; ++I) {
3147      Formula F = Base;
3148      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3149      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3150                     LU.Kind, LU.AccessTy, TLI)) {
3151        // Add the offset to the base register.
3152        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3153        // If it cancelled out, drop the base register, otherwise update it.
3154        if (NewG->isZero()) {
3155          std::swap(F.BaseRegs[i], F.BaseRegs.back());
3156          F.BaseRegs.pop_back();
3157        } else
3158          F.BaseRegs[i] = NewG;
3159
3160        (void)InsertFormula(LU, LUIdx, F);
3161      }
3162    }
3163
3164    int64_t Imm = ExtractImmediate(G, SE);
3165    if (G->isZero() || Imm == 0)
3166      continue;
3167    Formula F = Base;
3168    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3169    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3170                    LU.Kind, LU.AccessTy, TLI))
3171      continue;
3172    F.BaseRegs[i] = G;
3173    (void)InsertFormula(LU, LUIdx, F);
3174  }
3175}
3176
3177/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3178/// the comparison. For example, x == y -> x*c == y*c.
3179void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3180                                         Formula Base) {
3181  if (LU.Kind != LSRUse::ICmpZero) return;
3182
3183  // Determine the integer type for the base formula.
3184  Type *IntTy = Base.getType();
3185  if (!IntTy) return;
3186  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3187
3188  // Don't do this if there is more than one offset.
3189  if (LU.MinOffset != LU.MaxOffset) return;
3190
3191  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3192
3193  // Check each interesting stride.
3194  for (SmallSetVector<int64_t, 8>::const_iterator
3195       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3196    int64_t Factor = *I;
3197
3198    // Check that the multiplication doesn't overflow.
3199    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
3200      continue;
3201    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3202    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
3203      continue;
3204
3205    // Check that multiplying with the use offset doesn't overflow.
3206    int64_t Offset = LU.MinOffset;
3207    if (Offset == INT64_MIN && Factor == -1)
3208      continue;
3209    Offset = (uint64_t)Offset * Factor;
3210    if (Offset / Factor != LU.MinOffset)
3211      continue;
3212
3213    Formula F = Base;
3214    F.AM.BaseOffs = NewBaseOffs;
3215
3216    // Check that this scale is legal.
3217    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3218      continue;
3219
3220    // Compensate for the use having MinOffset built into it.
3221    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3222
3223    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3224
3225    // Check that multiplying with each base register doesn't overflow.
3226    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3227      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3228      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3229        goto next;
3230    }
3231
3232    // Check that multiplying with the scaled register doesn't overflow.
3233    if (F.ScaledReg) {
3234      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3235      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3236        continue;
3237    }
3238
3239    // Check that multiplying with the unfolded offset doesn't overflow.
3240    if (F.UnfoldedOffset != 0) {
3241      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3242        continue;
3243      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3244      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3245        continue;
3246    }
3247
3248    // If we make it here and it's legal, add it.
3249    (void)InsertFormula(LU, LUIdx, F);
3250  next:;
3251  }
3252}
3253
3254/// GenerateScales - Generate stride factor reuse formulae by making use of
3255/// scaled-offset address modes, for example.
3256void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3257  // Determine the integer type for the base formula.
3258  Type *IntTy = Base.getType();
3259  if (!IntTy) return;
3260
3261  // If this Formula already has a scaled register, we can't add another one.
3262  if (Base.AM.Scale != 0) return;
3263
3264  // Check each interesting stride.
3265  for (SmallSetVector<int64_t, 8>::const_iterator
3266       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3267    int64_t Factor = *I;
3268
3269    Base.AM.Scale = Factor;
3270    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3271    // Check whether this scale is going to be legal.
3272    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3273                    LU.Kind, LU.AccessTy, TLI)) {
3274      // As a special-case, handle special out-of-loop Basic users specially.
3275      // TODO: Reconsider this special case.
3276      if (LU.Kind == LSRUse::Basic &&
3277          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3278                     LSRUse::Special, LU.AccessTy, TLI) &&
3279          LU.AllFixupsOutsideLoop)
3280        LU.Kind = LSRUse::Special;
3281      else
3282        continue;
3283    }
3284    // For an ICmpZero, negating a solitary base register won't lead to
3285    // new solutions.
3286    if (LU.Kind == LSRUse::ICmpZero &&
3287        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3288      continue;
3289    // For each addrec base reg, apply the scale, if possible.
3290    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3291      if (const SCEVAddRecExpr *AR =
3292            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3293        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3294        if (FactorS->isZero())
3295          continue;
3296        // Divide out the factor, ignoring high bits, since we'll be
3297        // scaling the value back up in the end.
3298        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3299          // TODO: This could be optimized to avoid all the copying.
3300          Formula F = Base;
3301          F.ScaledReg = Quotient;
3302          F.DeleteBaseReg(F.BaseRegs[i]);
3303          (void)InsertFormula(LU, LUIdx, F);
3304        }
3305      }
3306  }
3307}
3308
3309/// GenerateTruncates - Generate reuse formulae from different IV types.
3310void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3311  // This requires TargetLowering to tell us which truncates are free.
3312  if (!TLI) return;
3313
3314  // Don't bother truncating symbolic values.
3315  if (Base.AM.BaseGV) return;
3316
3317  // Determine the integer type for the base formula.
3318  Type *DstTy = Base.getType();
3319  if (!DstTy) return;
3320  DstTy = SE.getEffectiveSCEVType(DstTy);
3321
3322  for (SmallSetVector<Type *, 4>::const_iterator
3323       I = Types.begin(), E = Types.end(); I != E; ++I) {
3324    Type *SrcTy = *I;
3325    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3326      Formula F = Base;
3327
3328      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3329      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3330           JE = F.BaseRegs.end(); J != JE; ++J)
3331        *J = SE.getAnyExtendExpr(*J, SrcTy);
3332
3333      // TODO: This assumes we've done basic processing on all uses and
3334      // have an idea what the register usage is.
3335      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3336        continue;
3337
3338      (void)InsertFormula(LU, LUIdx, F);
3339    }
3340  }
3341}
3342
3343namespace {
3344
3345/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3346/// defer modifications so that the search phase doesn't have to worry about
3347/// the data structures moving underneath it.
3348struct WorkItem {
3349  size_t LUIdx;
3350  int64_t Imm;
3351  const SCEV *OrigReg;
3352
3353  WorkItem(size_t LI, int64_t I, const SCEV *R)
3354    : LUIdx(LI), Imm(I), OrigReg(R) {}
3355
3356  void print(raw_ostream &OS) const;
3357  void dump() const;
3358};
3359
3360}
3361
3362void WorkItem::print(raw_ostream &OS) const {
3363  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3364     << " , add offset " << Imm;
3365}
3366
3367void WorkItem::dump() const {
3368  print(errs()); errs() << '\n';
3369}
3370
3371/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3372/// distance apart and try to form reuse opportunities between them.
3373void LSRInstance::GenerateCrossUseConstantOffsets() {
3374  // Group the registers by their value without any added constant offset.
3375  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3376  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3377  RegMapTy Map;
3378  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3379  SmallVector<const SCEV *, 8> Sequence;
3380  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3381       I != E; ++I) {
3382    const SCEV *Reg = *I;
3383    int64_t Imm = ExtractImmediate(Reg, SE);
3384    std::pair<RegMapTy::iterator, bool> Pair =
3385      Map.insert(std::make_pair(Reg, ImmMapTy()));
3386    if (Pair.second)
3387      Sequence.push_back(Reg);
3388    Pair.first->second.insert(std::make_pair(Imm, *I));
3389    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3390  }
3391
3392  // Now examine each set of registers with the same base value. Build up
3393  // a list of work to do and do the work in a separate step so that we're
3394  // not adding formulae and register counts while we're searching.
3395  SmallVector<WorkItem, 32> WorkItems;
3396  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3397  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3398       E = Sequence.end(); I != E; ++I) {
3399    const SCEV *Reg = *I;
3400    const ImmMapTy &Imms = Map.find(Reg)->second;
3401
3402    // It's not worthwhile looking for reuse if there's only one offset.
3403    if (Imms.size() == 1)
3404      continue;
3405
3406    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3407          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3408               J != JE; ++J)
3409            dbgs() << ' ' << J->first;
3410          dbgs() << '\n');
3411
3412    // Examine each offset.
3413    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3414         J != JE; ++J) {
3415      const SCEV *OrigReg = J->second;
3416
3417      int64_t JImm = J->first;
3418      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3419
3420      if (!isa<SCEVConstant>(OrigReg) &&
3421          UsedByIndicesMap[Reg].count() == 1) {
3422        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3423        continue;
3424      }
3425
3426      // Conservatively examine offsets between this orig reg a few selected
3427      // other orig regs.
3428      ImmMapTy::const_iterator OtherImms[] = {
3429        Imms.begin(), prior(Imms.end()),
3430        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3431      };
3432      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3433        ImmMapTy::const_iterator M = OtherImms[i];
3434        if (M == J || M == JE) continue;
3435
3436        // Compute the difference between the two.
3437        int64_t Imm = (uint64_t)JImm - M->first;
3438        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3439             LUIdx = UsedByIndices.find_next(LUIdx))
3440          // Make a memo of this use, offset, and register tuple.
3441          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3442            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3443      }
3444    }
3445  }
3446
3447  Map.clear();
3448  Sequence.clear();
3449  UsedByIndicesMap.clear();
3450  UniqueItems.clear();
3451
3452  // Now iterate through the worklist and add new formulae.
3453  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3454       E = WorkItems.end(); I != E; ++I) {
3455    const WorkItem &WI = *I;
3456    size_t LUIdx = WI.LUIdx;
3457    LSRUse &LU = Uses[LUIdx];
3458    int64_t Imm = WI.Imm;
3459    const SCEV *OrigReg = WI.OrigReg;
3460
3461    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3462    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3463    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3464
3465    // TODO: Use a more targeted data structure.
3466    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3467      const Formula &F = LU.Formulae[L];
3468      // Use the immediate in the scaled register.
3469      if (F.ScaledReg == OrigReg) {
3470        int64_t Offs = (uint64_t)F.AM.BaseOffs +
3471                       Imm * (uint64_t)F.AM.Scale;
3472        // Don't create 50 + reg(-50).
3473        if (F.referencesReg(SE.getSCEV(
3474                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
3475          continue;
3476        Formula NewF = F;
3477        NewF.AM.BaseOffs = Offs;
3478        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3479                        LU.Kind, LU.AccessTy, TLI))
3480          continue;
3481        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3482
3483        // If the new scale is a constant in a register, and adding the constant
3484        // value to the immediate would produce a value closer to zero than the
3485        // immediate itself, then the formula isn't worthwhile.
3486        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3487          if (C->getValue()->isNegative() !=
3488                (NewF.AM.BaseOffs < 0) &&
3489              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
3490                .ule(abs64(NewF.AM.BaseOffs)))
3491            continue;
3492
3493        // OK, looks good.
3494        (void)InsertFormula(LU, LUIdx, NewF);
3495      } else {
3496        // Use the immediate in a base register.
3497        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3498          const SCEV *BaseReg = F.BaseRegs[N];
3499          if (BaseReg != OrigReg)
3500            continue;
3501          Formula NewF = F;
3502          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3503          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3504                          LU.Kind, LU.AccessTy, TLI)) {
3505            if (!TLI ||
3506                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3507              continue;
3508            NewF = F;
3509            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3510          }
3511          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3512
3513          // If the new formula has a constant in a register, and adding the
3514          // constant value to the immediate would produce a value closer to
3515          // zero than the immediate itself, then the formula isn't worthwhile.
3516          for (SmallVectorImpl<const SCEV *>::const_iterator
3517               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3518               J != JE; ++J)
3519            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3520              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3521                   abs64(NewF.AM.BaseOffs)) &&
3522                  (C->getValue()->getValue() +
3523                   NewF.AM.BaseOffs).countTrailingZeros() >=
3524                   CountTrailingZeros_64(NewF.AM.BaseOffs))
3525                goto skip_formula;
3526
3527          // Ok, looks good.
3528          (void)InsertFormula(LU, LUIdx, NewF);
3529          break;
3530        skip_formula:;
3531        }
3532      }
3533    }
3534  }
3535}
3536
3537/// GenerateAllReuseFormulae - Generate formulae for each use.
3538void
3539LSRInstance::GenerateAllReuseFormulae() {
3540  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3541  // queries are more precise.
3542  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3543    LSRUse &LU = Uses[LUIdx];
3544    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3545      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3546    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3547      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3548  }
3549  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3550    LSRUse &LU = Uses[LUIdx];
3551    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3552      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3553    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3554      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3555    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3556      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3557    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3558      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3559  }
3560  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3561    LSRUse &LU = Uses[LUIdx];
3562    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3563      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3564  }
3565
3566  GenerateCrossUseConstantOffsets();
3567
3568  DEBUG(dbgs() << "\n"
3569                  "After generating reuse formulae:\n";
3570        print_uses(dbgs()));
3571}
3572
3573/// If there are multiple formulae with the same set of registers used
3574/// by other uses, pick the best one and delete the others.
3575void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3576  DenseSet<const SCEV *> VisitedRegs;
3577  SmallPtrSet<const SCEV *, 16> Regs;
3578  SmallPtrSet<const SCEV *, 16> LoserRegs;
3579#ifndef NDEBUG
3580  bool ChangedFormulae = false;
3581#endif
3582
3583  // Collect the best formula for each unique set of shared registers. This
3584  // is reset for each use.
3585  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3586    BestFormulaeTy;
3587  BestFormulaeTy BestFormulae;
3588
3589  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3590    LSRUse &LU = Uses[LUIdx];
3591    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3592
3593    bool Any = false;
3594    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3595         FIdx != NumForms; ++FIdx) {
3596      Formula &F = LU.Formulae[FIdx];
3597
3598      // Some formulas are instant losers. For example, they may depend on
3599      // nonexistent AddRecs from other loops. These need to be filtered
3600      // immediately, otherwise heuristics could choose them over others leading
3601      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3602      // avoids the need to recompute this information across formulae using the
3603      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3604      // the corresponding bad register from the Regs set.
3605      Cost CostF;
3606      Regs.clear();
3607      CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3608                        &LoserRegs);
3609      if (CostF.isLoser()) {
3610        // During initial formula generation, undesirable formulae are generated
3611        // by uses within other loops that have some non-trivial address mode or
3612        // use the postinc form of the IV. LSR needs to provide these formulae
3613        // as the basis of rediscovering the desired formula that uses an AddRec
3614        // corresponding to the existing phi. Once all formulae have been
3615        // generated, these initial losers may be pruned.
3616        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3617              dbgs() << "\n");
3618      }
3619      else {
3620        SmallVector<const SCEV *, 2> Key;
3621        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3622               JE = F.BaseRegs.end(); J != JE; ++J) {
3623          const SCEV *Reg = *J;
3624          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3625            Key.push_back(Reg);
3626        }
3627        if (F.ScaledReg &&
3628            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3629          Key.push_back(F.ScaledReg);
3630        // Unstable sort by host order ok, because this is only used for
3631        // uniquifying.
3632        std::sort(Key.begin(), Key.end());
3633
3634        std::pair<BestFormulaeTy::const_iterator, bool> P =
3635          BestFormulae.insert(std::make_pair(Key, FIdx));
3636        if (P.second)
3637          continue;
3638
3639        Formula &Best = LU.Formulae[P.first->second];
3640
3641        Cost CostBest;
3642        Regs.clear();
3643        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
3644        if (CostF < CostBest)
3645          std::swap(F, Best);
3646        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3647              dbgs() << "\n"
3648                        "    in favor of formula "; Best.print(dbgs());
3649              dbgs() << '\n');
3650      }
3651#ifndef NDEBUG
3652      ChangedFormulae = true;
3653#endif
3654      LU.DeleteFormula(F);
3655      --FIdx;
3656      --NumForms;
3657      Any = true;
3658    }
3659
3660    // Now that we've filtered out some formulae, recompute the Regs set.
3661    if (Any)
3662      LU.RecomputeRegs(LUIdx, RegUses);
3663
3664    // Reset this to prepare for the next use.
3665    BestFormulae.clear();
3666  }
3667
3668  DEBUG(if (ChangedFormulae) {
3669          dbgs() << "\n"
3670                    "After filtering out undesirable candidates:\n";
3671          print_uses(dbgs());
3672        });
3673}
3674
3675// This is a rough guess that seems to work fairly well.
3676static const size_t ComplexityLimit = UINT16_MAX;
3677
3678/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3679/// solutions the solver might have to consider. It almost never considers
3680/// this many solutions because it prune the search space, but the pruning
3681/// isn't always sufficient.
3682size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3683  size_t Power = 1;
3684  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3685       E = Uses.end(); I != E; ++I) {
3686    size_t FSize = I->Formulae.size();
3687    if (FSize >= ComplexityLimit) {
3688      Power = ComplexityLimit;
3689      break;
3690    }
3691    Power *= FSize;
3692    if (Power >= ComplexityLimit)
3693      break;
3694  }
3695  return Power;
3696}
3697
3698/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3699/// of the registers of another formula, it won't help reduce register
3700/// pressure (though it may not necessarily hurt register pressure); remove
3701/// it to simplify the system.
3702void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3703  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3704    DEBUG(dbgs() << "The search space is too complex.\n");
3705
3706    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3707                    "which use a superset of registers used by other "
3708                    "formulae.\n");
3709
3710    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3711      LSRUse &LU = Uses[LUIdx];
3712      bool Any = false;
3713      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3714        Formula &F = LU.Formulae[i];
3715        // Look for a formula with a constant or GV in a register. If the use
3716        // also has a formula with that same value in an immediate field,
3717        // delete the one that uses a register.
3718        for (SmallVectorImpl<const SCEV *>::const_iterator
3719             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3720          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3721            Formula NewF = F;
3722            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3723            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3724                                (I - F.BaseRegs.begin()));
3725            if (LU.HasFormulaWithSameRegs(NewF)) {
3726              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3727              LU.DeleteFormula(F);
3728              --i;
3729              --e;
3730              Any = true;
3731              break;
3732            }
3733          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3734            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3735              if (!F.AM.BaseGV) {
3736                Formula NewF = F;
3737                NewF.AM.BaseGV = GV;
3738                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3739                                    (I - F.BaseRegs.begin()));
3740                if (LU.HasFormulaWithSameRegs(NewF)) {
3741                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3742                        dbgs() << '\n');
3743                  LU.DeleteFormula(F);
3744                  --i;
3745                  --e;
3746                  Any = true;
3747                  break;
3748                }
3749              }
3750          }
3751        }
3752      }
3753      if (Any)
3754        LU.RecomputeRegs(LUIdx, RegUses);
3755    }
3756
3757    DEBUG(dbgs() << "After pre-selection:\n";
3758          print_uses(dbgs()));
3759  }
3760}
3761
3762/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3763/// for expressions like A, A+1, A+2, etc., allocate a single register for
3764/// them.
3765void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3766  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3767    DEBUG(dbgs() << "The search space is too complex.\n");
3768
3769    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3770                    "separated by a constant offset will use the same "
3771                    "registers.\n");
3772
3773    // This is especially useful for unrolled loops.
3774
3775    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3776      LSRUse &LU = Uses[LUIdx];
3777      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3778           E = LU.Formulae.end(); I != E; ++I) {
3779        const Formula &F = *I;
3780        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3781          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3782            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3783                                   /*HasBaseReg=*/false,
3784                                   LU.Kind, LU.AccessTy)) {
3785              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3786                    dbgs() << '\n');
3787
3788              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3789
3790              // Update the relocs to reference the new use.
3791              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3792                   E = Fixups.end(); I != E; ++I) {
3793                LSRFixup &Fixup = *I;
3794                if (Fixup.LUIdx == LUIdx) {
3795                  Fixup.LUIdx = LUThatHas - &Uses.front();
3796                  Fixup.Offset += F.AM.BaseOffs;
3797                  // Add the new offset to LUThatHas' offset list.
3798                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3799                    LUThatHas->Offsets.push_back(Fixup.Offset);
3800                    if (Fixup.Offset > LUThatHas->MaxOffset)
3801                      LUThatHas->MaxOffset = Fixup.Offset;
3802                    if (Fixup.Offset < LUThatHas->MinOffset)
3803                      LUThatHas->MinOffset = Fixup.Offset;
3804                  }
3805                  DEBUG(dbgs() << "New fixup has offset "
3806                               << Fixup.Offset << '\n');
3807                }
3808                if (Fixup.LUIdx == NumUses-1)
3809                  Fixup.LUIdx = LUIdx;
3810              }
3811
3812              // Delete formulae from the new use which are no longer legal.
3813              bool Any = false;
3814              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3815                Formula &F = LUThatHas->Formulae[i];
3816                if (!isLegalUse(F.AM,
3817                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3818                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3819                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3820                        dbgs() << '\n');
3821                  LUThatHas->DeleteFormula(F);
3822                  --i;
3823                  --e;
3824                  Any = true;
3825                }
3826              }
3827              if (Any)
3828                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3829
3830              // Delete the old use.
3831              DeleteUse(LU, LUIdx);
3832              --LUIdx;
3833              --NumUses;
3834              break;
3835            }
3836          }
3837        }
3838      }
3839    }
3840
3841    DEBUG(dbgs() << "After pre-selection:\n";
3842          print_uses(dbgs()));
3843  }
3844}
3845
3846/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3847/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3848/// we've done more filtering, as it may be able to find more formulae to
3849/// eliminate.
3850void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3851  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3852    DEBUG(dbgs() << "The search space is too complex.\n");
3853
3854    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3855                    "undesirable dedicated registers.\n");
3856
3857    FilterOutUndesirableDedicatedRegisters();
3858
3859    DEBUG(dbgs() << "After pre-selection:\n";
3860          print_uses(dbgs()));
3861  }
3862}
3863
3864/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3865/// to be profitable, and then in any use which has any reference to that
3866/// register, delete all formulae which do not reference that register.
3867void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3868  // With all other options exhausted, loop until the system is simple
3869  // enough to handle.
3870  SmallPtrSet<const SCEV *, 4> Taken;
3871  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3872    // Ok, we have too many of formulae on our hands to conveniently handle.
3873    // Use a rough heuristic to thin out the list.
3874    DEBUG(dbgs() << "The search space is too complex.\n");
3875
3876    // Pick the register which is used by the most LSRUses, which is likely
3877    // to be a good reuse register candidate.
3878    const SCEV *Best = 0;
3879    unsigned BestNum = 0;
3880    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3881         I != E; ++I) {
3882      const SCEV *Reg = *I;
3883      if (Taken.count(Reg))
3884        continue;
3885      if (!Best)
3886        Best = Reg;
3887      else {
3888        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3889        if (Count > BestNum) {
3890          Best = Reg;
3891          BestNum = Count;
3892        }
3893      }
3894    }
3895
3896    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3897                 << " will yield profitable reuse.\n");
3898    Taken.insert(Best);
3899
3900    // In any use with formulae which references this register, delete formulae
3901    // which don't reference it.
3902    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3903      LSRUse &LU = Uses[LUIdx];
3904      if (!LU.Regs.count(Best)) continue;
3905
3906      bool Any = false;
3907      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3908        Formula &F = LU.Formulae[i];
3909        if (!F.referencesReg(Best)) {
3910          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3911          LU.DeleteFormula(F);
3912          --e;
3913          --i;
3914          Any = true;
3915          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3916          continue;
3917        }
3918      }
3919
3920      if (Any)
3921        LU.RecomputeRegs(LUIdx, RegUses);
3922    }
3923
3924    DEBUG(dbgs() << "After pre-selection:\n";
3925          print_uses(dbgs()));
3926  }
3927}
3928
3929/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3930/// formulae to choose from, use some rough heuristics to prune down the number
3931/// of formulae. This keeps the main solver from taking an extraordinary amount
3932/// of time in some worst-case scenarios.
3933void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3934  NarrowSearchSpaceByDetectingSupersets();
3935  NarrowSearchSpaceByCollapsingUnrolledCode();
3936  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3937  NarrowSearchSpaceByPickingWinnerRegs();
3938}
3939
3940/// SolveRecurse - This is the recursive solver.
3941void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3942                               Cost &SolutionCost,
3943                               SmallVectorImpl<const Formula *> &Workspace,
3944                               const Cost &CurCost,
3945                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3946                               DenseSet<const SCEV *> &VisitedRegs) const {
3947  // Some ideas:
3948  //  - prune more:
3949  //    - use more aggressive filtering
3950  //    - sort the formula so that the most profitable solutions are found first
3951  //    - sort the uses too
3952  //  - search faster:
3953  //    - don't compute a cost, and then compare. compare while computing a cost
3954  //      and bail early.
3955  //    - track register sets with SmallBitVector
3956
3957  const LSRUse &LU = Uses[Workspace.size()];
3958
3959  // If this use references any register that's already a part of the
3960  // in-progress solution, consider it a requirement that a formula must
3961  // reference that register in order to be considered. This prunes out
3962  // unprofitable searching.
3963  SmallSetVector<const SCEV *, 4> ReqRegs;
3964  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3965       E = CurRegs.end(); I != E; ++I)
3966    if (LU.Regs.count(*I))
3967      ReqRegs.insert(*I);
3968
3969  SmallPtrSet<const SCEV *, 16> NewRegs;
3970  Cost NewCost;
3971  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3972       E = LU.Formulae.end(); I != E; ++I) {
3973    const Formula &F = *I;
3974
3975    // Ignore formulae which do not use any of the required registers.
3976    bool SatisfiedReqReg = true;
3977    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3978         JE = ReqRegs.end(); J != JE; ++J) {
3979      const SCEV *Reg = *J;
3980      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3981          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3982          F.BaseRegs.end()) {
3983        SatisfiedReqReg = false;
3984        break;
3985      }
3986    }
3987    if (!SatisfiedReqReg) {
3988      // If none of the formulae satisfied the required registers, then we could
3989      // clear ReqRegs and try again. Currently, we simply give up in this case.
3990      continue;
3991    }
3992
3993    // Evaluate the cost of the current formula. If it's already worse than
3994    // the current best, prune the search at that point.
3995    NewCost = CurCost;
3996    NewRegs = CurRegs;
3997    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3998    if (NewCost < SolutionCost) {
3999      Workspace.push_back(&F);
4000      if (Workspace.size() != Uses.size()) {
4001        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4002                     NewRegs, VisitedRegs);
4003        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4004          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4005      } else {
4006        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4007              dbgs() << ".\n Regs:";
4008              for (SmallPtrSet<const SCEV *, 16>::const_iterator
4009                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4010                dbgs() << ' ' << **I;
4011              dbgs() << '\n');
4012
4013        SolutionCost = NewCost;
4014        Solution = Workspace;
4015      }
4016      Workspace.pop_back();
4017    }
4018  }
4019}
4020
4021/// Solve - Choose one formula from each use. Return the results in the given
4022/// Solution vector.
4023void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4024  SmallVector<const Formula *, 8> Workspace;
4025  Cost SolutionCost;
4026  SolutionCost.Loose();
4027  Cost CurCost;
4028  SmallPtrSet<const SCEV *, 16> CurRegs;
4029  DenseSet<const SCEV *> VisitedRegs;
4030  Workspace.reserve(Uses.size());
4031
4032  // SolveRecurse does all the work.
4033  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4034               CurRegs, VisitedRegs);
4035  if (Solution.empty()) {
4036    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4037    return;
4038  }
4039
4040  // Ok, we've now made all our decisions.
4041  DEBUG(dbgs() << "\n"
4042                  "The chosen solution requires "; SolutionCost.print(dbgs());
4043        dbgs() << ":\n";
4044        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4045          dbgs() << "  ";
4046          Uses[i].print(dbgs());
4047          dbgs() << "\n"
4048                    "    ";
4049          Solution[i]->print(dbgs());
4050          dbgs() << '\n';
4051        });
4052
4053  assert(Solution.size() == Uses.size() && "Malformed solution!");
4054}
4055
4056/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4057/// the dominator tree far as we can go while still being dominated by the
4058/// input positions. This helps canonicalize the insert position, which
4059/// encourages sharing.
4060BasicBlock::iterator
4061LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4062                                 const SmallVectorImpl<Instruction *> &Inputs)
4063                                                                         const {
4064  for (;;) {
4065    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4066    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4067
4068    BasicBlock *IDom;
4069    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4070      if (!Rung) return IP;
4071      Rung = Rung->getIDom();
4072      if (!Rung) return IP;
4073      IDom = Rung->getBlock();
4074
4075      // Don't climb into a loop though.
4076      const Loop *IDomLoop = LI.getLoopFor(IDom);
4077      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4078      if (IDomDepth <= IPLoopDepth &&
4079          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4080        break;
4081    }
4082
4083    bool AllDominate = true;
4084    Instruction *BetterPos = 0;
4085    Instruction *Tentative = IDom->getTerminator();
4086    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4087         E = Inputs.end(); I != E; ++I) {
4088      Instruction *Inst = *I;
4089      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4090        AllDominate = false;
4091        break;
4092      }
4093      // Attempt to find an insert position in the middle of the block,
4094      // instead of at the end, so that it can be used for other expansions.
4095      if (IDom == Inst->getParent() &&
4096          (!BetterPos || DT.dominates(BetterPos, Inst)))
4097        BetterPos = llvm::next(BasicBlock::iterator(Inst));
4098    }
4099    if (!AllDominate)
4100      break;
4101    if (BetterPos)
4102      IP = BetterPos;
4103    else
4104      IP = Tentative;
4105  }
4106
4107  return IP;
4108}
4109
4110/// AdjustInsertPositionForExpand - Determine an input position which will be
4111/// dominated by the operands and which will dominate the result.
4112BasicBlock::iterator
4113LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4114                                           const LSRFixup &LF,
4115                                           const LSRUse &LU,
4116                                           SCEVExpander &Rewriter) const {
4117  // Collect some instructions which must be dominated by the
4118  // expanding replacement. These must be dominated by any operands that
4119  // will be required in the expansion.
4120  SmallVector<Instruction *, 4> Inputs;
4121  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4122    Inputs.push_back(I);
4123  if (LU.Kind == LSRUse::ICmpZero)
4124    if (Instruction *I =
4125          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4126      Inputs.push_back(I);
4127  if (LF.PostIncLoops.count(L)) {
4128    if (LF.isUseFullyOutsideLoop(L))
4129      Inputs.push_back(L->getLoopLatch()->getTerminator());
4130    else
4131      Inputs.push_back(IVIncInsertPos);
4132  }
4133  // The expansion must also be dominated by the increment positions of any
4134  // loops it for which it is using post-inc mode.
4135  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4136       E = LF.PostIncLoops.end(); I != E; ++I) {
4137    const Loop *PIL = *I;
4138    if (PIL == L) continue;
4139
4140    // Be dominated by the loop exit.
4141    SmallVector<BasicBlock *, 4> ExitingBlocks;
4142    PIL->getExitingBlocks(ExitingBlocks);
4143    if (!ExitingBlocks.empty()) {
4144      BasicBlock *BB = ExitingBlocks[0];
4145      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4146        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4147      Inputs.push_back(BB->getTerminator());
4148    }
4149  }
4150
4151  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4152         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4153         "Insertion point must be a normal instruction");
4154
4155  // Then, climb up the immediate dominator tree as far as we can go while
4156  // still being dominated by the input positions.
4157  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4158
4159  // Don't insert instructions before PHI nodes.
4160  while (isa<PHINode>(IP)) ++IP;
4161
4162  // Ignore landingpad instructions.
4163  while (isa<LandingPadInst>(IP)) ++IP;
4164
4165  // Ignore debug intrinsics.
4166  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4167
4168  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4169  // IP consistent across expansions and allows the previously inserted
4170  // instructions to be reused by subsequent expansion.
4171  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4172
4173  return IP;
4174}
4175
4176/// Expand - Emit instructions for the leading candidate expression for this
4177/// LSRUse (this is called "expanding").
4178Value *LSRInstance::Expand(const LSRFixup &LF,
4179                           const Formula &F,
4180                           BasicBlock::iterator IP,
4181                           SCEVExpander &Rewriter,
4182                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4183  const LSRUse &LU = Uses[LF.LUIdx];
4184
4185  // Determine an input position which will be dominated by the operands and
4186  // which will dominate the result.
4187  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4188
4189  // Inform the Rewriter if we have a post-increment use, so that it can
4190  // perform an advantageous expansion.
4191  Rewriter.setPostInc(LF.PostIncLoops);
4192
4193  // This is the type that the user actually needs.
4194  Type *OpTy = LF.OperandValToReplace->getType();
4195  // This will be the type that we'll initially expand to.
4196  Type *Ty = F.getType();
4197  if (!Ty)
4198    // No type known; just expand directly to the ultimate type.
4199    Ty = OpTy;
4200  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4201    // Expand directly to the ultimate type if it's the right size.
4202    Ty = OpTy;
4203  // This is the type to do integer arithmetic in.
4204  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4205
4206  // Build up a list of operands to add together to form the full base.
4207  SmallVector<const SCEV *, 8> Ops;
4208
4209  // Expand the BaseRegs portion.
4210  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4211       E = F.BaseRegs.end(); I != E; ++I) {
4212    const SCEV *Reg = *I;
4213    assert(!Reg->isZero() && "Zero allocated in a base register!");
4214
4215    // If we're expanding for a post-inc user, make the post-inc adjustment.
4216    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4217    Reg = TransformForPostIncUse(Denormalize, Reg,
4218                                 LF.UserInst, LF.OperandValToReplace,
4219                                 Loops, SE, DT);
4220
4221    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4222  }
4223
4224  // Flush the operand list to suppress SCEVExpander hoisting.
4225  if (!Ops.empty()) {
4226    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4227    Ops.clear();
4228    Ops.push_back(SE.getUnknown(FullV));
4229  }
4230
4231  // Expand the ScaledReg portion.
4232  Value *ICmpScaledV = 0;
4233  if (F.AM.Scale != 0) {
4234    const SCEV *ScaledS = F.ScaledReg;
4235
4236    // If we're expanding for a post-inc user, make the post-inc adjustment.
4237    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4238    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4239                                     LF.UserInst, LF.OperandValToReplace,
4240                                     Loops, SE, DT);
4241
4242    if (LU.Kind == LSRUse::ICmpZero) {
4243      // An interesting way of "folding" with an icmp is to use a negated
4244      // scale, which we'll implement by inserting it into the other operand
4245      // of the icmp.
4246      assert(F.AM.Scale == -1 &&
4247             "The only scale supported by ICmpZero uses is -1!");
4248      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4249    } else {
4250      // Otherwise just expand the scaled register and an explicit scale,
4251      // which is expected to be matched as part of the address.
4252      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4253      ScaledS = SE.getMulExpr(ScaledS,
4254                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
4255      Ops.push_back(ScaledS);
4256
4257      // Flush the operand list to suppress SCEVExpander hoisting.
4258      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4259      Ops.clear();
4260      Ops.push_back(SE.getUnknown(FullV));
4261    }
4262  }
4263
4264  // Expand the GV portion.
4265  if (F.AM.BaseGV) {
4266    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4267
4268    // Flush the operand list to suppress SCEVExpander hoisting.
4269    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4270    Ops.clear();
4271    Ops.push_back(SE.getUnknown(FullV));
4272  }
4273
4274  // Expand the immediate portion.
4275  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4276  if (Offset != 0) {
4277    if (LU.Kind == LSRUse::ICmpZero) {
4278      // The other interesting way of "folding" with an ICmpZero is to use a
4279      // negated immediate.
4280      if (!ICmpScaledV)
4281        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4282      else {
4283        Ops.push_back(SE.getUnknown(ICmpScaledV));
4284        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4285      }
4286    } else {
4287      // Just add the immediate values. These again are expected to be matched
4288      // as part of the address.
4289      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4290    }
4291  }
4292
4293  // Expand the unfolded offset portion.
4294  int64_t UnfoldedOffset = F.UnfoldedOffset;
4295  if (UnfoldedOffset != 0) {
4296    // Just add the immediate values.
4297    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4298                                                       UnfoldedOffset)));
4299  }
4300
4301  // Emit instructions summing all the operands.
4302  const SCEV *FullS = Ops.empty() ?
4303                      SE.getConstant(IntTy, 0) :
4304                      SE.getAddExpr(Ops);
4305  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4306
4307  // We're done expanding now, so reset the rewriter.
4308  Rewriter.clearPostInc();
4309
4310  // An ICmpZero Formula represents an ICmp which we're handling as a
4311  // comparison against zero. Now that we've expanded an expression for that
4312  // form, update the ICmp's other operand.
4313  if (LU.Kind == LSRUse::ICmpZero) {
4314    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4315    DeadInsts.push_back(CI->getOperand(1));
4316    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4317                           "a scale at the same time!");
4318    if (F.AM.Scale == -1) {
4319      if (ICmpScaledV->getType() != OpTy) {
4320        Instruction *Cast =
4321          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4322                                                   OpTy, false),
4323                           ICmpScaledV, OpTy, "tmp", CI);
4324        ICmpScaledV = Cast;
4325      }
4326      CI->setOperand(1, ICmpScaledV);
4327    } else {
4328      assert(F.AM.Scale == 0 &&
4329             "ICmp does not support folding a global value and "
4330             "a scale at the same time!");
4331      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4332                                           -(uint64_t)Offset);
4333      if (C->getType() != OpTy)
4334        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4335                                                          OpTy, false),
4336                                  C, OpTy);
4337
4338      CI->setOperand(1, C);
4339    }
4340  }
4341
4342  return FullV;
4343}
4344
4345/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4346/// of their operands effectively happens in their predecessor blocks, so the
4347/// expression may need to be expanded in multiple places.
4348void LSRInstance::RewriteForPHI(PHINode *PN,
4349                                const LSRFixup &LF,
4350                                const Formula &F,
4351                                SCEVExpander &Rewriter,
4352                                SmallVectorImpl<WeakVH> &DeadInsts,
4353                                Pass *P) const {
4354  DenseMap<BasicBlock *, Value *> Inserted;
4355  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4356    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4357      BasicBlock *BB = PN->getIncomingBlock(i);
4358
4359      // If this is a critical edge, split the edge so that we do not insert
4360      // the code on all predecessor/successor paths.  We do this unless this
4361      // is the canonical backedge for this loop, which complicates post-inc
4362      // users.
4363      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4364          !isa<IndirectBrInst>(BB->getTerminator())) {
4365        BasicBlock *Parent = PN->getParent();
4366        Loop *PNLoop = LI.getLoopFor(Parent);
4367        if (!PNLoop || Parent != PNLoop->getHeader()) {
4368          // Split the critical edge.
4369          BasicBlock *NewBB = 0;
4370          if (!Parent->isLandingPad()) {
4371            NewBB = SplitCriticalEdge(BB, Parent, P,
4372                                      /*MergeIdenticalEdges=*/true,
4373                                      /*DontDeleteUselessPhis=*/true);
4374          } else {
4375            SmallVector<BasicBlock*, 2> NewBBs;
4376            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4377            NewBB = NewBBs[0];
4378          }
4379
4380          // If PN is outside of the loop and BB is in the loop, we want to
4381          // move the block to be immediately before the PHI block, not
4382          // immediately after BB.
4383          if (L->contains(BB) && !L->contains(PN))
4384            NewBB->moveBefore(PN->getParent());
4385
4386          // Splitting the edge can reduce the number of PHI entries we have.
4387          e = PN->getNumIncomingValues();
4388          BB = NewBB;
4389          i = PN->getBasicBlockIndex(BB);
4390        }
4391      }
4392
4393      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4394        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4395      if (!Pair.second)
4396        PN->setIncomingValue(i, Pair.first->second);
4397      else {
4398        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4399
4400        // If this is reuse-by-noop-cast, insert the noop cast.
4401        Type *OpTy = LF.OperandValToReplace->getType();
4402        if (FullV->getType() != OpTy)
4403          FullV =
4404            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4405                                                     OpTy, false),
4406                             FullV, LF.OperandValToReplace->getType(),
4407                             "tmp", BB->getTerminator());
4408
4409        PN->setIncomingValue(i, FullV);
4410        Pair.first->second = FullV;
4411      }
4412    }
4413}
4414
4415/// Rewrite - Emit instructions for the leading candidate expression for this
4416/// LSRUse (this is called "expanding"), and update the UserInst to reference
4417/// the newly expanded value.
4418void LSRInstance::Rewrite(const LSRFixup &LF,
4419                          const Formula &F,
4420                          SCEVExpander &Rewriter,
4421                          SmallVectorImpl<WeakVH> &DeadInsts,
4422                          Pass *P) const {
4423  // First, find an insertion point that dominates UserInst. For PHI nodes,
4424  // find the nearest block which dominates all the relevant uses.
4425  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4426    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4427  } else {
4428    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4429
4430    // If this is reuse-by-noop-cast, insert the noop cast.
4431    Type *OpTy = LF.OperandValToReplace->getType();
4432    if (FullV->getType() != OpTy) {
4433      Instruction *Cast =
4434        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4435                         FullV, OpTy, "tmp", LF.UserInst);
4436      FullV = Cast;
4437    }
4438
4439    // Update the user. ICmpZero is handled specially here (for now) because
4440    // Expand may have updated one of the operands of the icmp already, and
4441    // its new value may happen to be equal to LF.OperandValToReplace, in
4442    // which case doing replaceUsesOfWith leads to replacing both operands
4443    // with the same value. TODO: Reorganize this.
4444    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4445      LF.UserInst->setOperand(0, FullV);
4446    else
4447      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4448  }
4449
4450  DeadInsts.push_back(LF.OperandValToReplace);
4451}
4452
4453/// ImplementSolution - Rewrite all the fixup locations with new values,
4454/// following the chosen solution.
4455void
4456LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4457                               Pass *P) {
4458  // Keep track of instructions we may have made dead, so that
4459  // we can remove them after we are done working.
4460  SmallVector<WeakVH, 16> DeadInsts;
4461
4462  SCEVExpander Rewriter(SE, "lsr");
4463#ifndef NDEBUG
4464  Rewriter.setDebugType(DEBUG_TYPE);
4465#endif
4466  Rewriter.disableCanonicalMode();
4467  Rewriter.enableLSRMode();
4468  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4469
4470  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4471  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4472         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4473    if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
4474      Rewriter.setChainedPhi(PN);
4475  }
4476
4477  // Expand the new value definitions and update the users.
4478  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4479       E = Fixups.end(); I != E; ++I) {
4480    const LSRFixup &Fixup = *I;
4481
4482    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4483
4484    Changed = true;
4485  }
4486
4487  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4488         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4489    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4490    Changed = true;
4491  }
4492  // Clean up after ourselves. This must be done before deleting any
4493  // instructions.
4494  Rewriter.clear();
4495
4496  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4497}
4498
4499LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4500  : IU(P->getAnalysis<IVUsers>()),
4501    SE(P->getAnalysis<ScalarEvolution>()),
4502    DT(P->getAnalysis<DominatorTree>()),
4503    LI(P->getAnalysis<LoopInfo>()),
4504    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
4505
4506  // If LoopSimplify form is not available, stay out of trouble.
4507  if (!L->isLoopSimplifyForm())
4508    return;
4509
4510  // If there's no interesting work to be done, bail early.
4511  if (IU.empty()) return;
4512
4513#ifndef NDEBUG
4514  // All dominating loops must have preheaders, or SCEVExpander may not be able
4515  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4516  //
4517  // IVUsers analysis should only create users that are dominated by simple loop
4518  // headers. Since this loop should dominate all of its users, its user list
4519  // should be empty if this loop itself is not within a simple loop nest.
4520  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4521       Rung; Rung = Rung->getIDom()) {
4522    BasicBlock *BB = Rung->getBlock();
4523    const Loop *DomLoop = LI.getLoopFor(BB);
4524    if (DomLoop && DomLoop->getHeader() == BB) {
4525      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4526    }
4527  }
4528#endif // DEBUG
4529
4530  DEBUG(dbgs() << "\nLSR on loop ";
4531        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4532        dbgs() << ":\n");
4533
4534  // First, perform some low-level loop optimizations.
4535  OptimizeShadowIV();
4536  OptimizeLoopTermCond();
4537
4538  // If loop preparation eliminates all interesting IV users, bail.
4539  if (IU.empty()) return;
4540
4541  // Skip nested loops until we can model them better with formulae.
4542  if (!L->empty()) {
4543    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4544    return;
4545  }
4546
4547  // Start collecting data and preparing for the solver.
4548  CollectChains();
4549  CollectInterestingTypesAndFactors();
4550  CollectFixupsAndInitialFormulae();
4551  CollectLoopInvariantFixupsAndFormulae();
4552
4553  assert(!Uses.empty() && "IVUsers reported at least one use");
4554  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4555        print_uses(dbgs()));
4556
4557  // Now use the reuse data to generate a bunch of interesting ways
4558  // to formulate the values needed for the uses.
4559  GenerateAllReuseFormulae();
4560
4561  FilterOutUndesirableDedicatedRegisters();
4562  NarrowSearchSpaceUsingHeuristics();
4563
4564  SmallVector<const Formula *, 8> Solution;
4565  Solve(Solution);
4566
4567  // Release memory that is no longer needed.
4568  Factors.clear();
4569  Types.clear();
4570  RegUses.clear();
4571
4572  if (Solution.empty())
4573    return;
4574
4575#ifndef NDEBUG
4576  // Formulae should be legal.
4577  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4578       E = Uses.end(); I != E; ++I) {
4579     const LSRUse &LU = *I;
4580     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4581          JE = LU.Formulae.end(); J != JE; ++J)
4582        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4583                          LU.Kind, LU.AccessTy, TLI) &&
4584               "Illegal formula generated!");
4585  };
4586#endif
4587
4588  // Now that we've decided what we want, make it so.
4589  ImplementSolution(Solution, P);
4590}
4591
4592void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4593  if (Factors.empty() && Types.empty()) return;
4594
4595  OS << "LSR has identified the following interesting factors and types: ";
4596  bool First = true;
4597
4598  for (SmallSetVector<int64_t, 8>::const_iterator
4599       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4600    if (!First) OS << ", ";
4601    First = false;
4602    OS << '*' << *I;
4603  }
4604
4605  for (SmallSetVector<Type *, 4>::const_iterator
4606       I = Types.begin(), E = Types.end(); I != E; ++I) {
4607    if (!First) OS << ", ";
4608    First = false;
4609    OS << '(' << **I << ')';
4610  }
4611  OS << '\n';
4612}
4613
4614void LSRInstance::print_fixups(raw_ostream &OS) const {
4615  OS << "LSR is examining the following fixup sites:\n";
4616  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4617       E = Fixups.end(); I != E; ++I) {
4618    dbgs() << "  ";
4619    I->print(OS);
4620    OS << '\n';
4621  }
4622}
4623
4624void LSRInstance::print_uses(raw_ostream &OS) const {
4625  OS << "LSR is examining the following uses:\n";
4626  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4627       E = Uses.end(); I != E; ++I) {
4628    const LSRUse &LU = *I;
4629    dbgs() << "  ";
4630    LU.print(OS);
4631    OS << '\n';
4632    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4633         JE = LU.Formulae.end(); J != JE; ++J) {
4634      OS << "    ";
4635      J->print(OS);
4636      OS << '\n';
4637    }
4638  }
4639}
4640
4641void LSRInstance::print(raw_ostream &OS) const {
4642  print_factors_and_types(OS);
4643  print_fixups(OS);
4644  print_uses(OS);
4645}
4646
4647void LSRInstance::dump() const {
4648  print(errs()); errs() << '\n';
4649}
4650
4651namespace {
4652
4653class LoopStrengthReduce : public LoopPass {
4654  /// TLI - Keep a pointer of a TargetLowering to consult for determining
4655  /// transformation profitability.
4656  const TargetLowering *const TLI;
4657
4658public:
4659  static char ID; // Pass ID, replacement for typeid
4660  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4661
4662private:
4663  bool runOnLoop(Loop *L, LPPassManager &LPM);
4664  void getAnalysisUsage(AnalysisUsage &AU) const;
4665};
4666
4667}
4668
4669char LoopStrengthReduce::ID = 0;
4670INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4671                "Loop Strength Reduction", false, false)
4672INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4673INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4674INITIALIZE_PASS_DEPENDENCY(IVUsers)
4675INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4676INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4677INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4678                "Loop Strength Reduction", false, false)
4679
4680
4681Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4682  return new LoopStrengthReduce(TLI);
4683}
4684
4685LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
4686  : LoopPass(ID), TLI(tli) {
4687    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4688  }
4689
4690void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4691  // We split critical edges, so we change the CFG.  However, we do update
4692  // many analyses if they are around.
4693  AU.addPreservedID(LoopSimplifyID);
4694
4695  AU.addRequired<LoopInfo>();
4696  AU.addPreserved<LoopInfo>();
4697  AU.addRequiredID(LoopSimplifyID);
4698  AU.addRequired<DominatorTree>();
4699  AU.addPreserved<DominatorTree>();
4700  AU.addRequired<ScalarEvolution>();
4701  AU.addPreserved<ScalarEvolution>();
4702  // Requiring LoopSimplify a second time here prevents IVUsers from running
4703  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4704  AU.addRequiredID(LoopSimplifyID);
4705  AU.addRequired<IVUsers>();
4706  AU.addPreserved<IVUsers>();
4707}
4708
4709bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4710  bool Changed = false;
4711
4712  // Run the main LSR transformation.
4713  Changed |= LSRInstance(TLI, L, this).getChanged();
4714
4715  // Remove any extra phis created by processing inner loops.
4716  Changed |= DeleteDeadPHIs(L->getHeader());
4717  if (EnablePhiElim) {
4718    SmallVector<WeakVH, 16> DeadInsts;
4719    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4720#ifndef NDEBUG
4721    Rewriter.setDebugType(DEBUG_TYPE);
4722#endif
4723    unsigned numFolded = Rewriter.
4724      replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4725    if (numFolded) {
4726      Changed = true;
4727      DeleteTriviallyDeadInstructions(DeadInsts);
4728      DeleteDeadPHIs(L->getHeader());
4729    }
4730  }
4731  return Changed;
4732}
4733