LoopStrengthReduce.cpp revision 4d6ccb5f68cd7c6418a209f1fa4dbade569e4493
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/ValueHandle.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Target/TargetLowering.h"
77#include <algorithm>
78using namespace llvm;
79
80static cl::opt<bool> EnableNested(
81  "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops"));
82
83static cl::opt<bool> EnableRetry(
84  "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry"));
85
86// Temporary flag to cleanup congruent phis after LSR phi expansion.
87// It's currently disabled until we can determine whether it's truly useful or
88// not. The flag should be removed after the v3.0 release.
89// This is now needed for ivchains.
90static cl::opt<bool> EnablePhiElim(
91  "enable-lsr-phielim", cl::Hidden, cl::init(true),
92  cl::desc("Enable LSR phi elimination"));
93
94#ifndef NDEBUG
95// Stress test IV chain generation.
96static cl::opt<bool> StressIVChain(
97  "stress-ivchain", cl::Hidden, cl::init(false),
98  cl::desc("Stress test LSR IV chains"));
99#else
100static bool StressIVChain = false;
101#endif
102
103namespace {
104
105/// RegSortData - This class holds data which is used to order reuse candidates.
106class RegSortData {
107public:
108  /// UsedByIndices - This represents the set of LSRUse indices which reference
109  /// a particular register.
110  SmallBitVector UsedByIndices;
111
112  RegSortData() {}
113
114  void print(raw_ostream &OS) const;
115  void dump() const;
116};
117
118}
119
120void RegSortData::print(raw_ostream &OS) const {
121  OS << "[NumUses=" << UsedByIndices.count() << ']';
122}
123
124void RegSortData::dump() const {
125  print(errs()); errs() << '\n';
126}
127
128namespace {
129
130/// RegUseTracker - Map register candidates to information about how they are
131/// used.
132class RegUseTracker {
133  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
134
135  RegUsesTy RegUsesMap;
136  SmallVector<const SCEV *, 16> RegSequence;
137
138public:
139  void CountRegister(const SCEV *Reg, size_t LUIdx);
140  void DropRegister(const SCEV *Reg, size_t LUIdx);
141  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
142
143  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
144
145  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
146
147  void clear();
148
149  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
150  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
151  iterator begin() { return RegSequence.begin(); }
152  iterator end()   { return RegSequence.end(); }
153  const_iterator begin() const { return RegSequence.begin(); }
154  const_iterator end() const   { return RegSequence.end(); }
155};
156
157}
158
159void
160RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
161  std::pair<RegUsesTy::iterator, bool> Pair =
162    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
163  RegSortData &RSD = Pair.first->second;
164  if (Pair.second)
165    RegSequence.push_back(Reg);
166  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
167  RSD.UsedByIndices.set(LUIdx);
168}
169
170void
171RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
172  RegUsesTy::iterator It = RegUsesMap.find(Reg);
173  assert(It != RegUsesMap.end());
174  RegSortData &RSD = It->second;
175  assert(RSD.UsedByIndices.size() > LUIdx);
176  RSD.UsedByIndices.reset(LUIdx);
177}
178
179void
180RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
181  assert(LUIdx <= LastLUIdx);
182
183  // Update RegUses. The data structure is not optimized for this purpose;
184  // we must iterate through it and update each of the bit vectors.
185  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
186       I != E; ++I) {
187    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
188    if (LUIdx < UsedByIndices.size())
189      UsedByIndices[LUIdx] =
190        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
191    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
192  }
193}
194
195bool
196RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
197  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
198  if (I == RegUsesMap.end())
199    return false;
200  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
201  int i = UsedByIndices.find_first();
202  if (i == -1) return false;
203  if ((size_t)i != LUIdx) return true;
204  return UsedByIndices.find_next(i) != -1;
205}
206
207const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
208  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
209  assert(I != RegUsesMap.end() && "Unknown register!");
210  return I->second.UsedByIndices;
211}
212
213void RegUseTracker::clear() {
214  RegUsesMap.clear();
215  RegSequence.clear();
216}
217
218namespace {
219
220/// Formula - This class holds information that describes a formula for
221/// computing satisfying a use. It may include broken-out immediates and scaled
222/// registers.
223struct Formula {
224  /// AM - This is used to represent complex addressing, as well as other kinds
225  /// of interesting uses.
226  TargetLowering::AddrMode AM;
227
228  /// BaseRegs - The list of "base" registers for this use. When this is
229  /// non-empty, AM.HasBaseReg should be set to true.
230  SmallVector<const SCEV *, 2> BaseRegs;
231
232  /// ScaledReg - The 'scaled' register for this use. This should be non-null
233  /// when AM.Scale is not zero.
234  const SCEV *ScaledReg;
235
236  /// UnfoldedOffset - An additional constant offset which added near the
237  /// use. This requires a temporary register, but the offset itself can
238  /// live in an add immediate field rather than a register.
239  int64_t UnfoldedOffset;
240
241  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
242
243  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
244
245  unsigned getNumRegs() const;
246  Type *getType() const;
247
248  void DeleteBaseReg(const SCEV *&S);
249
250  bool referencesReg(const SCEV *S) const;
251  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
252                                  const RegUseTracker &RegUses) const;
253
254  void print(raw_ostream &OS) const;
255  void dump() const;
256};
257
258}
259
260/// DoInitialMatch - Recursion helper for InitialMatch.
261static void DoInitialMatch(const SCEV *S, Loop *L,
262                           SmallVectorImpl<const SCEV *> &Good,
263                           SmallVectorImpl<const SCEV *> &Bad,
264                           ScalarEvolution &SE) {
265  // Collect expressions which properly dominate the loop header.
266  if (SE.properlyDominates(S, L->getHeader())) {
267    Good.push_back(S);
268    return;
269  }
270
271  // Look at add operands.
272  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
273    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
274         I != E; ++I)
275      DoInitialMatch(*I, L, Good, Bad, SE);
276    return;
277  }
278
279  // Look at addrec operands.
280  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
281    if (!AR->getStart()->isZero()) {
282      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
283      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
284                                      AR->getStepRecurrence(SE),
285                                      // FIXME: AR->getNoWrapFlags()
286                                      AR->getLoop(), SCEV::FlagAnyWrap),
287                     L, Good, Bad, SE);
288      return;
289    }
290
291  // Handle a multiplication by -1 (negation) if it didn't fold.
292  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
293    if (Mul->getOperand(0)->isAllOnesValue()) {
294      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
295      const SCEV *NewMul = SE.getMulExpr(Ops);
296
297      SmallVector<const SCEV *, 4> MyGood;
298      SmallVector<const SCEV *, 4> MyBad;
299      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
300      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
301        SE.getEffectiveSCEVType(NewMul->getType())));
302      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
303           E = MyGood.end(); I != E; ++I)
304        Good.push_back(SE.getMulExpr(NegOne, *I));
305      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
306           E = MyBad.end(); I != E; ++I)
307        Bad.push_back(SE.getMulExpr(NegOne, *I));
308      return;
309    }
310
311  // Ok, we can't do anything interesting. Just stuff the whole thing into a
312  // register and hope for the best.
313  Bad.push_back(S);
314}
315
316/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
317/// attempting to keep all loop-invariant and loop-computable values in a
318/// single base register.
319void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
320  SmallVector<const SCEV *, 4> Good;
321  SmallVector<const SCEV *, 4> Bad;
322  DoInitialMatch(S, L, Good, Bad, SE);
323  if (!Good.empty()) {
324    const SCEV *Sum = SE.getAddExpr(Good);
325    if (!Sum->isZero())
326      BaseRegs.push_back(Sum);
327    AM.HasBaseReg = true;
328  }
329  if (!Bad.empty()) {
330    const SCEV *Sum = SE.getAddExpr(Bad);
331    if (!Sum->isZero())
332      BaseRegs.push_back(Sum);
333    AM.HasBaseReg = true;
334  }
335}
336
337/// getNumRegs - Return the total number of register operands used by this
338/// formula. This does not include register uses implied by non-constant
339/// addrec strides.
340unsigned Formula::getNumRegs() const {
341  return !!ScaledReg + BaseRegs.size();
342}
343
344/// getType - Return the type of this formula, if it has one, or null
345/// otherwise. This type is meaningless except for the bit size.
346Type *Formula::getType() const {
347  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
348         ScaledReg ? ScaledReg->getType() :
349         AM.BaseGV ? AM.BaseGV->getType() :
350         0;
351}
352
353/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
354void Formula::DeleteBaseReg(const SCEV *&S) {
355  if (&S != &BaseRegs.back())
356    std::swap(S, BaseRegs.back());
357  BaseRegs.pop_back();
358}
359
360/// referencesReg - Test if this formula references the given register.
361bool Formula::referencesReg(const SCEV *S) const {
362  return S == ScaledReg ||
363         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
364}
365
366/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
367/// which are used by uses other than the use with the given index.
368bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
369                                         const RegUseTracker &RegUses) const {
370  if (ScaledReg)
371    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
372      return true;
373  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
374       E = BaseRegs.end(); I != E; ++I)
375    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
376      return true;
377  return false;
378}
379
380void Formula::print(raw_ostream &OS) const {
381  bool First = true;
382  if (AM.BaseGV) {
383    if (!First) OS << " + "; else First = false;
384    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
385  }
386  if (AM.BaseOffs != 0) {
387    if (!First) OS << " + "; else First = false;
388    OS << AM.BaseOffs;
389  }
390  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
391       E = BaseRegs.end(); I != E; ++I) {
392    if (!First) OS << " + "; else First = false;
393    OS << "reg(" << **I << ')';
394  }
395  if (AM.HasBaseReg && BaseRegs.empty()) {
396    if (!First) OS << " + "; else First = false;
397    OS << "**error: HasBaseReg**";
398  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
399    if (!First) OS << " + "; else First = false;
400    OS << "**error: !HasBaseReg**";
401  }
402  if (AM.Scale != 0) {
403    if (!First) OS << " + "; else First = false;
404    OS << AM.Scale << "*reg(";
405    if (ScaledReg)
406      OS << *ScaledReg;
407    else
408      OS << "<unknown>";
409    OS << ')';
410  }
411  if (UnfoldedOffset != 0) {
412    if (!First) OS << " + "; else First = false;
413    OS << "imm(" << UnfoldedOffset << ')';
414  }
415}
416
417void Formula::dump() const {
418  print(errs()); errs() << '\n';
419}
420
421/// isAddRecSExtable - Return true if the given addrec can be sign-extended
422/// without changing its value.
423static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
424  Type *WideTy =
425    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
426  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
427}
428
429/// isAddSExtable - Return true if the given add can be sign-extended
430/// without changing its value.
431static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
432  Type *WideTy =
433    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
434  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
435}
436
437/// isMulSExtable - Return true if the given mul can be sign-extended
438/// without changing its value.
439static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
440  Type *WideTy =
441    IntegerType::get(SE.getContext(),
442                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
443  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
444}
445
446/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
447/// and if the remainder is known to be zero,  or null otherwise. If
448/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
449/// to Y, ignoring that the multiplication may overflow, which is useful when
450/// the result will be used in a context where the most significant bits are
451/// ignored.
452static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
453                                ScalarEvolution &SE,
454                                bool IgnoreSignificantBits = false) {
455  // Handle the trivial case, which works for any SCEV type.
456  if (LHS == RHS)
457    return SE.getConstant(LHS->getType(), 1);
458
459  // Handle a few RHS special cases.
460  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
461  if (RC) {
462    const APInt &RA = RC->getValue()->getValue();
463    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
464    // some folding.
465    if (RA.isAllOnesValue())
466      return SE.getMulExpr(LHS, RC);
467    // Handle x /s 1 as x.
468    if (RA == 1)
469      return LHS;
470  }
471
472  // Check for a division of a constant by a constant.
473  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
474    if (!RC)
475      return 0;
476    const APInt &LA = C->getValue()->getValue();
477    const APInt &RA = RC->getValue()->getValue();
478    if (LA.srem(RA) != 0)
479      return 0;
480    return SE.getConstant(LA.sdiv(RA));
481  }
482
483  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
484  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
485    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
486      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
487                                      IgnoreSignificantBits);
488      if (!Step) return 0;
489      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
490                                       IgnoreSignificantBits);
491      if (!Start) return 0;
492      // FlagNW is independent of the start value, step direction, and is
493      // preserved with smaller magnitude steps.
494      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
495      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
496    }
497    return 0;
498  }
499
500  // Distribute the sdiv over add operands, if the add doesn't overflow.
501  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
502    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
503      SmallVector<const SCEV *, 8> Ops;
504      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
505           I != E; ++I) {
506        const SCEV *Op = getExactSDiv(*I, RHS, SE,
507                                      IgnoreSignificantBits);
508        if (!Op) return 0;
509        Ops.push_back(Op);
510      }
511      return SE.getAddExpr(Ops);
512    }
513    return 0;
514  }
515
516  // Check for a multiply operand that we can pull RHS out of.
517  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
518    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
519      SmallVector<const SCEV *, 4> Ops;
520      bool Found = false;
521      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
522           I != E; ++I) {
523        const SCEV *S = *I;
524        if (!Found)
525          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
526                                           IgnoreSignificantBits)) {
527            S = Q;
528            Found = true;
529          }
530        Ops.push_back(S);
531      }
532      return Found ? SE.getMulExpr(Ops) : 0;
533    }
534    return 0;
535  }
536
537  // Otherwise we don't know.
538  return 0;
539}
540
541/// ExtractImmediate - If S involves the addition of a constant integer value,
542/// return that integer value, and mutate S to point to a new SCEV with that
543/// value excluded.
544static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
545  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
546    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
547      S = SE.getConstant(C->getType(), 0);
548      return C->getValue()->getSExtValue();
549    }
550  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
551    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
552    int64_t Result = ExtractImmediate(NewOps.front(), SE);
553    if (Result != 0)
554      S = SE.getAddExpr(NewOps);
555    return Result;
556  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
557    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
558    int64_t Result = ExtractImmediate(NewOps.front(), SE);
559    if (Result != 0)
560      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
561                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
562                           SCEV::FlagAnyWrap);
563    return Result;
564  }
565  return 0;
566}
567
568/// ExtractSymbol - If S involves the addition of a GlobalValue address,
569/// return that symbol, and mutate S to point to a new SCEV with that
570/// value excluded.
571static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
572  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
573    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
574      S = SE.getConstant(GV->getType(), 0);
575      return GV;
576    }
577  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
578    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
579    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
580    if (Result)
581      S = SE.getAddExpr(NewOps);
582    return Result;
583  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
584    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
585    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
586    if (Result)
587      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
588                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
589                           SCEV::FlagAnyWrap);
590    return Result;
591  }
592  return 0;
593}
594
595/// isAddressUse - Returns true if the specified instruction is using the
596/// specified value as an address.
597static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
598  bool isAddress = isa<LoadInst>(Inst);
599  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
600    if (SI->getOperand(1) == OperandVal)
601      isAddress = true;
602  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
603    // Addressing modes can also be folded into prefetches and a variety
604    // of intrinsics.
605    switch (II->getIntrinsicID()) {
606      default: break;
607      case Intrinsic::prefetch:
608      case Intrinsic::x86_sse_storeu_ps:
609      case Intrinsic::x86_sse2_storeu_pd:
610      case Intrinsic::x86_sse2_storeu_dq:
611      case Intrinsic::x86_sse2_storel_dq:
612        if (II->getArgOperand(0) == OperandVal)
613          isAddress = true;
614        break;
615    }
616  }
617  return isAddress;
618}
619
620/// getAccessType - Return the type of the memory being accessed.
621static Type *getAccessType(const Instruction *Inst) {
622  Type *AccessTy = Inst->getType();
623  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
624    AccessTy = SI->getOperand(0)->getType();
625  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
626    // Addressing modes can also be folded into prefetches and a variety
627    // of intrinsics.
628    switch (II->getIntrinsicID()) {
629    default: break;
630    case Intrinsic::x86_sse_storeu_ps:
631    case Intrinsic::x86_sse2_storeu_pd:
632    case Intrinsic::x86_sse2_storeu_dq:
633    case Intrinsic::x86_sse2_storel_dq:
634      AccessTy = II->getArgOperand(0)->getType();
635      break;
636    }
637  }
638
639  // All pointers have the same requirements, so canonicalize them to an
640  // arbitrary pointer type to minimize variation.
641  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
642    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
643                                PTy->getAddressSpace());
644
645  return AccessTy;
646}
647
648/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
649static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
650  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
651       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
652    if (SE.isSCEVable(PN->getType()) &&
653        (SE.getEffectiveSCEVType(PN->getType()) ==
654         SE.getEffectiveSCEVType(AR->getType())) &&
655        SE.getSCEV(PN) == AR)
656      return true;
657  }
658  return false;
659}
660
661/// Check if expanding this expression is likely to incur significant cost. This
662/// is tricky because SCEV doesn't track which expressions are actually computed
663/// by the current IR.
664///
665/// We currently allow expansion of IV increments that involve adds,
666/// multiplication by constants, and AddRecs from existing phis.
667///
668/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
669/// obvious multiple of the UDivExpr.
670static bool isHighCostExpansion(const SCEV *S,
671                                SmallPtrSet<const SCEV*, 8> &Processed,
672                                ScalarEvolution &SE) {
673  // Zero/One operand expressions
674  switch (S->getSCEVType()) {
675  case scUnknown:
676  case scConstant:
677    return false;
678  case scTruncate:
679    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
680                               Processed, SE);
681  case scZeroExtend:
682    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
683                               Processed, SE);
684  case scSignExtend:
685    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
686                               Processed, SE);
687  }
688
689  if (!Processed.insert(S))
690    return false;
691
692  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
693    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
694         I != E; ++I) {
695      if (isHighCostExpansion(*I, Processed, SE))
696        return true;
697    }
698    return false;
699  }
700
701  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
702    if (Mul->getNumOperands() == 2) {
703      // Multiplication by a constant is ok
704      if (isa<SCEVConstant>(Mul->getOperand(0)))
705        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
706
707      // If we have the value of one operand, check if an existing
708      // multiplication already generates this expression.
709      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
710        Value *UVal = U->getValue();
711        for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
712             UI != UE; ++UI) {
713          Instruction *User = cast<Instruction>(*UI);
714          if (User->getOpcode() == Instruction::Mul
715              && SE.isSCEVable(User->getType())) {
716            return SE.getSCEV(User) == Mul;
717          }
718        }
719      }
720    }
721  }
722
723  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
724    if (isExistingPhi(AR, SE))
725      return false;
726  }
727
728  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
729  return true;
730}
731
732/// DeleteTriviallyDeadInstructions - If any of the instructions is the
733/// specified set are trivially dead, delete them and see if this makes any of
734/// their operands subsequently dead.
735static bool
736DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
737  bool Changed = false;
738
739  while (!DeadInsts.empty()) {
740    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
741
742    if (I == 0 || !isInstructionTriviallyDead(I))
743      continue;
744
745    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
746      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
747        *OI = 0;
748        if (U->use_empty())
749          DeadInsts.push_back(U);
750      }
751
752    I->eraseFromParent();
753    Changed = true;
754  }
755
756  return Changed;
757}
758
759namespace {
760
761/// Cost - This class is used to measure and compare candidate formulae.
762class Cost {
763  /// TODO: Some of these could be merged. Also, a lexical ordering
764  /// isn't always optimal.
765  unsigned NumRegs;
766  unsigned AddRecCost;
767  unsigned NumIVMuls;
768  unsigned NumBaseAdds;
769  unsigned ImmCost;
770  unsigned SetupCost;
771
772public:
773  Cost()
774    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
775      SetupCost(0) {}
776
777  bool operator<(const Cost &Other) const;
778
779  void Loose();
780
781#ifndef NDEBUG
782  // Once any of the metrics loses, they must all remain losers.
783  bool isValid() {
784    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
785             | ImmCost | SetupCost) != ~0u)
786      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
787           & ImmCost & SetupCost) == ~0u);
788  }
789#endif
790
791  bool isLoser() {
792    assert(isValid() && "invalid cost");
793    return NumRegs == ~0u;
794  }
795
796  void RateFormula(const Formula &F,
797                   SmallPtrSet<const SCEV *, 16> &Regs,
798                   const DenseSet<const SCEV *> &VisitedRegs,
799                   const Loop *L,
800                   const SmallVectorImpl<int64_t> &Offsets,
801                   ScalarEvolution &SE, DominatorTree &DT,
802                   SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
803
804  void print(raw_ostream &OS) const;
805  void dump() const;
806
807private:
808  void RateRegister(const SCEV *Reg,
809                    SmallPtrSet<const SCEV *, 16> &Regs,
810                    const Loop *L,
811                    ScalarEvolution &SE, DominatorTree &DT);
812  void RatePrimaryRegister(const SCEV *Reg,
813                           SmallPtrSet<const SCEV *, 16> &Regs,
814                           const Loop *L,
815                           ScalarEvolution &SE, DominatorTree &DT,
816                           SmallPtrSet<const SCEV *, 16> *LoserRegs);
817};
818
819}
820
821/// RateRegister - Tally up interesting quantities from the given register.
822void Cost::RateRegister(const SCEV *Reg,
823                        SmallPtrSet<const SCEV *, 16> &Regs,
824                        const Loop *L,
825                        ScalarEvolution &SE, DominatorTree &DT) {
826  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
827    if (AR->getLoop() == L)
828      AddRecCost += 1; /// TODO: This should be a function of the stride.
829
830    // If this is an addrec for another loop, don't second-guess its addrec phi
831    // nodes. LSR isn't currently smart enough to reason about more than one
832    // loop at a time. LSR has either already run on inner loops, will not run
833    // on other loops, and cannot be expected to change sibling loops. If the
834    // AddRec exists, consider it's register free and leave it alone. Otherwise,
835    // do not consider this formula at all.
836    else if (!EnableNested || L->contains(AR->getLoop()) ||
837             (!AR->getLoop()->contains(L) &&
838              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
839      if (isExistingPhi(AR, SE))
840        return;
841
842      // For !EnableNested, never rewrite IVs in other loops.
843      if (!EnableNested) {
844        Loose();
845        return;
846      }
847      // If this isn't one of the addrecs that the loop already has, it
848      // would require a costly new phi and add. TODO: This isn't
849      // precisely modeled right now.
850      ++NumBaseAdds;
851      if (!Regs.count(AR->getStart())) {
852        RateRegister(AR->getStart(), Regs, L, SE, DT);
853        if (isLoser())
854          return;
855      }
856    }
857
858    // Add the step value register, if it needs one.
859    // TODO: The non-affine case isn't precisely modeled here.
860    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
861      if (!Regs.count(AR->getOperand(1))) {
862        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
863        if (isLoser())
864          return;
865      }
866    }
867  }
868  ++NumRegs;
869
870  // Rough heuristic; favor registers which don't require extra setup
871  // instructions in the preheader.
872  if (!isa<SCEVUnknown>(Reg) &&
873      !isa<SCEVConstant>(Reg) &&
874      !(isa<SCEVAddRecExpr>(Reg) &&
875        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
876         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
877    ++SetupCost;
878
879    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
880                 SE.hasComputableLoopEvolution(Reg, L);
881}
882
883/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
884/// before, rate it. Optional LoserRegs provides a way to declare any formula
885/// that refers to one of those regs an instant loser.
886void Cost::RatePrimaryRegister(const SCEV *Reg,
887                               SmallPtrSet<const SCEV *, 16> &Regs,
888                               const Loop *L,
889                               ScalarEvolution &SE, DominatorTree &DT,
890                               SmallPtrSet<const SCEV *, 16> *LoserRegs) {
891  if (LoserRegs && LoserRegs->count(Reg)) {
892    Loose();
893    return;
894  }
895  if (Regs.insert(Reg)) {
896    RateRegister(Reg, Regs, L, SE, DT);
897    if (isLoser())
898      LoserRegs->insert(Reg);
899  }
900}
901
902void Cost::RateFormula(const Formula &F,
903                       SmallPtrSet<const SCEV *, 16> &Regs,
904                       const DenseSet<const SCEV *> &VisitedRegs,
905                       const Loop *L,
906                       const SmallVectorImpl<int64_t> &Offsets,
907                       ScalarEvolution &SE, DominatorTree &DT,
908                       SmallPtrSet<const SCEV *, 16> *LoserRegs) {
909  // Tally up the registers.
910  if (const SCEV *ScaledReg = F.ScaledReg) {
911    if (VisitedRegs.count(ScaledReg)) {
912      Loose();
913      return;
914    }
915    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
916    if (isLoser())
917      return;
918  }
919  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
920       E = F.BaseRegs.end(); I != E; ++I) {
921    const SCEV *BaseReg = *I;
922    if (VisitedRegs.count(BaseReg)) {
923      Loose();
924      return;
925    }
926    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
927    if (isLoser())
928      return;
929  }
930
931  // Determine how many (unfolded) adds we'll need inside the loop.
932  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
933  if (NumBaseParts > 1)
934    NumBaseAdds += NumBaseParts - 1;
935
936  // Tally up the non-zero immediates.
937  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
938       E = Offsets.end(); I != E; ++I) {
939    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
940    if (F.AM.BaseGV)
941      ImmCost += 64; // Handle symbolic values conservatively.
942                     // TODO: This should probably be the pointer size.
943    else if (Offset != 0)
944      ImmCost += APInt(64, Offset, true).getMinSignedBits();
945  }
946  assert(isValid() && "invalid cost");
947}
948
949/// Loose - Set this cost to a losing value.
950void Cost::Loose() {
951  NumRegs = ~0u;
952  AddRecCost = ~0u;
953  NumIVMuls = ~0u;
954  NumBaseAdds = ~0u;
955  ImmCost = ~0u;
956  SetupCost = ~0u;
957}
958
959/// operator< - Choose the lower cost.
960bool Cost::operator<(const Cost &Other) const {
961  if (NumRegs != Other.NumRegs)
962    return NumRegs < Other.NumRegs;
963  if (AddRecCost != Other.AddRecCost)
964    return AddRecCost < Other.AddRecCost;
965  if (NumIVMuls != Other.NumIVMuls)
966    return NumIVMuls < Other.NumIVMuls;
967  if (NumBaseAdds != Other.NumBaseAdds)
968    return NumBaseAdds < Other.NumBaseAdds;
969  if (ImmCost != Other.ImmCost)
970    return ImmCost < Other.ImmCost;
971  if (SetupCost != Other.SetupCost)
972    return SetupCost < Other.SetupCost;
973  return false;
974}
975
976void Cost::print(raw_ostream &OS) const {
977  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
978  if (AddRecCost != 0)
979    OS << ", with addrec cost " << AddRecCost;
980  if (NumIVMuls != 0)
981    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
982  if (NumBaseAdds != 0)
983    OS << ", plus " << NumBaseAdds << " base add"
984       << (NumBaseAdds == 1 ? "" : "s");
985  if (ImmCost != 0)
986    OS << ", plus " << ImmCost << " imm cost";
987  if (SetupCost != 0)
988    OS << ", plus " << SetupCost << " setup cost";
989}
990
991void Cost::dump() const {
992  print(errs()); errs() << '\n';
993}
994
995namespace {
996
997/// LSRFixup - An operand value in an instruction which is to be replaced
998/// with some equivalent, possibly strength-reduced, replacement.
999struct LSRFixup {
1000  /// UserInst - The instruction which will be updated.
1001  Instruction *UserInst;
1002
1003  /// OperandValToReplace - The operand of the instruction which will
1004  /// be replaced. The operand may be used more than once; every instance
1005  /// will be replaced.
1006  Value *OperandValToReplace;
1007
1008  /// PostIncLoops - If this user is to use the post-incremented value of an
1009  /// induction variable, this variable is non-null and holds the loop
1010  /// associated with the induction variable.
1011  PostIncLoopSet PostIncLoops;
1012
1013  /// LUIdx - The index of the LSRUse describing the expression which
1014  /// this fixup needs, minus an offset (below).
1015  size_t LUIdx;
1016
1017  /// Offset - A constant offset to be added to the LSRUse expression.
1018  /// This allows multiple fixups to share the same LSRUse with different
1019  /// offsets, for example in an unrolled loop.
1020  int64_t Offset;
1021
1022  bool isUseFullyOutsideLoop(const Loop *L) const;
1023
1024  LSRFixup();
1025
1026  void print(raw_ostream &OS) const;
1027  void dump() const;
1028};
1029
1030}
1031
1032LSRFixup::LSRFixup()
1033  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1034
1035/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1036/// value outside of the given loop.
1037bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1038  // PHI nodes use their value in their incoming blocks.
1039  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1040    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1041      if (PN->getIncomingValue(i) == OperandValToReplace &&
1042          L->contains(PN->getIncomingBlock(i)))
1043        return false;
1044    return true;
1045  }
1046
1047  return !L->contains(UserInst);
1048}
1049
1050void LSRFixup::print(raw_ostream &OS) const {
1051  OS << "UserInst=";
1052  // Store is common and interesting enough to be worth special-casing.
1053  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1054    OS << "store ";
1055    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1056  } else if (UserInst->getType()->isVoidTy())
1057    OS << UserInst->getOpcodeName();
1058  else
1059    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1060
1061  OS << ", OperandValToReplace=";
1062  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1063
1064  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1065       E = PostIncLoops.end(); I != E; ++I) {
1066    OS << ", PostIncLoop=";
1067    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1068  }
1069
1070  if (LUIdx != ~size_t(0))
1071    OS << ", LUIdx=" << LUIdx;
1072
1073  if (Offset != 0)
1074    OS << ", Offset=" << Offset;
1075}
1076
1077void LSRFixup::dump() const {
1078  print(errs()); errs() << '\n';
1079}
1080
1081namespace {
1082
1083/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1084/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1085struct UniquifierDenseMapInfo {
1086  static SmallVector<const SCEV *, 2> getEmptyKey() {
1087    SmallVector<const SCEV *, 2> V;
1088    V.push_back(reinterpret_cast<const SCEV *>(-1));
1089    return V;
1090  }
1091
1092  static SmallVector<const SCEV *, 2> getTombstoneKey() {
1093    SmallVector<const SCEV *, 2> V;
1094    V.push_back(reinterpret_cast<const SCEV *>(-2));
1095    return V;
1096  }
1097
1098  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1099    unsigned Result = 0;
1100    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1101         E = V.end(); I != E; ++I)
1102      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1103    return Result;
1104  }
1105
1106  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1107                      const SmallVector<const SCEV *, 2> &RHS) {
1108    return LHS == RHS;
1109  }
1110};
1111
1112/// LSRUse - This class holds the state that LSR keeps for each use in
1113/// IVUsers, as well as uses invented by LSR itself. It includes information
1114/// about what kinds of things can be folded into the user, information about
1115/// the user itself, and information about how the use may be satisfied.
1116/// TODO: Represent multiple users of the same expression in common?
1117class LSRUse {
1118  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1119
1120public:
1121  /// KindType - An enum for a kind of use, indicating what types of
1122  /// scaled and immediate operands it might support.
1123  enum KindType {
1124    Basic,   ///< A normal use, with no folding.
1125    Special, ///< A special case of basic, allowing -1 scales.
1126    Address, ///< An address use; folding according to TargetLowering
1127    ICmpZero ///< An equality icmp with both operands folded into one.
1128    // TODO: Add a generic icmp too?
1129  };
1130
1131  KindType Kind;
1132  Type *AccessTy;
1133
1134  SmallVector<int64_t, 8> Offsets;
1135  int64_t MinOffset;
1136  int64_t MaxOffset;
1137
1138  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1139  /// LSRUse are outside of the loop, in which case some special-case heuristics
1140  /// may be used.
1141  bool AllFixupsOutsideLoop;
1142
1143  /// WidestFixupType - This records the widest use type for any fixup using
1144  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1145  /// max fixup widths to be equivalent, because the narrower one may be relying
1146  /// on the implicit truncation to truncate away bogus bits.
1147  Type *WidestFixupType;
1148
1149  /// Formulae - A list of ways to build a value that can satisfy this user.
1150  /// After the list is populated, one of these is selected heuristically and
1151  /// used to formulate a replacement for OperandValToReplace in UserInst.
1152  SmallVector<Formula, 12> Formulae;
1153
1154  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1155  SmallPtrSet<const SCEV *, 4> Regs;
1156
1157  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1158                                      MinOffset(INT64_MAX),
1159                                      MaxOffset(INT64_MIN),
1160                                      AllFixupsOutsideLoop(true),
1161                                      WidestFixupType(0) {}
1162
1163  bool HasFormulaWithSameRegs(const Formula &F) const;
1164  bool InsertFormula(const Formula &F);
1165  void DeleteFormula(Formula &F);
1166  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1167
1168  void print(raw_ostream &OS) const;
1169  void dump() const;
1170};
1171
1172}
1173
1174/// HasFormula - Test whether this use as a formula which has the same
1175/// registers as the given formula.
1176bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1177  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1178  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1179  // Unstable sort by host order ok, because this is only used for uniquifying.
1180  std::sort(Key.begin(), Key.end());
1181  return Uniquifier.count(Key);
1182}
1183
1184/// InsertFormula - If the given formula has not yet been inserted, add it to
1185/// the list, and return true. Return false otherwise.
1186bool LSRUse::InsertFormula(const Formula &F) {
1187  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1188  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1189  // Unstable sort by host order ok, because this is only used for uniquifying.
1190  std::sort(Key.begin(), Key.end());
1191
1192  if (!Uniquifier.insert(Key).second)
1193    return false;
1194
1195  // Using a register to hold the value of 0 is not profitable.
1196  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1197         "Zero allocated in a scaled register!");
1198#ifndef NDEBUG
1199  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1200       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1201    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1202#endif
1203
1204  // Add the formula to the list.
1205  Formulae.push_back(F);
1206
1207  // Record registers now being used by this use.
1208  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1209
1210  return true;
1211}
1212
1213/// DeleteFormula - Remove the given formula from this use's list.
1214void LSRUse::DeleteFormula(Formula &F) {
1215  if (&F != &Formulae.back())
1216    std::swap(F, Formulae.back());
1217  Formulae.pop_back();
1218}
1219
1220/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1221void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1222  // Now that we've filtered out some formulae, recompute the Regs set.
1223  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1224  Regs.clear();
1225  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1226       E = Formulae.end(); I != E; ++I) {
1227    const Formula &F = *I;
1228    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1229    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1230  }
1231
1232  // Update the RegTracker.
1233  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1234       E = OldRegs.end(); I != E; ++I)
1235    if (!Regs.count(*I))
1236      RegUses.DropRegister(*I, LUIdx);
1237}
1238
1239void LSRUse::print(raw_ostream &OS) const {
1240  OS << "LSR Use: Kind=";
1241  switch (Kind) {
1242  case Basic:    OS << "Basic"; break;
1243  case Special:  OS << "Special"; break;
1244  case ICmpZero: OS << "ICmpZero"; break;
1245  case Address:
1246    OS << "Address of ";
1247    if (AccessTy->isPointerTy())
1248      OS << "pointer"; // the full pointer type could be really verbose
1249    else
1250      OS << *AccessTy;
1251  }
1252
1253  OS << ", Offsets={";
1254  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1255       E = Offsets.end(); I != E; ++I) {
1256    OS << *I;
1257    if (llvm::next(I) != E)
1258      OS << ',';
1259  }
1260  OS << '}';
1261
1262  if (AllFixupsOutsideLoop)
1263    OS << ", all-fixups-outside-loop";
1264
1265  if (WidestFixupType)
1266    OS << ", widest fixup type: " << *WidestFixupType;
1267}
1268
1269void LSRUse::dump() const {
1270  print(errs()); errs() << '\n';
1271}
1272
1273/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1274/// be completely folded into the user instruction at isel time. This includes
1275/// address-mode folding and special icmp tricks.
1276static bool isLegalUse(const TargetLowering::AddrMode &AM,
1277                       LSRUse::KindType Kind, Type *AccessTy,
1278                       const TargetLowering *TLI) {
1279  switch (Kind) {
1280  case LSRUse::Address:
1281    // If we have low-level target information, ask the target if it can
1282    // completely fold this address.
1283    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1284
1285    // Otherwise, just guess that reg+reg addressing is legal.
1286    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1287
1288  case LSRUse::ICmpZero:
1289    // There's not even a target hook for querying whether it would be legal to
1290    // fold a GV into an ICmp.
1291    if (AM.BaseGV)
1292      return false;
1293
1294    // ICmp only has two operands; don't allow more than two non-trivial parts.
1295    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1296      return false;
1297
1298    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1299    // putting the scaled register in the other operand of the icmp.
1300    if (AM.Scale != 0 && AM.Scale != -1)
1301      return false;
1302
1303    // If we have low-level target information, ask the target if it can fold an
1304    // integer immediate on an icmp.
1305    if (AM.BaseOffs != 0) {
1306      if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
1307      return false;
1308    }
1309
1310    return true;
1311
1312  case LSRUse::Basic:
1313    // Only handle single-register values.
1314    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1315
1316  case LSRUse::Special:
1317    // Only handle -1 scales, or no scale.
1318    return AM.Scale == 0 || AM.Scale == -1;
1319  }
1320
1321  llvm_unreachable("Invalid LSRUse Kind!");
1322}
1323
1324static bool isLegalUse(TargetLowering::AddrMode AM,
1325                       int64_t MinOffset, int64_t MaxOffset,
1326                       LSRUse::KindType Kind, Type *AccessTy,
1327                       const TargetLowering *TLI) {
1328  // Check for overflow.
1329  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1330      (MinOffset > 0))
1331    return false;
1332  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1333  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1334    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1335    // Check for overflow.
1336    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1337        (MaxOffset > 0))
1338      return false;
1339    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1340    return isLegalUse(AM, Kind, AccessTy, TLI);
1341  }
1342  return false;
1343}
1344
1345static bool isAlwaysFoldable(int64_t BaseOffs,
1346                             GlobalValue *BaseGV,
1347                             bool HasBaseReg,
1348                             LSRUse::KindType Kind, Type *AccessTy,
1349                             const TargetLowering *TLI) {
1350  // Fast-path: zero is always foldable.
1351  if (BaseOffs == 0 && !BaseGV) return true;
1352
1353  // Conservatively, create an address with an immediate and a
1354  // base and a scale.
1355  TargetLowering::AddrMode AM;
1356  AM.BaseOffs = BaseOffs;
1357  AM.BaseGV = BaseGV;
1358  AM.HasBaseReg = HasBaseReg;
1359  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1360
1361  // Canonicalize a scale of 1 to a base register if the formula doesn't
1362  // already have a base register.
1363  if (!AM.HasBaseReg && AM.Scale == 1) {
1364    AM.Scale = 0;
1365    AM.HasBaseReg = true;
1366  }
1367
1368  return isLegalUse(AM, Kind, AccessTy, TLI);
1369}
1370
1371static bool isAlwaysFoldable(const SCEV *S,
1372                             int64_t MinOffset, int64_t MaxOffset,
1373                             bool HasBaseReg,
1374                             LSRUse::KindType Kind, Type *AccessTy,
1375                             const TargetLowering *TLI,
1376                             ScalarEvolution &SE) {
1377  // Fast-path: zero is always foldable.
1378  if (S->isZero()) return true;
1379
1380  // Conservatively, create an address with an immediate and a
1381  // base and a scale.
1382  int64_t BaseOffs = ExtractImmediate(S, SE);
1383  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1384
1385  // If there's anything else involved, it's not foldable.
1386  if (!S->isZero()) return false;
1387
1388  // Fast-path: zero is always foldable.
1389  if (BaseOffs == 0 && !BaseGV) return true;
1390
1391  // Conservatively, create an address with an immediate and a
1392  // base and a scale.
1393  TargetLowering::AddrMode AM;
1394  AM.BaseOffs = BaseOffs;
1395  AM.BaseGV = BaseGV;
1396  AM.HasBaseReg = HasBaseReg;
1397  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1398
1399  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1400}
1401
1402namespace {
1403
1404/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1405/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1406struct UseMapDenseMapInfo {
1407  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1408    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1409  }
1410
1411  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1412    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1413  }
1414
1415  static unsigned
1416  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1417    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1418    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1419    return Result;
1420  }
1421
1422  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1423                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1424    return LHS == RHS;
1425  }
1426};
1427
1428/// IVInc - An individual increment in a Chain of IV increments.
1429/// Relate an IV user to an expression that computes the IV it uses from the IV
1430/// used by the previous link in the Chain.
1431///
1432/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1433/// original IVOperand. The head of the chain's IVOperand is only valid during
1434/// chain collection, before LSR replaces IV users. During chain generation,
1435/// IncExpr can be used to find the new IVOperand that computes the same
1436/// expression.
1437struct IVInc {
1438  Instruction *UserInst;
1439  Value* IVOperand;
1440  const SCEV *IncExpr;
1441
1442  IVInc(Instruction *U, Value *O, const SCEV *E):
1443    UserInst(U), IVOperand(O), IncExpr(E) {}
1444};
1445
1446// IVChain - The list of IV increments in program order.
1447// We typically add the head of a chain without finding subsequent links.
1448typedef SmallVector<IVInc,1> IVChain;
1449
1450/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1451/// Distinguish between FarUsers that definitely cross IV increments and
1452/// NearUsers that may be used between IV increments.
1453struct ChainUsers {
1454  SmallPtrSet<Instruction*, 4> FarUsers;
1455  SmallPtrSet<Instruction*, 4> NearUsers;
1456};
1457
1458/// LSRInstance - This class holds state for the main loop strength reduction
1459/// logic.
1460class LSRInstance {
1461  IVUsers &IU;
1462  ScalarEvolution &SE;
1463  DominatorTree &DT;
1464  LoopInfo &LI;
1465  const TargetLowering *const TLI;
1466  Loop *const L;
1467  bool Changed;
1468
1469  /// IVIncInsertPos - This is the insert position that the current loop's
1470  /// induction variable increment should be placed. In simple loops, this is
1471  /// the latch block's terminator. But in more complicated cases, this is a
1472  /// position which will dominate all the in-loop post-increment users.
1473  Instruction *IVIncInsertPos;
1474
1475  /// Factors - Interesting factors between use strides.
1476  SmallSetVector<int64_t, 8> Factors;
1477
1478  /// Types - Interesting use types, to facilitate truncation reuse.
1479  SmallSetVector<Type *, 4> Types;
1480
1481  /// Fixups - The list of operands which are to be replaced.
1482  SmallVector<LSRFixup, 16> Fixups;
1483
1484  /// Uses - The list of interesting uses.
1485  SmallVector<LSRUse, 16> Uses;
1486
1487  /// RegUses - Track which uses use which register candidates.
1488  RegUseTracker RegUses;
1489
1490  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1491  // have more than a few IV increment chains in a loop. Missing a Chain falls
1492  // back to normal LSR behavior for those uses.
1493  static const unsigned MaxChains = 8;
1494
1495  /// IVChainVec - IV users can form a chain of IV increments.
1496  SmallVector<IVChain, MaxChains> IVChainVec;
1497
1498  /// IVIncSet - IV users that belong to profitable IVChains.
1499  SmallPtrSet<Use*, MaxChains> IVIncSet;
1500
1501  void OptimizeShadowIV();
1502  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1503  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1504  void OptimizeLoopTermCond();
1505
1506  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1507                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1508  void FinalizeChain(IVChain &Chain);
1509  void CollectChains();
1510  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1511                       SmallVectorImpl<WeakVH> &DeadInsts);
1512
1513  void CollectInterestingTypesAndFactors();
1514  void CollectFixupsAndInitialFormulae();
1515
1516  LSRFixup &getNewFixup() {
1517    Fixups.push_back(LSRFixup());
1518    return Fixups.back();
1519  }
1520
1521  // Support for sharing of LSRUses between LSRFixups.
1522  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1523                   size_t,
1524                   UseMapDenseMapInfo> UseMapTy;
1525  UseMapTy UseMap;
1526
1527  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1528                          LSRUse::KindType Kind, Type *AccessTy);
1529
1530  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1531                                    LSRUse::KindType Kind,
1532                                    Type *AccessTy);
1533
1534  void DeleteUse(LSRUse &LU, size_t LUIdx);
1535
1536  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1537
1538  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1539  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1540  void CountRegisters(const Formula &F, size_t LUIdx);
1541  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1542
1543  void CollectLoopInvariantFixupsAndFormulae();
1544
1545  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1546                              unsigned Depth = 0);
1547  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1548  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1549  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1550  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1551  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1552  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1553  void GenerateCrossUseConstantOffsets();
1554  void GenerateAllReuseFormulae();
1555
1556  void FilterOutUndesirableDedicatedRegisters();
1557
1558  size_t EstimateSearchSpaceComplexity() const;
1559  void NarrowSearchSpaceByDetectingSupersets();
1560  void NarrowSearchSpaceByCollapsingUnrolledCode();
1561  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1562  void NarrowSearchSpaceByPickingWinnerRegs();
1563  void NarrowSearchSpaceUsingHeuristics();
1564
1565  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1566                    Cost &SolutionCost,
1567                    SmallVectorImpl<const Formula *> &Workspace,
1568                    const Cost &CurCost,
1569                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1570                    DenseSet<const SCEV *> &VisitedRegs) const;
1571  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1572
1573  BasicBlock::iterator
1574    HoistInsertPosition(BasicBlock::iterator IP,
1575                        const SmallVectorImpl<Instruction *> &Inputs) const;
1576  BasicBlock::iterator
1577    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1578                                  const LSRFixup &LF,
1579                                  const LSRUse &LU,
1580                                  SCEVExpander &Rewriter) const;
1581
1582  Value *Expand(const LSRFixup &LF,
1583                const Formula &F,
1584                BasicBlock::iterator IP,
1585                SCEVExpander &Rewriter,
1586                SmallVectorImpl<WeakVH> &DeadInsts) const;
1587  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1588                     const Formula &F,
1589                     SCEVExpander &Rewriter,
1590                     SmallVectorImpl<WeakVH> &DeadInsts,
1591                     Pass *P) const;
1592  void Rewrite(const LSRFixup &LF,
1593               const Formula &F,
1594               SCEVExpander &Rewriter,
1595               SmallVectorImpl<WeakVH> &DeadInsts,
1596               Pass *P) const;
1597  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1598                         Pass *P);
1599
1600public:
1601  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1602
1603  bool getChanged() const { return Changed; }
1604
1605  void print_factors_and_types(raw_ostream &OS) const;
1606  void print_fixups(raw_ostream &OS) const;
1607  void print_uses(raw_ostream &OS) const;
1608  void print(raw_ostream &OS) const;
1609  void dump() const;
1610};
1611
1612}
1613
1614/// OptimizeShadowIV - If IV is used in a int-to-float cast
1615/// inside the loop then try to eliminate the cast operation.
1616void LSRInstance::OptimizeShadowIV() {
1617  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1618  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1619    return;
1620
1621  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1622       UI != E; /* empty */) {
1623    IVUsers::const_iterator CandidateUI = UI;
1624    ++UI;
1625    Instruction *ShadowUse = CandidateUI->getUser();
1626    Type *DestTy = NULL;
1627    bool IsSigned = false;
1628
1629    /* If shadow use is a int->float cast then insert a second IV
1630       to eliminate this cast.
1631
1632         for (unsigned i = 0; i < n; ++i)
1633           foo((double)i);
1634
1635       is transformed into
1636
1637         double d = 0.0;
1638         for (unsigned i = 0; i < n; ++i, ++d)
1639           foo(d);
1640    */
1641    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1642      IsSigned = false;
1643      DestTy = UCast->getDestTy();
1644    }
1645    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1646      IsSigned = true;
1647      DestTy = SCast->getDestTy();
1648    }
1649    if (!DestTy) continue;
1650
1651    if (TLI) {
1652      // If target does not support DestTy natively then do not apply
1653      // this transformation.
1654      EVT DVT = TLI->getValueType(DestTy);
1655      if (!TLI->isTypeLegal(DVT)) continue;
1656    }
1657
1658    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1659    if (!PH) continue;
1660    if (PH->getNumIncomingValues() != 2) continue;
1661
1662    Type *SrcTy = PH->getType();
1663    int Mantissa = DestTy->getFPMantissaWidth();
1664    if (Mantissa == -1) continue;
1665    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1666      continue;
1667
1668    unsigned Entry, Latch;
1669    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1670      Entry = 0;
1671      Latch = 1;
1672    } else {
1673      Entry = 1;
1674      Latch = 0;
1675    }
1676
1677    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1678    if (!Init) continue;
1679    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1680                                        (double)Init->getSExtValue() :
1681                                        (double)Init->getZExtValue());
1682
1683    BinaryOperator *Incr =
1684      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1685    if (!Incr) continue;
1686    if (Incr->getOpcode() != Instruction::Add
1687        && Incr->getOpcode() != Instruction::Sub)
1688      continue;
1689
1690    /* Initialize new IV, double d = 0.0 in above example. */
1691    ConstantInt *C = NULL;
1692    if (Incr->getOperand(0) == PH)
1693      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1694    else if (Incr->getOperand(1) == PH)
1695      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1696    else
1697      continue;
1698
1699    if (!C) continue;
1700
1701    // Ignore negative constants, as the code below doesn't handle them
1702    // correctly. TODO: Remove this restriction.
1703    if (!C->getValue().isStrictlyPositive()) continue;
1704
1705    /* Add new PHINode. */
1706    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1707
1708    /* create new increment. '++d' in above example. */
1709    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1710    BinaryOperator *NewIncr =
1711      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1712                               Instruction::FAdd : Instruction::FSub,
1713                             NewPH, CFP, "IV.S.next.", Incr);
1714
1715    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1716    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1717
1718    /* Remove cast operation */
1719    ShadowUse->replaceAllUsesWith(NewPH);
1720    ShadowUse->eraseFromParent();
1721    Changed = true;
1722    break;
1723  }
1724}
1725
1726/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1727/// set the IV user and stride information and return true, otherwise return
1728/// false.
1729bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1730  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1731    if (UI->getUser() == Cond) {
1732      // NOTE: we could handle setcc instructions with multiple uses here, but
1733      // InstCombine does it as well for simple uses, it's not clear that it
1734      // occurs enough in real life to handle.
1735      CondUse = UI;
1736      return true;
1737    }
1738  return false;
1739}
1740
1741/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1742/// a max computation.
1743///
1744/// This is a narrow solution to a specific, but acute, problem. For loops
1745/// like this:
1746///
1747///   i = 0;
1748///   do {
1749///     p[i] = 0.0;
1750///   } while (++i < n);
1751///
1752/// the trip count isn't just 'n', because 'n' might not be positive. And
1753/// unfortunately this can come up even for loops where the user didn't use
1754/// a C do-while loop. For example, seemingly well-behaved top-test loops
1755/// will commonly be lowered like this:
1756//
1757///   if (n > 0) {
1758///     i = 0;
1759///     do {
1760///       p[i] = 0.0;
1761///     } while (++i < n);
1762///   }
1763///
1764/// and then it's possible for subsequent optimization to obscure the if
1765/// test in such a way that indvars can't find it.
1766///
1767/// When indvars can't find the if test in loops like this, it creates a
1768/// max expression, which allows it to give the loop a canonical
1769/// induction variable:
1770///
1771///   i = 0;
1772///   max = n < 1 ? 1 : n;
1773///   do {
1774///     p[i] = 0.0;
1775///   } while (++i != max);
1776///
1777/// Canonical induction variables are necessary because the loop passes
1778/// are designed around them. The most obvious example of this is the
1779/// LoopInfo analysis, which doesn't remember trip count values. It
1780/// expects to be able to rediscover the trip count each time it is
1781/// needed, and it does this using a simple analysis that only succeeds if
1782/// the loop has a canonical induction variable.
1783///
1784/// However, when it comes time to generate code, the maximum operation
1785/// can be quite costly, especially if it's inside of an outer loop.
1786///
1787/// This function solves this problem by detecting this type of loop and
1788/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1789/// the instructions for the maximum computation.
1790///
1791ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1792  // Check that the loop matches the pattern we're looking for.
1793  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1794      Cond->getPredicate() != CmpInst::ICMP_NE)
1795    return Cond;
1796
1797  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1798  if (!Sel || !Sel->hasOneUse()) return Cond;
1799
1800  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1801  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1802    return Cond;
1803  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1804
1805  // Add one to the backedge-taken count to get the trip count.
1806  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1807  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1808
1809  // Check for a max calculation that matches the pattern. There's no check
1810  // for ICMP_ULE here because the comparison would be with zero, which
1811  // isn't interesting.
1812  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1813  const SCEVNAryExpr *Max = 0;
1814  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1815    Pred = ICmpInst::ICMP_SLE;
1816    Max = S;
1817  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1818    Pred = ICmpInst::ICMP_SLT;
1819    Max = S;
1820  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1821    Pred = ICmpInst::ICMP_ULT;
1822    Max = U;
1823  } else {
1824    // No match; bail.
1825    return Cond;
1826  }
1827
1828  // To handle a max with more than two operands, this optimization would
1829  // require additional checking and setup.
1830  if (Max->getNumOperands() != 2)
1831    return Cond;
1832
1833  const SCEV *MaxLHS = Max->getOperand(0);
1834  const SCEV *MaxRHS = Max->getOperand(1);
1835
1836  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1837  // for a comparison with 1. For <= and >=, a comparison with zero.
1838  if (!MaxLHS ||
1839      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1840    return Cond;
1841
1842  // Check the relevant induction variable for conformance to
1843  // the pattern.
1844  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1845  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1846  if (!AR || !AR->isAffine() ||
1847      AR->getStart() != One ||
1848      AR->getStepRecurrence(SE) != One)
1849    return Cond;
1850
1851  assert(AR->getLoop() == L &&
1852         "Loop condition operand is an addrec in a different loop!");
1853
1854  // Check the right operand of the select, and remember it, as it will
1855  // be used in the new comparison instruction.
1856  Value *NewRHS = 0;
1857  if (ICmpInst::isTrueWhenEqual(Pred)) {
1858    // Look for n+1, and grab n.
1859    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1860      if (isa<ConstantInt>(BO->getOperand(1)) &&
1861          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1862          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1863        NewRHS = BO->getOperand(0);
1864    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1865      if (isa<ConstantInt>(BO->getOperand(1)) &&
1866          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1867          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1868        NewRHS = BO->getOperand(0);
1869    if (!NewRHS)
1870      return Cond;
1871  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1872    NewRHS = Sel->getOperand(1);
1873  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1874    NewRHS = Sel->getOperand(2);
1875  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1876    NewRHS = SU->getValue();
1877  else
1878    // Max doesn't match expected pattern.
1879    return Cond;
1880
1881  // Determine the new comparison opcode. It may be signed or unsigned,
1882  // and the original comparison may be either equality or inequality.
1883  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1884    Pred = CmpInst::getInversePredicate(Pred);
1885
1886  // Ok, everything looks ok to change the condition into an SLT or SGE and
1887  // delete the max calculation.
1888  ICmpInst *NewCond =
1889    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1890
1891  // Delete the max calculation instructions.
1892  Cond->replaceAllUsesWith(NewCond);
1893  CondUse->setUser(NewCond);
1894  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1895  Cond->eraseFromParent();
1896  Sel->eraseFromParent();
1897  if (Cmp->use_empty())
1898    Cmp->eraseFromParent();
1899  return NewCond;
1900}
1901
1902/// OptimizeLoopTermCond - Change loop terminating condition to use the
1903/// postinc iv when possible.
1904void
1905LSRInstance::OptimizeLoopTermCond() {
1906  SmallPtrSet<Instruction *, 4> PostIncs;
1907
1908  BasicBlock *LatchBlock = L->getLoopLatch();
1909  SmallVector<BasicBlock*, 8> ExitingBlocks;
1910  L->getExitingBlocks(ExitingBlocks);
1911
1912  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1913    BasicBlock *ExitingBlock = ExitingBlocks[i];
1914
1915    // Get the terminating condition for the loop if possible.  If we
1916    // can, we want to change it to use a post-incremented version of its
1917    // induction variable, to allow coalescing the live ranges for the IV into
1918    // one register value.
1919
1920    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1921    if (!TermBr)
1922      continue;
1923    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1924    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1925      continue;
1926
1927    // Search IVUsesByStride to find Cond's IVUse if there is one.
1928    IVStrideUse *CondUse = 0;
1929    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1930    if (!FindIVUserForCond(Cond, CondUse))
1931      continue;
1932
1933    // If the trip count is computed in terms of a max (due to ScalarEvolution
1934    // being unable to find a sufficient guard, for example), change the loop
1935    // comparison to use SLT or ULT instead of NE.
1936    // One consequence of doing this now is that it disrupts the count-down
1937    // optimization. That's not always a bad thing though, because in such
1938    // cases it may still be worthwhile to avoid a max.
1939    Cond = OptimizeMax(Cond, CondUse);
1940
1941    // If this exiting block dominates the latch block, it may also use
1942    // the post-inc value if it won't be shared with other uses.
1943    // Check for dominance.
1944    if (!DT.dominates(ExitingBlock, LatchBlock))
1945      continue;
1946
1947    // Conservatively avoid trying to use the post-inc value in non-latch
1948    // exits if there may be pre-inc users in intervening blocks.
1949    if (LatchBlock != ExitingBlock)
1950      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1951        // Test if the use is reachable from the exiting block. This dominator
1952        // query is a conservative approximation of reachability.
1953        if (&*UI != CondUse &&
1954            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1955          // Conservatively assume there may be reuse if the quotient of their
1956          // strides could be a legal scale.
1957          const SCEV *A = IU.getStride(*CondUse, L);
1958          const SCEV *B = IU.getStride(*UI, L);
1959          if (!A || !B) continue;
1960          if (SE.getTypeSizeInBits(A->getType()) !=
1961              SE.getTypeSizeInBits(B->getType())) {
1962            if (SE.getTypeSizeInBits(A->getType()) >
1963                SE.getTypeSizeInBits(B->getType()))
1964              B = SE.getSignExtendExpr(B, A->getType());
1965            else
1966              A = SE.getSignExtendExpr(A, B->getType());
1967          }
1968          if (const SCEVConstant *D =
1969                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1970            const ConstantInt *C = D->getValue();
1971            // Stride of one or negative one can have reuse with non-addresses.
1972            if (C->isOne() || C->isAllOnesValue())
1973              goto decline_post_inc;
1974            // Avoid weird situations.
1975            if (C->getValue().getMinSignedBits() >= 64 ||
1976                C->getValue().isMinSignedValue())
1977              goto decline_post_inc;
1978            // Without TLI, assume that any stride might be valid, and so any
1979            // use might be shared.
1980            if (!TLI)
1981              goto decline_post_inc;
1982            // Check for possible scaled-address reuse.
1983            Type *AccessTy = getAccessType(UI->getUser());
1984            TargetLowering::AddrMode AM;
1985            AM.Scale = C->getSExtValue();
1986            if (TLI->isLegalAddressingMode(AM, AccessTy))
1987              goto decline_post_inc;
1988            AM.Scale = -AM.Scale;
1989            if (TLI->isLegalAddressingMode(AM, AccessTy))
1990              goto decline_post_inc;
1991          }
1992        }
1993
1994    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1995                 << *Cond << '\n');
1996
1997    // It's possible for the setcc instruction to be anywhere in the loop, and
1998    // possible for it to have multiple users.  If it is not immediately before
1999    // the exiting block branch, move it.
2000    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2001      if (Cond->hasOneUse()) {
2002        Cond->moveBefore(TermBr);
2003      } else {
2004        // Clone the terminating condition and insert into the loopend.
2005        ICmpInst *OldCond = Cond;
2006        Cond = cast<ICmpInst>(Cond->clone());
2007        Cond->setName(L->getHeader()->getName() + ".termcond");
2008        ExitingBlock->getInstList().insert(TermBr, Cond);
2009
2010        // Clone the IVUse, as the old use still exists!
2011        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2012        TermBr->replaceUsesOfWith(OldCond, Cond);
2013      }
2014    }
2015
2016    // If we get to here, we know that we can transform the setcc instruction to
2017    // use the post-incremented version of the IV, allowing us to coalesce the
2018    // live ranges for the IV correctly.
2019    CondUse->transformToPostInc(L);
2020    Changed = true;
2021
2022    PostIncs.insert(Cond);
2023  decline_post_inc:;
2024  }
2025
2026  // Determine an insertion point for the loop induction variable increment. It
2027  // must dominate all the post-inc comparisons we just set up, and it must
2028  // dominate the loop latch edge.
2029  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2030  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2031       E = PostIncs.end(); I != E; ++I) {
2032    BasicBlock *BB =
2033      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2034                                    (*I)->getParent());
2035    if (BB == (*I)->getParent())
2036      IVIncInsertPos = *I;
2037    else if (BB != IVIncInsertPos->getParent())
2038      IVIncInsertPos = BB->getTerminator();
2039  }
2040}
2041
2042/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2043/// at the given offset and other details. If so, update the use and
2044/// return true.
2045bool
2046LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2047                                LSRUse::KindType Kind, Type *AccessTy) {
2048  int64_t NewMinOffset = LU.MinOffset;
2049  int64_t NewMaxOffset = LU.MaxOffset;
2050  Type *NewAccessTy = AccessTy;
2051
2052  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2053  // something conservative, however this can pessimize in the case that one of
2054  // the uses will have all its uses outside the loop, for example.
2055  if (LU.Kind != Kind)
2056    return false;
2057  // Conservatively assume HasBaseReg is true for now.
2058  if (NewOffset < LU.MinOffset) {
2059    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
2060                          Kind, AccessTy, TLI))
2061      return false;
2062    NewMinOffset = NewOffset;
2063  } else if (NewOffset > LU.MaxOffset) {
2064    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
2065                          Kind, AccessTy, TLI))
2066      return false;
2067    NewMaxOffset = NewOffset;
2068  }
2069  // Check for a mismatched access type, and fall back conservatively as needed.
2070  // TODO: Be less conservative when the type is similar and can use the same
2071  // addressing modes.
2072  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2073    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2074
2075  // Update the use.
2076  LU.MinOffset = NewMinOffset;
2077  LU.MaxOffset = NewMaxOffset;
2078  LU.AccessTy = NewAccessTy;
2079  if (NewOffset != LU.Offsets.back())
2080    LU.Offsets.push_back(NewOffset);
2081  return true;
2082}
2083
2084/// getUse - Return an LSRUse index and an offset value for a fixup which
2085/// needs the given expression, with the given kind and optional access type.
2086/// Either reuse an existing use or create a new one, as needed.
2087std::pair<size_t, int64_t>
2088LSRInstance::getUse(const SCEV *&Expr,
2089                    LSRUse::KindType Kind, Type *AccessTy) {
2090  const SCEV *Copy = Expr;
2091  int64_t Offset = ExtractImmediate(Expr, SE);
2092
2093  // Basic uses can't accept any offset, for example.
2094  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
2095    Expr = Copy;
2096    Offset = 0;
2097  }
2098
2099  std::pair<UseMapTy::iterator, bool> P =
2100    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2101  if (!P.second) {
2102    // A use already existed with this base.
2103    size_t LUIdx = P.first->second;
2104    LSRUse &LU = Uses[LUIdx];
2105    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2106      // Reuse this use.
2107      return std::make_pair(LUIdx, Offset);
2108  }
2109
2110  // Create a new use.
2111  size_t LUIdx = Uses.size();
2112  P.first->second = LUIdx;
2113  Uses.push_back(LSRUse(Kind, AccessTy));
2114  LSRUse &LU = Uses[LUIdx];
2115
2116  // We don't need to track redundant offsets, but we don't need to go out
2117  // of our way here to avoid them.
2118  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2119    LU.Offsets.push_back(Offset);
2120
2121  LU.MinOffset = Offset;
2122  LU.MaxOffset = Offset;
2123  return std::make_pair(LUIdx, Offset);
2124}
2125
2126/// DeleteUse - Delete the given use from the Uses list.
2127void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2128  if (&LU != &Uses.back())
2129    std::swap(LU, Uses.back());
2130  Uses.pop_back();
2131
2132  // Update RegUses.
2133  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2134}
2135
2136/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2137/// a formula that has the same registers as the given formula.
2138LSRUse *
2139LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2140                                       const LSRUse &OrigLU) {
2141  // Search all uses for the formula. This could be more clever.
2142  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2143    LSRUse &LU = Uses[LUIdx];
2144    // Check whether this use is close enough to OrigLU, to see whether it's
2145    // worthwhile looking through its formulae.
2146    // Ignore ICmpZero uses because they may contain formulae generated by
2147    // GenerateICmpZeroScales, in which case adding fixup offsets may
2148    // be invalid.
2149    if (&LU != &OrigLU &&
2150        LU.Kind != LSRUse::ICmpZero &&
2151        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2152        LU.WidestFixupType == OrigLU.WidestFixupType &&
2153        LU.HasFormulaWithSameRegs(OrigF)) {
2154      // Scan through this use's formulae.
2155      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2156           E = LU.Formulae.end(); I != E; ++I) {
2157        const Formula &F = *I;
2158        // Check to see if this formula has the same registers and symbols
2159        // as OrigF.
2160        if (F.BaseRegs == OrigF.BaseRegs &&
2161            F.ScaledReg == OrigF.ScaledReg &&
2162            F.AM.BaseGV == OrigF.AM.BaseGV &&
2163            F.AM.Scale == OrigF.AM.Scale &&
2164            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2165          if (F.AM.BaseOffs == 0)
2166            return &LU;
2167          // This is the formula where all the registers and symbols matched;
2168          // there aren't going to be any others. Since we declined it, we
2169          // can skip the rest of the formulae and procede to the next LSRUse.
2170          break;
2171        }
2172      }
2173    }
2174  }
2175
2176  // Nothing looked good.
2177  return 0;
2178}
2179
2180void LSRInstance::CollectInterestingTypesAndFactors() {
2181  SmallSetVector<const SCEV *, 4> Strides;
2182
2183  // Collect interesting types and strides.
2184  SmallVector<const SCEV *, 4> Worklist;
2185  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2186    const SCEV *Expr = IU.getExpr(*UI);
2187
2188    // Collect interesting types.
2189    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2190
2191    // Add strides for mentioned loops.
2192    Worklist.push_back(Expr);
2193    do {
2194      const SCEV *S = Worklist.pop_back_val();
2195      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2196        if (EnableNested || AR->getLoop() == L)
2197          Strides.insert(AR->getStepRecurrence(SE));
2198        Worklist.push_back(AR->getStart());
2199      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2200        Worklist.append(Add->op_begin(), Add->op_end());
2201      }
2202    } while (!Worklist.empty());
2203  }
2204
2205  // Compute interesting factors from the set of interesting strides.
2206  for (SmallSetVector<const SCEV *, 4>::const_iterator
2207       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2208    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2209         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2210      const SCEV *OldStride = *I;
2211      const SCEV *NewStride = *NewStrideIter;
2212
2213      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2214          SE.getTypeSizeInBits(NewStride->getType())) {
2215        if (SE.getTypeSizeInBits(OldStride->getType()) >
2216            SE.getTypeSizeInBits(NewStride->getType()))
2217          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2218        else
2219          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2220      }
2221      if (const SCEVConstant *Factor =
2222            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2223                                                        SE, true))) {
2224        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2225          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2226      } else if (const SCEVConstant *Factor =
2227                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2228                                                               NewStride,
2229                                                               SE, true))) {
2230        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2231          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2232      }
2233    }
2234
2235  // If all uses use the same type, don't bother looking for truncation-based
2236  // reuse.
2237  if (Types.size() == 1)
2238    Types.clear();
2239
2240  DEBUG(print_factors_and_types(dbgs()));
2241}
2242
2243/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2244/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2245/// Instructions to IVStrideUses, we could partially skip this.
2246static User::op_iterator
2247findIVOperand(User::op_iterator OI, User::op_iterator OE,
2248              Loop *L, ScalarEvolution &SE) {
2249  for(; OI != OE; ++OI) {
2250    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2251      if (!SE.isSCEVable(Oper->getType()))
2252        continue;
2253
2254      if (const SCEVAddRecExpr *AR =
2255          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2256        if (AR->getLoop() == L)
2257          break;
2258      }
2259    }
2260  }
2261  return OI;
2262}
2263
2264/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2265/// operands, so wrap it in a convenient helper.
2266static Value *getWideOperand(Value *Oper) {
2267  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2268    return Trunc->getOperand(0);
2269  return Oper;
2270}
2271
2272/// isCompatibleIVType - Return true if we allow an IV chain to include both
2273/// types.
2274static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2275  Type *LType = LVal->getType();
2276  Type *RType = RVal->getType();
2277  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2278}
2279
2280/// getExprBase - Return an approximation of this SCEV expression's "base", or
2281/// NULL for any constant. Returning the expression itself is
2282/// conservative. Returning a deeper subexpression is more precise and valid as
2283/// long as it isn't less complex than another subexpression. For expressions
2284/// involving multiple unscaled values, we need to return the pointer-type
2285/// SCEVUnknown. This avoids forming chains across objects, such as:
2286/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2287///
2288/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2289/// SCEVUnknown, we simply return the rightmost SCEV operand.
2290static const SCEV *getExprBase(const SCEV *S) {
2291  switch (S->getSCEVType()) {
2292  default: // uncluding scUnknown.
2293    return S;
2294  case scConstant:
2295    return 0;
2296  case scTruncate:
2297    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2298  case scZeroExtend:
2299    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2300  case scSignExtend:
2301    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2302  case scAddExpr: {
2303    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2304    // there's nothing more complex.
2305    // FIXME: not sure if we want to recognize negation.
2306    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2307    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2308           E(Add->op_begin()); I != E; ++I) {
2309      const SCEV *SubExpr = *I;
2310      if (SubExpr->getSCEVType() == scAddExpr)
2311        return getExprBase(SubExpr);
2312
2313      if (SubExpr->getSCEVType() != scMulExpr)
2314        return SubExpr;
2315    }
2316    return S; // all operands are scaled, be conservative.
2317  }
2318  case scAddRecExpr:
2319    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2320  }
2321}
2322
2323/// Return true if the chain increment is profitable to expand into a loop
2324/// invariant value, which may require its own register. A profitable chain
2325/// increment will be an offset relative to the same base. We allow such offsets
2326/// to potentially be used as chain increment as long as it's not obviously
2327/// expensive to expand using real instructions.
2328static const SCEV *
2329getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
2330                            const IVChain &Chain, Loop *L,
2331                            ScalarEvolution &SE, const TargetLowering *TLI) {
2332  // Prune the solution space aggressively by checking that both IV operands
2333  // are expressions that operate on the same unscaled SCEVUnknown. This
2334  // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
2335  // avoids creating extra SCEV expressions.
2336  const SCEV *OperExpr = SE.getSCEV(NextIV);
2337  const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2338  if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
2339    return 0;
2340
2341  const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2342  if (!SE.isLoopInvariant(IncExpr, L))
2343    return 0;
2344
2345  // We are not able to expand an increment unless it is loop invariant,
2346  // however, the following checks are purely for profitability.
2347  if (StressIVChain)
2348    return IncExpr;
2349
2350  // Do not replace a constant offset from IV head with a nonconstant IV
2351  // increment.
2352  if (!isa<SCEVConstant>(IncExpr)) {
2353    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
2354    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2355      return 0;
2356  }
2357
2358  SmallPtrSet<const SCEV*, 8> Processed;
2359  if (isHighCostExpansion(IncExpr, Processed, SE))
2360    return 0;
2361
2362  return IncExpr;
2363}
2364
2365/// Return true if the number of registers needed for the chain is estimated to
2366/// be less than the number required for the individual IV users. First prohibit
2367/// any IV users that keep the IV live across increments (the Users set should
2368/// be empty). Next count the number and type of increments in the chain.
2369///
2370/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2371/// effectively use postinc addressing modes. Only consider it profitable it the
2372/// increments can be computed in fewer registers when chained.
2373///
2374/// TODO: Consider IVInc free if it's already used in another chains.
2375static bool
2376isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2377                  ScalarEvolution &SE, const TargetLowering *TLI) {
2378  if (StressIVChain)
2379    return true;
2380
2381  if (Chain.size() <= 2)
2382    return false;
2383
2384  if (!Users.empty()) {
2385    DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
2386          for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2387                 E = Users.end(); I != E; ++I) {
2388            dbgs() << "  " << **I << "\n";
2389          });
2390    return false;
2391  }
2392  assert(!Chain.empty() && "empty IV chains are not allowed");
2393
2394  // The chain itself may require a register, so intialize cost to 1.
2395  int cost = 1;
2396
2397  // A complete chain likely eliminates the need for keeping the original IV in
2398  // a register. LSR does not currently know how to form a complete chain unless
2399  // the header phi already exists.
2400  if (isa<PHINode>(Chain.back().UserInst)
2401      && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
2402    --cost;
2403  }
2404  const SCEV *LastIncExpr = 0;
2405  unsigned NumConstIncrements = 0;
2406  unsigned NumVarIncrements = 0;
2407  unsigned NumReusedIncrements = 0;
2408  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2409       I != E; ++I) {
2410
2411    if (I->IncExpr->isZero())
2412      continue;
2413
2414    // Incrementing by zero or some constant is neutral. We assume constants can
2415    // be folded into an addressing mode or an add's immediate operand.
2416    if (isa<SCEVConstant>(I->IncExpr)) {
2417      ++NumConstIncrements;
2418      continue;
2419    }
2420
2421    if (I->IncExpr == LastIncExpr)
2422      ++NumReusedIncrements;
2423    else
2424      ++NumVarIncrements;
2425
2426    LastIncExpr = I->IncExpr;
2427  }
2428  // An IV chain with a single increment is handled by LSR's postinc
2429  // uses. However, a chain with multiple increments requires keeping the IV's
2430  // value live longer than it needs to be if chained.
2431  if (NumConstIncrements > 1)
2432    --cost;
2433
2434  // Materializing increment expressions in the preheader that didn't exist in
2435  // the original code may cost a register. For example, sign-extended array
2436  // indices can produce ridiculous increments like this:
2437  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2438  cost += NumVarIncrements;
2439
2440  // Reusing variable increments likely saves a register to hold the multiple of
2441  // the stride.
2442  cost -= NumReusedIncrements;
2443
2444  DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
2445
2446  return cost < 0;
2447}
2448
2449/// ChainInstruction - Add this IV user to an existing chain or make it the head
2450/// of a new chain.
2451void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2452                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2453  // When IVs are used as types of varying widths, they are generally converted
2454  // to a wider type with some uses remaining narrow under a (free) trunc.
2455  Value *NextIV = getWideOperand(IVOper);
2456
2457  // Visit all existing chains. Check if its IVOper can be computed as a
2458  // profitable loop invariant increment from the last link in the Chain.
2459  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2460  const SCEV *LastIncExpr = 0;
2461  for (; ChainIdx < NChains; ++ChainIdx) {
2462    Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
2463    if (!isCompatibleIVType(PrevIV, NextIV))
2464      continue;
2465
2466    // A phi nodes terminates a chain.
2467    if (isa<PHINode>(UserInst)
2468        && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
2469      continue;
2470
2471    if (const SCEV *IncExpr =
2472        getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
2473                                    L, SE, TLI)) {
2474      LastIncExpr = IncExpr;
2475      break;
2476    }
2477  }
2478  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2479  // bother for phi nodes, because they must be last in the chain.
2480  if (ChainIdx == NChains) {
2481    if (isa<PHINode>(UserInst))
2482      return;
2483    if (NChains >= MaxChains && !StressIVChain) {
2484      DEBUG(dbgs() << "IV Chain Limit\n");
2485      return;
2486    }
2487    LastIncExpr = SE.getSCEV(NextIV);
2488    // IVUsers may have skipped over sign/zero extensions. We don't currently
2489    // attempt to form chains involving extensions unless they can be hoisted
2490    // into this loop's AddRec.
2491    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2492      return;
2493    ++NChains;
2494    IVChainVec.resize(NChains);
2495    ChainUsersVec.resize(NChains);
2496    DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
2497          << "\n");
2498  }
2499  else
2500    DEBUG(dbgs() << "IV  Inc: (" << *UserInst << ") IV+" << *LastIncExpr
2501          << "\n");
2502
2503  // Add this IV user to the end of the chain.
2504  IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
2505
2506  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2507  // This chain's NearUsers become FarUsers.
2508  if (!LastIncExpr->isZero()) {
2509    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2510                                            NearUsers.end());
2511    NearUsers.clear();
2512  }
2513
2514  // All other uses of IVOperand become near uses of the chain.
2515  // We currently ignore intermediate values within SCEV expressions, assuming
2516  // they will eventually be used be the current chain, or can be computed
2517  // from one of the chain increments. To be more precise we could
2518  // transitively follow its user and only add leaf IV users to the set.
2519  for (Value::use_iterator UseIter = IVOper->use_begin(),
2520         UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2521    Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2522    if (SE.isSCEVable(OtherUse->getType())
2523        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2524        && IU.isIVUserOrOperand(OtherUse)) {
2525      continue;
2526    }
2527    if (OtherUse && OtherUse != UserInst)
2528      NearUsers.insert(OtherUse);
2529  }
2530
2531  // Since this user is part of the chain, it's no longer considered a use
2532  // of the chain.
2533  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2534}
2535
2536/// CollectChains - Populate the vector of Chains.
2537///
2538/// This decreases ILP at the architecture level. Targets with ample registers,
2539/// multiple memory ports, and no register renaming probably don't want
2540/// this. However, such targets should probably disable LSR altogether.
2541///
2542/// The job of LSR is to make a reasonable choice of induction variables across
2543/// the loop. Subsequent passes can easily "unchain" computation exposing more
2544/// ILP *within the loop* if the target wants it.
2545///
2546/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2547/// will not reorder memory operations, it will recognize this as a chain, but
2548/// will generate redundant IV increments. Ideally this would be corrected later
2549/// by a smart scheduler:
2550///        = A[i]
2551///        = A[i+x]
2552/// A[i]   =
2553/// A[i+x] =
2554///
2555/// TODO: Walk the entire domtree within this loop, not just the path to the
2556/// loop latch. This will discover chains on side paths, but requires
2557/// maintaining multiple copies of the Chains state.
2558void LSRInstance::CollectChains() {
2559  SmallVector<ChainUsers, 8> ChainUsersVec;
2560
2561  SmallVector<BasicBlock *,8> LatchPath;
2562  BasicBlock *LoopHeader = L->getHeader();
2563  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2564       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2565    LatchPath.push_back(Rung->getBlock());
2566  }
2567  LatchPath.push_back(LoopHeader);
2568
2569  // Walk the instruction stream from the loop header to the loop latch.
2570  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2571         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2572       BBIter != BBEnd; ++BBIter) {
2573    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2574         I != E; ++I) {
2575      // Skip instructions that weren't seen by IVUsers analysis.
2576      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2577        continue;
2578
2579      // Ignore users that are part of a SCEV expression. This way we only
2580      // consider leaf IV Users. This effectively rediscovers a portion of
2581      // IVUsers analysis but in program order this time.
2582      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2583        continue;
2584
2585      // Remove this instruction from any NearUsers set it may be in.
2586      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2587           ChainIdx < NChains; ++ChainIdx) {
2588        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2589      }
2590      // Search for operands that can be chained.
2591      SmallPtrSet<Instruction*, 4> UniqueOperands;
2592      User::op_iterator IVOpEnd = I->op_end();
2593      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2594      while (IVOpIter != IVOpEnd) {
2595        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2596        if (UniqueOperands.insert(IVOpInst))
2597          ChainInstruction(I, IVOpInst, ChainUsersVec);
2598        IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2599      }
2600    } // Continue walking down the instructions.
2601  } // Continue walking down the domtree.
2602  // Visit phi backedges to determine if the chain can generate the IV postinc.
2603  for (BasicBlock::iterator I = L->getHeader()->begin();
2604       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2605    if (!SE.isSCEVable(PN->getType()))
2606      continue;
2607
2608    Instruction *IncV =
2609      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2610    if (IncV)
2611      ChainInstruction(PN, IncV, ChainUsersVec);
2612  }
2613  // Remove any unprofitable chains.
2614  unsigned ChainIdx = 0;
2615  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2616       UsersIdx < NChains; ++UsersIdx) {
2617    if (!isProfitableChain(IVChainVec[UsersIdx],
2618                           ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2619      continue;
2620    // Preserve the chain at UsesIdx.
2621    if (ChainIdx != UsersIdx)
2622      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2623    FinalizeChain(IVChainVec[ChainIdx]);
2624    ++ChainIdx;
2625  }
2626  IVChainVec.resize(ChainIdx);
2627}
2628
2629void LSRInstance::FinalizeChain(IVChain &Chain) {
2630  assert(!Chain.empty() && "empty IV chains are not allowed");
2631  DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
2632
2633  for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
2634       I != E; ++I) {
2635    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2636    User::op_iterator UseI =
2637      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2638    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2639    IVIncSet.insert(UseI);
2640  }
2641}
2642
2643/// Return true if the IVInc can be folded into an addressing mode.
2644static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2645                             Value *Operand, const TargetLowering *TLI) {
2646  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2647  if (!IncConst || !isAddressUse(UserInst, Operand))
2648    return false;
2649
2650  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2651    return false;
2652
2653  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2654  if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2655                       LSRUse::Address, getAccessType(UserInst), TLI))
2656    return false;
2657
2658  return true;
2659}
2660
2661/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2662/// materialize the IV user's operand from the previous IV user's operand.
2663void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2664                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2665  // Find the new IVOperand for the head of the chain. It may have been replaced
2666  // by LSR.
2667  const IVInc &Head = Chain[0];
2668  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2669  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2670                                             IVOpEnd, L, SE);
2671  Value *IVSrc = 0;
2672  while (IVOpIter != IVOpEnd) {
2673    IVSrc = getWideOperand(*IVOpIter);
2674
2675    // If this operand computes the expression that the chain needs, we may use
2676    // it. (Check this after setting IVSrc which is used below.)
2677    //
2678    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2679    // narrow for the chain, so we can no longer use it. We do allow using a
2680    // wider phi, assuming the LSR checked for free truncation. In that case we
2681    // should already have a truncate on this operand such that
2682    // getSCEV(IVSrc) == IncExpr.
2683    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2684        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2685      break;
2686    }
2687    IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2688  }
2689  if (IVOpIter == IVOpEnd) {
2690    // Gracefully give up on this chain.
2691    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2692    return;
2693  }
2694
2695  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2696  Type *IVTy = IVSrc->getType();
2697  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2698  const SCEV *LeftOverExpr = 0;
2699  for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
2700         IncE = Chain.end(); IncI != IncE; ++IncI) {
2701
2702    Instruction *InsertPt = IncI->UserInst;
2703    if (isa<PHINode>(InsertPt))
2704      InsertPt = L->getLoopLatch()->getTerminator();
2705
2706    // IVOper will replace the current IV User's operand. IVSrc is the IV
2707    // value currently held in a register.
2708    Value *IVOper = IVSrc;
2709    if (!IncI->IncExpr->isZero()) {
2710      // IncExpr was the result of subtraction of two narrow values, so must
2711      // be signed.
2712      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2713      LeftOverExpr = LeftOverExpr ?
2714        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2715    }
2716    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2717      // Expand the IV increment.
2718      Rewriter.clearPostInc();
2719      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2720      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2721                                             SE.getUnknown(IncV));
2722      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2723
2724      // If an IV increment can't be folded, use it as the next IV value.
2725      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2726                            TLI)) {
2727        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2728        IVSrc = IVOper;
2729        LeftOverExpr = 0;
2730      }
2731    }
2732    Type *OperTy = IncI->IVOperand->getType();
2733    if (IVTy != OperTy) {
2734      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2735             "cannot extend a chained IV");
2736      IRBuilder<> Builder(InsertPt);
2737      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2738    }
2739    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2740    DeadInsts.push_back(IncI->IVOperand);
2741  }
2742  // If LSR created a new, wider phi, we may also replace its postinc. We only
2743  // do this if we also found a wide value for the head of the chain.
2744  if (isa<PHINode>(Chain.back().UserInst)) {
2745    for (BasicBlock::iterator I = L->getHeader()->begin();
2746         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2747      if (!isCompatibleIVType(Phi, IVSrc))
2748        continue;
2749      Instruction *PostIncV = dyn_cast<Instruction>(
2750        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2751      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2752        continue;
2753      Value *IVOper = IVSrc;
2754      Type *PostIncTy = PostIncV->getType();
2755      if (IVTy != PostIncTy) {
2756        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2757        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2758        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2759        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2760      }
2761      Phi->replaceUsesOfWith(PostIncV, IVOper);
2762      DeadInsts.push_back(PostIncV);
2763    }
2764  }
2765}
2766
2767void LSRInstance::CollectFixupsAndInitialFormulae() {
2768  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2769    Instruction *UserInst = UI->getUser();
2770    // Skip IV users that are part of profitable IV Chains.
2771    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2772                                       UI->getOperandValToReplace());
2773    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2774    if (IVIncSet.count(UseI))
2775      continue;
2776
2777    // Record the uses.
2778    LSRFixup &LF = getNewFixup();
2779    LF.UserInst = UserInst;
2780    LF.OperandValToReplace = UI->getOperandValToReplace();
2781    LF.PostIncLoops = UI->getPostIncLoops();
2782
2783    LSRUse::KindType Kind = LSRUse::Basic;
2784    Type *AccessTy = 0;
2785    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2786      Kind = LSRUse::Address;
2787      AccessTy = getAccessType(LF.UserInst);
2788    }
2789
2790    const SCEV *S = IU.getExpr(*UI);
2791
2792    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2793    // (N - i == 0), and this allows (N - i) to be the expression that we work
2794    // with rather than just N or i, so we can consider the register
2795    // requirements for both N and i at the same time. Limiting this code to
2796    // equality icmps is not a problem because all interesting loops use
2797    // equality icmps, thanks to IndVarSimplify.
2798    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2799      if (CI->isEquality()) {
2800        // Swap the operands if needed to put the OperandValToReplace on the
2801        // left, for consistency.
2802        Value *NV = CI->getOperand(1);
2803        if (NV == LF.OperandValToReplace) {
2804          CI->setOperand(1, CI->getOperand(0));
2805          CI->setOperand(0, NV);
2806          NV = CI->getOperand(1);
2807          Changed = true;
2808        }
2809
2810        // x == y  -->  x - y == 0
2811        const SCEV *N = SE.getSCEV(NV);
2812        if (SE.isLoopInvariant(N, L)) {
2813          // S is normalized, so normalize N before folding it into S
2814          // to keep the result normalized.
2815          N = TransformForPostIncUse(Normalize, N, CI, 0,
2816                                     LF.PostIncLoops, SE, DT);
2817          Kind = LSRUse::ICmpZero;
2818          S = SE.getMinusSCEV(N, S);
2819        }
2820
2821        // -1 and the negations of all interesting strides (except the negation
2822        // of -1) are now also interesting.
2823        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2824          if (Factors[i] != -1)
2825            Factors.insert(-(uint64_t)Factors[i]);
2826        Factors.insert(-1);
2827      }
2828
2829    // Set up the initial formula for this use.
2830    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2831    LF.LUIdx = P.first;
2832    LF.Offset = P.second;
2833    LSRUse &LU = Uses[LF.LUIdx];
2834    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2835    if (!LU.WidestFixupType ||
2836        SE.getTypeSizeInBits(LU.WidestFixupType) <
2837        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2838      LU.WidestFixupType = LF.OperandValToReplace->getType();
2839
2840    // If this is the first use of this LSRUse, give it a formula.
2841    if (LU.Formulae.empty()) {
2842      InsertInitialFormula(S, LU, LF.LUIdx);
2843      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2844    }
2845  }
2846
2847  DEBUG(print_fixups(dbgs()));
2848}
2849
2850/// InsertInitialFormula - Insert a formula for the given expression into
2851/// the given use, separating out loop-variant portions from loop-invariant
2852/// and loop-computable portions.
2853void
2854LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2855  Formula F;
2856  F.InitialMatch(S, L, SE);
2857  bool Inserted = InsertFormula(LU, LUIdx, F);
2858  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2859}
2860
2861/// InsertSupplementalFormula - Insert a simple single-register formula for
2862/// the given expression into the given use.
2863void
2864LSRInstance::InsertSupplementalFormula(const SCEV *S,
2865                                       LSRUse &LU, size_t LUIdx) {
2866  Formula F;
2867  F.BaseRegs.push_back(S);
2868  F.AM.HasBaseReg = true;
2869  bool Inserted = InsertFormula(LU, LUIdx, F);
2870  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2871}
2872
2873/// CountRegisters - Note which registers are used by the given formula,
2874/// updating RegUses.
2875void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2876  if (F.ScaledReg)
2877    RegUses.CountRegister(F.ScaledReg, LUIdx);
2878  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2879       E = F.BaseRegs.end(); I != E; ++I)
2880    RegUses.CountRegister(*I, LUIdx);
2881}
2882
2883/// InsertFormula - If the given formula has not yet been inserted, add it to
2884/// the list, and return true. Return false otherwise.
2885bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2886  if (!LU.InsertFormula(F))
2887    return false;
2888
2889  CountRegisters(F, LUIdx);
2890  return true;
2891}
2892
2893/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2894/// loop-invariant values which we're tracking. These other uses will pin these
2895/// values in registers, making them less profitable for elimination.
2896/// TODO: This currently misses non-constant addrec step registers.
2897/// TODO: Should this give more weight to users inside the loop?
2898void
2899LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2900  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2901  SmallPtrSet<const SCEV *, 8> Inserted;
2902
2903  while (!Worklist.empty()) {
2904    const SCEV *S = Worklist.pop_back_val();
2905
2906    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2907      Worklist.append(N->op_begin(), N->op_end());
2908    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2909      Worklist.push_back(C->getOperand());
2910    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2911      Worklist.push_back(D->getLHS());
2912      Worklist.push_back(D->getRHS());
2913    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2914      if (!Inserted.insert(U)) continue;
2915      const Value *V = U->getValue();
2916      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2917        // Look for instructions defined outside the loop.
2918        if (L->contains(Inst)) continue;
2919      } else if (isa<UndefValue>(V))
2920        // Undef doesn't have a live range, so it doesn't matter.
2921        continue;
2922      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2923           UI != UE; ++UI) {
2924        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2925        // Ignore non-instructions.
2926        if (!UserInst)
2927          continue;
2928        // Ignore instructions in other functions (as can happen with
2929        // Constants).
2930        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2931          continue;
2932        // Ignore instructions not dominated by the loop.
2933        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2934          UserInst->getParent() :
2935          cast<PHINode>(UserInst)->getIncomingBlock(
2936            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2937        if (!DT.dominates(L->getHeader(), UseBB))
2938          continue;
2939        // Ignore uses which are part of other SCEV expressions, to avoid
2940        // analyzing them multiple times.
2941        if (SE.isSCEVable(UserInst->getType())) {
2942          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2943          // If the user is a no-op, look through to its uses.
2944          if (!isa<SCEVUnknown>(UserS))
2945            continue;
2946          if (UserS == U) {
2947            Worklist.push_back(
2948              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2949            continue;
2950          }
2951        }
2952        // Ignore icmp instructions which are already being analyzed.
2953        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2954          unsigned OtherIdx = !UI.getOperandNo();
2955          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2956          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2957            continue;
2958        }
2959
2960        LSRFixup &LF = getNewFixup();
2961        LF.UserInst = const_cast<Instruction *>(UserInst);
2962        LF.OperandValToReplace = UI.getUse();
2963        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2964        LF.LUIdx = P.first;
2965        LF.Offset = P.second;
2966        LSRUse &LU = Uses[LF.LUIdx];
2967        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2968        if (!LU.WidestFixupType ||
2969            SE.getTypeSizeInBits(LU.WidestFixupType) <
2970            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2971          LU.WidestFixupType = LF.OperandValToReplace->getType();
2972        InsertSupplementalFormula(U, LU, LF.LUIdx);
2973        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2974        break;
2975      }
2976    }
2977  }
2978}
2979
2980/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2981/// separate registers. If C is non-null, multiply each subexpression by C.
2982static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2983                            SmallVectorImpl<const SCEV *> &Ops,
2984                            const Loop *L,
2985                            ScalarEvolution &SE) {
2986  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2987    // Break out add operands.
2988    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2989         I != E; ++I)
2990      CollectSubexprs(*I, C, Ops, L, SE);
2991    return;
2992  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2993    // Split a non-zero base out of an addrec.
2994    if (!AR->getStart()->isZero()) {
2995      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2996                                       AR->getStepRecurrence(SE),
2997                                       AR->getLoop(),
2998                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2999                                       SCEV::FlagAnyWrap),
3000                      C, Ops, L, SE);
3001      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
3002      return;
3003    }
3004  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3005    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3006    if (Mul->getNumOperands() == 2)
3007      if (const SCEVConstant *Op0 =
3008            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3009        CollectSubexprs(Mul->getOperand(1),
3010                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
3011                        Ops, L, SE);
3012        return;
3013      }
3014  }
3015
3016  // Otherwise use the value itself, optionally with a scale applied.
3017  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
3018}
3019
3020/// GenerateReassociations - Split out subexpressions from adds and the bases of
3021/// addrecs.
3022void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3023                                         Formula Base,
3024                                         unsigned Depth) {
3025  // Arbitrarily cap recursion to protect compile time.
3026  if (Depth >= 3) return;
3027
3028  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3029    const SCEV *BaseReg = Base.BaseRegs[i];
3030
3031    SmallVector<const SCEV *, 8> AddOps;
3032    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3033
3034    if (AddOps.size() == 1) continue;
3035
3036    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3037         JE = AddOps.end(); J != JE; ++J) {
3038
3039      // Loop-variant "unknown" values are uninteresting; we won't be able to
3040      // do anything meaningful with them.
3041      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3042        continue;
3043
3044      // Don't pull a constant into a register if the constant could be folded
3045      // into an immediate field.
3046      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3047                           Base.getNumRegs() > 1,
3048                           LU.Kind, LU.AccessTy, TLI, SE))
3049        continue;
3050
3051      // Collect all operands except *J.
3052      SmallVector<const SCEV *, 8> InnerAddOps
3053        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3054      InnerAddOps.append
3055        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3056
3057      // Don't leave just a constant behind in a register if the constant could
3058      // be folded into an immediate field.
3059      if (InnerAddOps.size() == 1 &&
3060          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3061                           Base.getNumRegs() > 1,
3062                           LU.Kind, LU.AccessTy, TLI, SE))
3063        continue;
3064
3065      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3066      if (InnerSum->isZero())
3067        continue;
3068      Formula F = Base;
3069
3070      // Add the remaining pieces of the add back into the new formula.
3071      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3072      if (TLI && InnerSumSC &&
3073          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3074          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3075                                   InnerSumSC->getValue()->getZExtValue())) {
3076        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3077                           InnerSumSC->getValue()->getZExtValue();
3078        F.BaseRegs.erase(F.BaseRegs.begin() + i);
3079      } else
3080        F.BaseRegs[i] = InnerSum;
3081
3082      // Add J as its own register, or an unfolded immediate.
3083      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3084      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3085          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3086                                   SC->getValue()->getZExtValue()))
3087        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3088                           SC->getValue()->getZExtValue();
3089      else
3090        F.BaseRegs.push_back(*J);
3091
3092      if (InsertFormula(LU, LUIdx, F))
3093        // If that formula hadn't been seen before, recurse to find more like
3094        // it.
3095        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3096    }
3097  }
3098}
3099
3100/// GenerateCombinations - Generate a formula consisting of all of the
3101/// loop-dominating registers added into a single register.
3102void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3103                                       Formula Base) {
3104  // This method is only interesting on a plurality of registers.
3105  if (Base.BaseRegs.size() <= 1) return;
3106
3107  Formula F = Base;
3108  F.BaseRegs.clear();
3109  SmallVector<const SCEV *, 4> Ops;
3110  for (SmallVectorImpl<const SCEV *>::const_iterator
3111       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3112    const SCEV *BaseReg = *I;
3113    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3114        !SE.hasComputableLoopEvolution(BaseReg, L))
3115      Ops.push_back(BaseReg);
3116    else
3117      F.BaseRegs.push_back(BaseReg);
3118  }
3119  if (Ops.size() > 1) {
3120    const SCEV *Sum = SE.getAddExpr(Ops);
3121    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3122    // opportunity to fold something. For now, just ignore such cases
3123    // rather than proceed with zero in a register.
3124    if (!Sum->isZero()) {
3125      F.BaseRegs.push_back(Sum);
3126      (void)InsertFormula(LU, LUIdx, F);
3127    }
3128  }
3129}
3130
3131/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3132void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3133                                          Formula Base) {
3134  // We can't add a symbolic offset if the address already contains one.
3135  if (Base.AM.BaseGV) return;
3136
3137  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3138    const SCEV *G = Base.BaseRegs[i];
3139    GlobalValue *GV = ExtractSymbol(G, SE);
3140    if (G->isZero() || !GV)
3141      continue;
3142    Formula F = Base;
3143    F.AM.BaseGV = GV;
3144    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3145                    LU.Kind, LU.AccessTy, TLI))
3146      continue;
3147    F.BaseRegs[i] = G;
3148    (void)InsertFormula(LU, LUIdx, F);
3149  }
3150}
3151
3152/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3153void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3154                                          Formula Base) {
3155  // TODO: For now, just add the min and max offset, because it usually isn't
3156  // worthwhile looking at everything inbetween.
3157  SmallVector<int64_t, 2> Worklist;
3158  Worklist.push_back(LU.MinOffset);
3159  if (LU.MaxOffset != LU.MinOffset)
3160    Worklist.push_back(LU.MaxOffset);
3161
3162  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3163    const SCEV *G = Base.BaseRegs[i];
3164
3165    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3166         E = Worklist.end(); I != E; ++I) {
3167      Formula F = Base;
3168      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3169      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3170                     LU.Kind, LU.AccessTy, TLI)) {
3171        // Add the offset to the base register.
3172        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3173        // If it cancelled out, drop the base register, otherwise update it.
3174        if (NewG->isZero()) {
3175          std::swap(F.BaseRegs[i], F.BaseRegs.back());
3176          F.BaseRegs.pop_back();
3177        } else
3178          F.BaseRegs[i] = NewG;
3179
3180        (void)InsertFormula(LU, LUIdx, F);
3181      }
3182    }
3183
3184    int64_t Imm = ExtractImmediate(G, SE);
3185    if (G->isZero() || Imm == 0)
3186      continue;
3187    Formula F = Base;
3188    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3189    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3190                    LU.Kind, LU.AccessTy, TLI))
3191      continue;
3192    F.BaseRegs[i] = G;
3193    (void)InsertFormula(LU, LUIdx, F);
3194  }
3195}
3196
3197/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3198/// the comparison. For example, x == y -> x*c == y*c.
3199void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3200                                         Formula Base) {
3201  if (LU.Kind != LSRUse::ICmpZero) return;
3202
3203  // Determine the integer type for the base formula.
3204  Type *IntTy = Base.getType();
3205  if (!IntTy) return;
3206  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3207
3208  // Don't do this if there is more than one offset.
3209  if (LU.MinOffset != LU.MaxOffset) return;
3210
3211  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3212
3213  // Check each interesting stride.
3214  for (SmallSetVector<int64_t, 8>::const_iterator
3215       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3216    int64_t Factor = *I;
3217
3218    // Check that the multiplication doesn't overflow.
3219    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
3220      continue;
3221    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3222    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
3223      continue;
3224
3225    // Check that multiplying with the use offset doesn't overflow.
3226    int64_t Offset = LU.MinOffset;
3227    if (Offset == INT64_MIN && Factor == -1)
3228      continue;
3229    Offset = (uint64_t)Offset * Factor;
3230    if (Offset / Factor != LU.MinOffset)
3231      continue;
3232
3233    Formula F = Base;
3234    F.AM.BaseOffs = NewBaseOffs;
3235
3236    // Check that this scale is legal.
3237    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3238      continue;
3239
3240    // Compensate for the use having MinOffset built into it.
3241    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3242
3243    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3244
3245    // Check that multiplying with each base register doesn't overflow.
3246    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3247      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3248      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3249        goto next;
3250    }
3251
3252    // Check that multiplying with the scaled register doesn't overflow.
3253    if (F.ScaledReg) {
3254      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3255      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3256        continue;
3257    }
3258
3259    // Check that multiplying with the unfolded offset doesn't overflow.
3260    if (F.UnfoldedOffset != 0) {
3261      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3262        continue;
3263      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3264      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3265        continue;
3266    }
3267
3268    // If we make it here and it's legal, add it.
3269    (void)InsertFormula(LU, LUIdx, F);
3270  next:;
3271  }
3272}
3273
3274/// GenerateScales - Generate stride factor reuse formulae by making use of
3275/// scaled-offset address modes, for example.
3276void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3277  // Determine the integer type for the base formula.
3278  Type *IntTy = Base.getType();
3279  if (!IntTy) return;
3280
3281  // If this Formula already has a scaled register, we can't add another one.
3282  if (Base.AM.Scale != 0) return;
3283
3284  // Check each interesting stride.
3285  for (SmallSetVector<int64_t, 8>::const_iterator
3286       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3287    int64_t Factor = *I;
3288
3289    Base.AM.Scale = Factor;
3290    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3291    // Check whether this scale is going to be legal.
3292    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3293                    LU.Kind, LU.AccessTy, TLI)) {
3294      // As a special-case, handle special out-of-loop Basic users specially.
3295      // TODO: Reconsider this special case.
3296      if (LU.Kind == LSRUse::Basic &&
3297          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3298                     LSRUse::Special, LU.AccessTy, TLI) &&
3299          LU.AllFixupsOutsideLoop)
3300        LU.Kind = LSRUse::Special;
3301      else
3302        continue;
3303    }
3304    // For an ICmpZero, negating a solitary base register won't lead to
3305    // new solutions.
3306    if (LU.Kind == LSRUse::ICmpZero &&
3307        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3308      continue;
3309    // For each addrec base reg, apply the scale, if possible.
3310    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3311      if (const SCEVAddRecExpr *AR =
3312            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3313        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3314        if (FactorS->isZero())
3315          continue;
3316        // Divide out the factor, ignoring high bits, since we'll be
3317        // scaling the value back up in the end.
3318        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3319          // TODO: This could be optimized to avoid all the copying.
3320          Formula F = Base;
3321          F.ScaledReg = Quotient;
3322          F.DeleteBaseReg(F.BaseRegs[i]);
3323          (void)InsertFormula(LU, LUIdx, F);
3324        }
3325      }
3326  }
3327}
3328
3329/// GenerateTruncates - Generate reuse formulae from different IV types.
3330void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3331  // This requires TargetLowering to tell us which truncates are free.
3332  if (!TLI) return;
3333
3334  // Don't bother truncating symbolic values.
3335  if (Base.AM.BaseGV) return;
3336
3337  // Determine the integer type for the base formula.
3338  Type *DstTy = Base.getType();
3339  if (!DstTy) return;
3340  DstTy = SE.getEffectiveSCEVType(DstTy);
3341
3342  for (SmallSetVector<Type *, 4>::const_iterator
3343       I = Types.begin(), E = Types.end(); I != E; ++I) {
3344    Type *SrcTy = *I;
3345    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3346      Formula F = Base;
3347
3348      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3349      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3350           JE = F.BaseRegs.end(); J != JE; ++J)
3351        *J = SE.getAnyExtendExpr(*J, SrcTy);
3352
3353      // TODO: This assumes we've done basic processing on all uses and
3354      // have an idea what the register usage is.
3355      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3356        continue;
3357
3358      (void)InsertFormula(LU, LUIdx, F);
3359    }
3360  }
3361}
3362
3363namespace {
3364
3365/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3366/// defer modifications so that the search phase doesn't have to worry about
3367/// the data structures moving underneath it.
3368struct WorkItem {
3369  size_t LUIdx;
3370  int64_t Imm;
3371  const SCEV *OrigReg;
3372
3373  WorkItem(size_t LI, int64_t I, const SCEV *R)
3374    : LUIdx(LI), Imm(I), OrigReg(R) {}
3375
3376  void print(raw_ostream &OS) const;
3377  void dump() const;
3378};
3379
3380}
3381
3382void WorkItem::print(raw_ostream &OS) const {
3383  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3384     << " , add offset " << Imm;
3385}
3386
3387void WorkItem::dump() const {
3388  print(errs()); errs() << '\n';
3389}
3390
3391/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3392/// distance apart and try to form reuse opportunities between them.
3393void LSRInstance::GenerateCrossUseConstantOffsets() {
3394  // Group the registers by their value without any added constant offset.
3395  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3396  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3397  RegMapTy Map;
3398  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3399  SmallVector<const SCEV *, 8> Sequence;
3400  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3401       I != E; ++I) {
3402    const SCEV *Reg = *I;
3403    int64_t Imm = ExtractImmediate(Reg, SE);
3404    std::pair<RegMapTy::iterator, bool> Pair =
3405      Map.insert(std::make_pair(Reg, ImmMapTy()));
3406    if (Pair.second)
3407      Sequence.push_back(Reg);
3408    Pair.first->second.insert(std::make_pair(Imm, *I));
3409    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3410  }
3411
3412  // Now examine each set of registers with the same base value. Build up
3413  // a list of work to do and do the work in a separate step so that we're
3414  // not adding formulae and register counts while we're searching.
3415  SmallVector<WorkItem, 32> WorkItems;
3416  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3417  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3418       E = Sequence.end(); I != E; ++I) {
3419    const SCEV *Reg = *I;
3420    const ImmMapTy &Imms = Map.find(Reg)->second;
3421
3422    // It's not worthwhile looking for reuse if there's only one offset.
3423    if (Imms.size() == 1)
3424      continue;
3425
3426    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3427          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3428               J != JE; ++J)
3429            dbgs() << ' ' << J->first;
3430          dbgs() << '\n');
3431
3432    // Examine each offset.
3433    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3434         J != JE; ++J) {
3435      const SCEV *OrigReg = J->second;
3436
3437      int64_t JImm = J->first;
3438      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3439
3440      if (!isa<SCEVConstant>(OrigReg) &&
3441          UsedByIndicesMap[Reg].count() == 1) {
3442        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3443        continue;
3444      }
3445
3446      // Conservatively examine offsets between this orig reg a few selected
3447      // other orig regs.
3448      ImmMapTy::const_iterator OtherImms[] = {
3449        Imms.begin(), prior(Imms.end()),
3450        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3451      };
3452      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3453        ImmMapTy::const_iterator M = OtherImms[i];
3454        if (M == J || M == JE) continue;
3455
3456        // Compute the difference between the two.
3457        int64_t Imm = (uint64_t)JImm - M->first;
3458        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3459             LUIdx = UsedByIndices.find_next(LUIdx))
3460          // Make a memo of this use, offset, and register tuple.
3461          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3462            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3463      }
3464    }
3465  }
3466
3467  Map.clear();
3468  Sequence.clear();
3469  UsedByIndicesMap.clear();
3470  UniqueItems.clear();
3471
3472  // Now iterate through the worklist and add new formulae.
3473  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3474       E = WorkItems.end(); I != E; ++I) {
3475    const WorkItem &WI = *I;
3476    size_t LUIdx = WI.LUIdx;
3477    LSRUse &LU = Uses[LUIdx];
3478    int64_t Imm = WI.Imm;
3479    const SCEV *OrigReg = WI.OrigReg;
3480
3481    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3482    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3483    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3484
3485    // TODO: Use a more targeted data structure.
3486    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3487      const Formula &F = LU.Formulae[L];
3488      // Use the immediate in the scaled register.
3489      if (F.ScaledReg == OrigReg) {
3490        int64_t Offs = (uint64_t)F.AM.BaseOffs +
3491                       Imm * (uint64_t)F.AM.Scale;
3492        // Don't create 50 + reg(-50).
3493        if (F.referencesReg(SE.getSCEV(
3494                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
3495          continue;
3496        Formula NewF = F;
3497        NewF.AM.BaseOffs = Offs;
3498        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3499                        LU.Kind, LU.AccessTy, TLI))
3500          continue;
3501        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3502
3503        // If the new scale is a constant in a register, and adding the constant
3504        // value to the immediate would produce a value closer to zero than the
3505        // immediate itself, then the formula isn't worthwhile.
3506        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3507          if (C->getValue()->isNegative() !=
3508                (NewF.AM.BaseOffs < 0) &&
3509              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
3510                .ule(abs64(NewF.AM.BaseOffs)))
3511            continue;
3512
3513        // OK, looks good.
3514        (void)InsertFormula(LU, LUIdx, NewF);
3515      } else {
3516        // Use the immediate in a base register.
3517        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3518          const SCEV *BaseReg = F.BaseRegs[N];
3519          if (BaseReg != OrigReg)
3520            continue;
3521          Formula NewF = F;
3522          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3523          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3524                          LU.Kind, LU.AccessTy, TLI)) {
3525            if (!TLI ||
3526                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3527              continue;
3528            NewF = F;
3529            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3530          }
3531          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3532
3533          // If the new formula has a constant in a register, and adding the
3534          // constant value to the immediate would produce a value closer to
3535          // zero than the immediate itself, then the formula isn't worthwhile.
3536          for (SmallVectorImpl<const SCEV *>::const_iterator
3537               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3538               J != JE; ++J)
3539            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3540              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3541                   abs64(NewF.AM.BaseOffs)) &&
3542                  (C->getValue()->getValue() +
3543                   NewF.AM.BaseOffs).countTrailingZeros() >=
3544                   CountTrailingZeros_64(NewF.AM.BaseOffs))
3545                goto skip_formula;
3546
3547          // Ok, looks good.
3548          (void)InsertFormula(LU, LUIdx, NewF);
3549          break;
3550        skip_formula:;
3551        }
3552      }
3553    }
3554  }
3555}
3556
3557/// GenerateAllReuseFormulae - Generate formulae for each use.
3558void
3559LSRInstance::GenerateAllReuseFormulae() {
3560  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3561  // queries are more precise.
3562  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3563    LSRUse &LU = Uses[LUIdx];
3564    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3565      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3566    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3567      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3568  }
3569  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3570    LSRUse &LU = Uses[LUIdx];
3571    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3572      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3573    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3574      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3575    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3576      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3577    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3578      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3579  }
3580  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3581    LSRUse &LU = Uses[LUIdx];
3582    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3583      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3584  }
3585
3586  GenerateCrossUseConstantOffsets();
3587
3588  DEBUG(dbgs() << "\n"
3589                  "After generating reuse formulae:\n";
3590        print_uses(dbgs()));
3591}
3592
3593/// If there are multiple formulae with the same set of registers used
3594/// by other uses, pick the best one and delete the others.
3595void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3596  DenseSet<const SCEV *> VisitedRegs;
3597  SmallPtrSet<const SCEV *, 16> Regs;
3598  SmallPtrSet<const SCEV *, 16> LoserRegs;
3599#ifndef NDEBUG
3600  bool ChangedFormulae = false;
3601#endif
3602
3603  // Collect the best formula for each unique set of shared registers. This
3604  // is reset for each use.
3605  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3606    BestFormulaeTy;
3607  BestFormulaeTy BestFormulae;
3608
3609  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3610    LSRUse &LU = Uses[LUIdx];
3611    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3612
3613    bool Any = false;
3614    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3615         FIdx != NumForms; ++FIdx) {
3616      Formula &F = LU.Formulae[FIdx];
3617
3618      // Some formulas are instant losers. For example, they may depend on
3619      // nonexistent AddRecs from other loops. These need to be filtered
3620      // immediately, otherwise heuristics could choose them over others leading
3621      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3622      // avoids the need to recompute this information across formulae using the
3623      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3624      // the corresponding bad register from the Regs set.
3625      Cost CostF;
3626      Regs.clear();
3627      CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3628                        &LoserRegs);
3629      if (CostF.isLoser()) {
3630        // During initial formula generation, undesirable formulae are generated
3631        // by uses within other loops that have some non-trivial address mode or
3632        // use the postinc form of the IV. LSR needs to provide these formulae
3633        // as the basis of rediscovering the desired formula that uses an AddRec
3634        // corresponding to the existing phi. Once all formulae have been
3635        // generated, these initial losers may be pruned.
3636        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3637              dbgs() << "\n");
3638      }
3639      else {
3640        SmallVector<const SCEV *, 2> Key;
3641        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3642               JE = F.BaseRegs.end(); J != JE; ++J) {
3643          const SCEV *Reg = *J;
3644          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3645            Key.push_back(Reg);
3646        }
3647        if (F.ScaledReg &&
3648            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3649          Key.push_back(F.ScaledReg);
3650        // Unstable sort by host order ok, because this is only used for
3651        // uniquifying.
3652        std::sort(Key.begin(), Key.end());
3653
3654        std::pair<BestFormulaeTy::const_iterator, bool> P =
3655          BestFormulae.insert(std::make_pair(Key, FIdx));
3656        if (P.second)
3657          continue;
3658
3659        Formula &Best = LU.Formulae[P.first->second];
3660
3661        Cost CostBest;
3662        Regs.clear();
3663        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
3664        if (CostF < CostBest)
3665          std::swap(F, Best);
3666        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3667              dbgs() << "\n"
3668                        "    in favor of formula "; Best.print(dbgs());
3669              dbgs() << '\n');
3670      }
3671#ifndef NDEBUG
3672      ChangedFormulae = true;
3673#endif
3674      LU.DeleteFormula(F);
3675      --FIdx;
3676      --NumForms;
3677      Any = true;
3678    }
3679
3680    // Now that we've filtered out some formulae, recompute the Regs set.
3681    if (Any)
3682      LU.RecomputeRegs(LUIdx, RegUses);
3683
3684    // Reset this to prepare for the next use.
3685    BestFormulae.clear();
3686  }
3687
3688  DEBUG(if (ChangedFormulae) {
3689          dbgs() << "\n"
3690                    "After filtering out undesirable candidates:\n";
3691          print_uses(dbgs());
3692        });
3693}
3694
3695// This is a rough guess that seems to work fairly well.
3696static const size_t ComplexityLimit = UINT16_MAX;
3697
3698/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3699/// solutions the solver might have to consider. It almost never considers
3700/// this many solutions because it prune the search space, but the pruning
3701/// isn't always sufficient.
3702size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3703  size_t Power = 1;
3704  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3705       E = Uses.end(); I != E; ++I) {
3706    size_t FSize = I->Formulae.size();
3707    if (FSize >= ComplexityLimit) {
3708      Power = ComplexityLimit;
3709      break;
3710    }
3711    Power *= FSize;
3712    if (Power >= ComplexityLimit)
3713      break;
3714  }
3715  return Power;
3716}
3717
3718/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3719/// of the registers of another formula, it won't help reduce register
3720/// pressure (though it may not necessarily hurt register pressure); remove
3721/// it to simplify the system.
3722void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3723  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3724    DEBUG(dbgs() << "The search space is too complex.\n");
3725
3726    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3727                    "which use a superset of registers used by other "
3728                    "formulae.\n");
3729
3730    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3731      LSRUse &LU = Uses[LUIdx];
3732      bool Any = false;
3733      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3734        Formula &F = LU.Formulae[i];
3735        // Look for a formula with a constant or GV in a register. If the use
3736        // also has a formula with that same value in an immediate field,
3737        // delete the one that uses a register.
3738        for (SmallVectorImpl<const SCEV *>::const_iterator
3739             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3740          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3741            Formula NewF = F;
3742            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3743            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3744                                (I - F.BaseRegs.begin()));
3745            if (LU.HasFormulaWithSameRegs(NewF)) {
3746              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3747              LU.DeleteFormula(F);
3748              --i;
3749              --e;
3750              Any = true;
3751              break;
3752            }
3753          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3754            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3755              if (!F.AM.BaseGV) {
3756                Formula NewF = F;
3757                NewF.AM.BaseGV = GV;
3758                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3759                                    (I - F.BaseRegs.begin()));
3760                if (LU.HasFormulaWithSameRegs(NewF)) {
3761                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3762                        dbgs() << '\n');
3763                  LU.DeleteFormula(F);
3764                  --i;
3765                  --e;
3766                  Any = true;
3767                  break;
3768                }
3769              }
3770          }
3771        }
3772      }
3773      if (Any)
3774        LU.RecomputeRegs(LUIdx, RegUses);
3775    }
3776
3777    DEBUG(dbgs() << "After pre-selection:\n";
3778          print_uses(dbgs()));
3779  }
3780}
3781
3782/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3783/// for expressions like A, A+1, A+2, etc., allocate a single register for
3784/// them.
3785void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3786  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3787    DEBUG(dbgs() << "The search space is too complex.\n");
3788
3789    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3790                    "separated by a constant offset will use the same "
3791                    "registers.\n");
3792
3793    // This is especially useful for unrolled loops.
3794
3795    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3796      LSRUse &LU = Uses[LUIdx];
3797      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3798           E = LU.Formulae.end(); I != E; ++I) {
3799        const Formula &F = *I;
3800        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3801          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3802            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3803                                   /*HasBaseReg=*/false,
3804                                   LU.Kind, LU.AccessTy)) {
3805              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3806                    dbgs() << '\n');
3807
3808              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3809
3810              // Update the relocs to reference the new use.
3811              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3812                   E = Fixups.end(); I != E; ++I) {
3813                LSRFixup &Fixup = *I;
3814                if (Fixup.LUIdx == LUIdx) {
3815                  Fixup.LUIdx = LUThatHas - &Uses.front();
3816                  Fixup.Offset += F.AM.BaseOffs;
3817                  // Add the new offset to LUThatHas' offset list.
3818                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3819                    LUThatHas->Offsets.push_back(Fixup.Offset);
3820                    if (Fixup.Offset > LUThatHas->MaxOffset)
3821                      LUThatHas->MaxOffset = Fixup.Offset;
3822                    if (Fixup.Offset < LUThatHas->MinOffset)
3823                      LUThatHas->MinOffset = Fixup.Offset;
3824                  }
3825                  DEBUG(dbgs() << "New fixup has offset "
3826                               << Fixup.Offset << '\n');
3827                }
3828                if (Fixup.LUIdx == NumUses-1)
3829                  Fixup.LUIdx = LUIdx;
3830              }
3831
3832              // Delete formulae from the new use which are no longer legal.
3833              bool Any = false;
3834              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3835                Formula &F = LUThatHas->Formulae[i];
3836                if (!isLegalUse(F.AM,
3837                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3838                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3839                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3840                        dbgs() << '\n');
3841                  LUThatHas->DeleteFormula(F);
3842                  --i;
3843                  --e;
3844                  Any = true;
3845                }
3846              }
3847              if (Any)
3848                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3849
3850              // Delete the old use.
3851              DeleteUse(LU, LUIdx);
3852              --LUIdx;
3853              --NumUses;
3854              break;
3855            }
3856          }
3857        }
3858      }
3859    }
3860
3861    DEBUG(dbgs() << "After pre-selection:\n";
3862          print_uses(dbgs()));
3863  }
3864}
3865
3866/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3867/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3868/// we've done more filtering, as it may be able to find more formulae to
3869/// eliminate.
3870void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3871  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3872    DEBUG(dbgs() << "The search space is too complex.\n");
3873
3874    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3875                    "undesirable dedicated registers.\n");
3876
3877    FilterOutUndesirableDedicatedRegisters();
3878
3879    DEBUG(dbgs() << "After pre-selection:\n";
3880          print_uses(dbgs()));
3881  }
3882}
3883
3884/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3885/// to be profitable, and then in any use which has any reference to that
3886/// register, delete all formulae which do not reference that register.
3887void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3888  // With all other options exhausted, loop until the system is simple
3889  // enough to handle.
3890  SmallPtrSet<const SCEV *, 4> Taken;
3891  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3892    // Ok, we have too many of formulae on our hands to conveniently handle.
3893    // Use a rough heuristic to thin out the list.
3894    DEBUG(dbgs() << "The search space is too complex.\n");
3895
3896    // Pick the register which is used by the most LSRUses, which is likely
3897    // to be a good reuse register candidate.
3898    const SCEV *Best = 0;
3899    unsigned BestNum = 0;
3900    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3901         I != E; ++I) {
3902      const SCEV *Reg = *I;
3903      if (Taken.count(Reg))
3904        continue;
3905      if (!Best)
3906        Best = Reg;
3907      else {
3908        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3909        if (Count > BestNum) {
3910          Best = Reg;
3911          BestNum = Count;
3912        }
3913      }
3914    }
3915
3916    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3917                 << " will yield profitable reuse.\n");
3918    Taken.insert(Best);
3919
3920    // In any use with formulae which references this register, delete formulae
3921    // which don't reference it.
3922    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3923      LSRUse &LU = Uses[LUIdx];
3924      if (!LU.Regs.count(Best)) continue;
3925
3926      bool Any = false;
3927      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3928        Formula &F = LU.Formulae[i];
3929        if (!F.referencesReg(Best)) {
3930          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3931          LU.DeleteFormula(F);
3932          --e;
3933          --i;
3934          Any = true;
3935          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3936          continue;
3937        }
3938      }
3939
3940      if (Any)
3941        LU.RecomputeRegs(LUIdx, RegUses);
3942    }
3943
3944    DEBUG(dbgs() << "After pre-selection:\n";
3945          print_uses(dbgs()));
3946  }
3947}
3948
3949/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3950/// formulae to choose from, use some rough heuristics to prune down the number
3951/// of formulae. This keeps the main solver from taking an extraordinary amount
3952/// of time in some worst-case scenarios.
3953void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3954  NarrowSearchSpaceByDetectingSupersets();
3955  NarrowSearchSpaceByCollapsingUnrolledCode();
3956  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3957  NarrowSearchSpaceByPickingWinnerRegs();
3958}
3959
3960/// SolveRecurse - This is the recursive solver.
3961void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3962                               Cost &SolutionCost,
3963                               SmallVectorImpl<const Formula *> &Workspace,
3964                               const Cost &CurCost,
3965                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3966                               DenseSet<const SCEV *> &VisitedRegs) const {
3967  // Some ideas:
3968  //  - prune more:
3969  //    - use more aggressive filtering
3970  //    - sort the formula so that the most profitable solutions are found first
3971  //    - sort the uses too
3972  //  - search faster:
3973  //    - don't compute a cost, and then compare. compare while computing a cost
3974  //      and bail early.
3975  //    - track register sets with SmallBitVector
3976
3977  const LSRUse &LU = Uses[Workspace.size()];
3978
3979  // If this use references any register that's already a part of the
3980  // in-progress solution, consider it a requirement that a formula must
3981  // reference that register in order to be considered. This prunes out
3982  // unprofitable searching.
3983  SmallSetVector<const SCEV *, 4> ReqRegs;
3984  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3985       E = CurRegs.end(); I != E; ++I)
3986    if (LU.Regs.count(*I))
3987      ReqRegs.insert(*I);
3988
3989  bool AnySatisfiedReqRegs = false;
3990  SmallPtrSet<const SCEV *, 16> NewRegs;
3991  Cost NewCost;
3992retry:
3993  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3994       E = LU.Formulae.end(); I != E; ++I) {
3995    const Formula &F = *I;
3996
3997    // Ignore formulae which do not use any of the required registers.
3998    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3999         JE = ReqRegs.end(); J != JE; ++J) {
4000      const SCEV *Reg = *J;
4001      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
4002          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
4003          F.BaseRegs.end())
4004        goto skip;
4005    }
4006    AnySatisfiedReqRegs = true;
4007
4008    // Evaluate the cost of the current formula. If it's already worse than
4009    // the current best, prune the search at that point.
4010    NewCost = CurCost;
4011    NewRegs = CurRegs;
4012    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
4013    if (NewCost < SolutionCost) {
4014      Workspace.push_back(&F);
4015      if (Workspace.size() != Uses.size()) {
4016        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4017                     NewRegs, VisitedRegs);
4018        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4019          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4020      } else {
4021        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4022              dbgs() << ".\n Regs:";
4023              for (SmallPtrSet<const SCEV *, 16>::const_iterator
4024                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4025                dbgs() << ' ' << **I;
4026              dbgs() << '\n');
4027
4028        SolutionCost = NewCost;
4029        Solution = Workspace;
4030      }
4031      Workspace.pop_back();
4032    }
4033  skip:;
4034  }
4035
4036  if (!EnableRetry && !AnySatisfiedReqRegs)
4037    return;
4038
4039  // If none of the formulae had all of the required registers, relax the
4040  // constraint so that we don't exclude all formulae.
4041  if (!AnySatisfiedReqRegs) {
4042    assert(!ReqRegs.empty() && "Solver failed even without required registers");
4043    ReqRegs.clear();
4044    goto retry;
4045  }
4046}
4047
4048/// Solve - Choose one formula from each use. Return the results in the given
4049/// Solution vector.
4050void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4051  SmallVector<const Formula *, 8> Workspace;
4052  Cost SolutionCost;
4053  SolutionCost.Loose();
4054  Cost CurCost;
4055  SmallPtrSet<const SCEV *, 16> CurRegs;
4056  DenseSet<const SCEV *> VisitedRegs;
4057  Workspace.reserve(Uses.size());
4058
4059  // SolveRecurse does all the work.
4060  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4061               CurRegs, VisitedRegs);
4062  if (Solution.empty()) {
4063    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4064    return;
4065  }
4066
4067  // Ok, we've now made all our decisions.
4068  DEBUG(dbgs() << "\n"
4069                  "The chosen solution requires "; SolutionCost.print(dbgs());
4070        dbgs() << ":\n";
4071        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4072          dbgs() << "  ";
4073          Uses[i].print(dbgs());
4074          dbgs() << "\n"
4075                    "    ";
4076          Solution[i]->print(dbgs());
4077          dbgs() << '\n';
4078        });
4079
4080  assert(Solution.size() == Uses.size() && "Malformed solution!");
4081}
4082
4083/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4084/// the dominator tree far as we can go while still being dominated by the
4085/// input positions. This helps canonicalize the insert position, which
4086/// encourages sharing.
4087BasicBlock::iterator
4088LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4089                                 const SmallVectorImpl<Instruction *> &Inputs)
4090                                                                         const {
4091  for (;;) {
4092    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4093    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4094
4095    BasicBlock *IDom;
4096    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4097      if (!Rung) return IP;
4098      Rung = Rung->getIDom();
4099      if (!Rung) return IP;
4100      IDom = Rung->getBlock();
4101
4102      // Don't climb into a loop though.
4103      const Loop *IDomLoop = LI.getLoopFor(IDom);
4104      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4105      if (IDomDepth <= IPLoopDepth &&
4106          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4107        break;
4108    }
4109
4110    bool AllDominate = true;
4111    Instruction *BetterPos = 0;
4112    Instruction *Tentative = IDom->getTerminator();
4113    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4114         E = Inputs.end(); I != E; ++I) {
4115      Instruction *Inst = *I;
4116      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4117        AllDominate = false;
4118        break;
4119      }
4120      // Attempt to find an insert position in the middle of the block,
4121      // instead of at the end, so that it can be used for other expansions.
4122      if (IDom == Inst->getParent() &&
4123          (!BetterPos || DT.dominates(BetterPos, Inst)))
4124        BetterPos = llvm::next(BasicBlock::iterator(Inst));
4125    }
4126    if (!AllDominate)
4127      break;
4128    if (BetterPos)
4129      IP = BetterPos;
4130    else
4131      IP = Tentative;
4132  }
4133
4134  return IP;
4135}
4136
4137/// AdjustInsertPositionForExpand - Determine an input position which will be
4138/// dominated by the operands and which will dominate the result.
4139BasicBlock::iterator
4140LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4141                                           const LSRFixup &LF,
4142                                           const LSRUse &LU,
4143                                           SCEVExpander &Rewriter) const {
4144  // Collect some instructions which must be dominated by the
4145  // expanding replacement. These must be dominated by any operands that
4146  // will be required in the expansion.
4147  SmallVector<Instruction *, 4> Inputs;
4148  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4149    Inputs.push_back(I);
4150  if (LU.Kind == LSRUse::ICmpZero)
4151    if (Instruction *I =
4152          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4153      Inputs.push_back(I);
4154  if (LF.PostIncLoops.count(L)) {
4155    if (LF.isUseFullyOutsideLoop(L))
4156      Inputs.push_back(L->getLoopLatch()->getTerminator());
4157    else
4158      Inputs.push_back(IVIncInsertPos);
4159  }
4160  // The expansion must also be dominated by the increment positions of any
4161  // loops it for which it is using post-inc mode.
4162  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4163       E = LF.PostIncLoops.end(); I != E; ++I) {
4164    const Loop *PIL = *I;
4165    if (PIL == L) continue;
4166
4167    // Be dominated by the loop exit.
4168    SmallVector<BasicBlock *, 4> ExitingBlocks;
4169    PIL->getExitingBlocks(ExitingBlocks);
4170    if (!ExitingBlocks.empty()) {
4171      BasicBlock *BB = ExitingBlocks[0];
4172      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4173        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4174      Inputs.push_back(BB->getTerminator());
4175    }
4176  }
4177
4178  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4179         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4180         "Insertion point must be a normal instruction");
4181
4182  // Then, climb up the immediate dominator tree as far as we can go while
4183  // still being dominated by the input positions.
4184  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4185
4186  // Don't insert instructions before PHI nodes.
4187  while (isa<PHINode>(IP)) ++IP;
4188
4189  // Ignore landingpad instructions.
4190  while (isa<LandingPadInst>(IP)) ++IP;
4191
4192  // Ignore debug intrinsics.
4193  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4194
4195  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4196  // IP consistent across expansions and allows the previously inserted
4197  // instructions to be reused by subsequent expansion.
4198  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4199
4200  return IP;
4201}
4202
4203/// Expand - Emit instructions for the leading candidate expression for this
4204/// LSRUse (this is called "expanding").
4205Value *LSRInstance::Expand(const LSRFixup &LF,
4206                           const Formula &F,
4207                           BasicBlock::iterator IP,
4208                           SCEVExpander &Rewriter,
4209                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4210  const LSRUse &LU = Uses[LF.LUIdx];
4211
4212  // Determine an input position which will be dominated by the operands and
4213  // which will dominate the result.
4214  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4215
4216  // Inform the Rewriter if we have a post-increment use, so that it can
4217  // perform an advantageous expansion.
4218  Rewriter.setPostInc(LF.PostIncLoops);
4219
4220  // This is the type that the user actually needs.
4221  Type *OpTy = LF.OperandValToReplace->getType();
4222  // This will be the type that we'll initially expand to.
4223  Type *Ty = F.getType();
4224  if (!Ty)
4225    // No type known; just expand directly to the ultimate type.
4226    Ty = OpTy;
4227  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4228    // Expand directly to the ultimate type if it's the right size.
4229    Ty = OpTy;
4230  // This is the type to do integer arithmetic in.
4231  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4232
4233  // Build up a list of operands to add together to form the full base.
4234  SmallVector<const SCEV *, 8> Ops;
4235
4236  // Expand the BaseRegs portion.
4237  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4238       E = F.BaseRegs.end(); I != E; ++I) {
4239    const SCEV *Reg = *I;
4240    assert(!Reg->isZero() && "Zero allocated in a base register!");
4241
4242    // If we're expanding for a post-inc user, make the post-inc adjustment.
4243    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4244    Reg = TransformForPostIncUse(Denormalize, Reg,
4245                                 LF.UserInst, LF.OperandValToReplace,
4246                                 Loops, SE, DT);
4247
4248    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4249  }
4250
4251  // Flush the operand list to suppress SCEVExpander hoisting.
4252  if (!Ops.empty()) {
4253    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4254    Ops.clear();
4255    Ops.push_back(SE.getUnknown(FullV));
4256  }
4257
4258  // Expand the ScaledReg portion.
4259  Value *ICmpScaledV = 0;
4260  if (F.AM.Scale != 0) {
4261    const SCEV *ScaledS = F.ScaledReg;
4262
4263    // If we're expanding for a post-inc user, make the post-inc adjustment.
4264    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4265    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4266                                     LF.UserInst, LF.OperandValToReplace,
4267                                     Loops, SE, DT);
4268
4269    if (LU.Kind == LSRUse::ICmpZero) {
4270      // An interesting way of "folding" with an icmp is to use a negated
4271      // scale, which we'll implement by inserting it into the other operand
4272      // of the icmp.
4273      assert(F.AM.Scale == -1 &&
4274             "The only scale supported by ICmpZero uses is -1!");
4275      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4276    } else {
4277      // Otherwise just expand the scaled register and an explicit scale,
4278      // which is expected to be matched as part of the address.
4279      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4280      ScaledS = SE.getMulExpr(ScaledS,
4281                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
4282      Ops.push_back(ScaledS);
4283
4284      // Flush the operand list to suppress SCEVExpander hoisting.
4285      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4286      Ops.clear();
4287      Ops.push_back(SE.getUnknown(FullV));
4288    }
4289  }
4290
4291  // Expand the GV portion.
4292  if (F.AM.BaseGV) {
4293    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4294
4295    // Flush the operand list to suppress SCEVExpander hoisting.
4296    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4297    Ops.clear();
4298    Ops.push_back(SE.getUnknown(FullV));
4299  }
4300
4301  // Expand the immediate portion.
4302  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4303  if (Offset != 0) {
4304    if (LU.Kind == LSRUse::ICmpZero) {
4305      // The other interesting way of "folding" with an ICmpZero is to use a
4306      // negated immediate.
4307      if (!ICmpScaledV)
4308        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4309      else {
4310        Ops.push_back(SE.getUnknown(ICmpScaledV));
4311        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4312      }
4313    } else {
4314      // Just add the immediate values. These again are expected to be matched
4315      // as part of the address.
4316      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4317    }
4318  }
4319
4320  // Expand the unfolded offset portion.
4321  int64_t UnfoldedOffset = F.UnfoldedOffset;
4322  if (UnfoldedOffset != 0) {
4323    // Just add the immediate values.
4324    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4325                                                       UnfoldedOffset)));
4326  }
4327
4328  // Emit instructions summing all the operands.
4329  const SCEV *FullS = Ops.empty() ?
4330                      SE.getConstant(IntTy, 0) :
4331                      SE.getAddExpr(Ops);
4332  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4333
4334  // We're done expanding now, so reset the rewriter.
4335  Rewriter.clearPostInc();
4336
4337  // An ICmpZero Formula represents an ICmp which we're handling as a
4338  // comparison against zero. Now that we've expanded an expression for that
4339  // form, update the ICmp's other operand.
4340  if (LU.Kind == LSRUse::ICmpZero) {
4341    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4342    DeadInsts.push_back(CI->getOperand(1));
4343    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4344                           "a scale at the same time!");
4345    if (F.AM.Scale == -1) {
4346      if (ICmpScaledV->getType() != OpTy) {
4347        Instruction *Cast =
4348          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4349                                                   OpTy, false),
4350                           ICmpScaledV, OpTy, "tmp", CI);
4351        ICmpScaledV = Cast;
4352      }
4353      CI->setOperand(1, ICmpScaledV);
4354    } else {
4355      assert(F.AM.Scale == 0 &&
4356             "ICmp does not support folding a global value and "
4357             "a scale at the same time!");
4358      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4359                                           -(uint64_t)Offset);
4360      if (C->getType() != OpTy)
4361        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4362                                                          OpTy, false),
4363                                  C, OpTy);
4364
4365      CI->setOperand(1, C);
4366    }
4367  }
4368
4369  return FullV;
4370}
4371
4372/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4373/// of their operands effectively happens in their predecessor blocks, so the
4374/// expression may need to be expanded in multiple places.
4375void LSRInstance::RewriteForPHI(PHINode *PN,
4376                                const LSRFixup &LF,
4377                                const Formula &F,
4378                                SCEVExpander &Rewriter,
4379                                SmallVectorImpl<WeakVH> &DeadInsts,
4380                                Pass *P) const {
4381  DenseMap<BasicBlock *, Value *> Inserted;
4382  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4383    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4384      BasicBlock *BB = PN->getIncomingBlock(i);
4385
4386      // If this is a critical edge, split the edge so that we do not insert
4387      // the code on all predecessor/successor paths.  We do this unless this
4388      // is the canonical backedge for this loop, which complicates post-inc
4389      // users.
4390      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4391          !isa<IndirectBrInst>(BB->getTerminator())) {
4392        BasicBlock *Parent = PN->getParent();
4393        Loop *PNLoop = LI.getLoopFor(Parent);
4394        if (!PNLoop || Parent != PNLoop->getHeader()) {
4395          // Split the critical edge.
4396          BasicBlock *NewBB = 0;
4397          if (!Parent->isLandingPad()) {
4398            NewBB = SplitCriticalEdge(BB, Parent, P,
4399                                      /*MergeIdenticalEdges=*/true,
4400                                      /*DontDeleteUselessPhis=*/true);
4401          } else {
4402            SmallVector<BasicBlock*, 2> NewBBs;
4403            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4404            NewBB = NewBBs[0];
4405          }
4406
4407          // If PN is outside of the loop and BB is in the loop, we want to
4408          // move the block to be immediately before the PHI block, not
4409          // immediately after BB.
4410          if (L->contains(BB) && !L->contains(PN))
4411            NewBB->moveBefore(PN->getParent());
4412
4413          // Splitting the edge can reduce the number of PHI entries we have.
4414          e = PN->getNumIncomingValues();
4415          BB = NewBB;
4416          i = PN->getBasicBlockIndex(BB);
4417        }
4418      }
4419
4420      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4421        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4422      if (!Pair.second)
4423        PN->setIncomingValue(i, Pair.first->second);
4424      else {
4425        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4426
4427        // If this is reuse-by-noop-cast, insert the noop cast.
4428        Type *OpTy = LF.OperandValToReplace->getType();
4429        if (FullV->getType() != OpTy)
4430          FullV =
4431            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4432                                                     OpTy, false),
4433                             FullV, LF.OperandValToReplace->getType(),
4434                             "tmp", BB->getTerminator());
4435
4436        PN->setIncomingValue(i, FullV);
4437        Pair.first->second = FullV;
4438      }
4439    }
4440}
4441
4442/// Rewrite - Emit instructions for the leading candidate expression for this
4443/// LSRUse (this is called "expanding"), and update the UserInst to reference
4444/// the newly expanded value.
4445void LSRInstance::Rewrite(const LSRFixup &LF,
4446                          const Formula &F,
4447                          SCEVExpander &Rewriter,
4448                          SmallVectorImpl<WeakVH> &DeadInsts,
4449                          Pass *P) const {
4450  // First, find an insertion point that dominates UserInst. For PHI nodes,
4451  // find the nearest block which dominates all the relevant uses.
4452  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4453    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4454  } else {
4455    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4456
4457    // If this is reuse-by-noop-cast, insert the noop cast.
4458    Type *OpTy = LF.OperandValToReplace->getType();
4459    if (FullV->getType() != OpTy) {
4460      Instruction *Cast =
4461        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4462                         FullV, OpTy, "tmp", LF.UserInst);
4463      FullV = Cast;
4464    }
4465
4466    // Update the user. ICmpZero is handled specially here (for now) because
4467    // Expand may have updated one of the operands of the icmp already, and
4468    // its new value may happen to be equal to LF.OperandValToReplace, in
4469    // which case doing replaceUsesOfWith leads to replacing both operands
4470    // with the same value. TODO: Reorganize this.
4471    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4472      LF.UserInst->setOperand(0, FullV);
4473    else
4474      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4475  }
4476
4477  DeadInsts.push_back(LF.OperandValToReplace);
4478}
4479
4480/// ImplementSolution - Rewrite all the fixup locations with new values,
4481/// following the chosen solution.
4482void
4483LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4484                               Pass *P) {
4485  // Keep track of instructions we may have made dead, so that
4486  // we can remove them after we are done working.
4487  SmallVector<WeakVH, 16> DeadInsts;
4488
4489  SCEVExpander Rewriter(SE, "lsr");
4490#ifndef NDEBUG
4491  Rewriter.setDebugType(DEBUG_TYPE);
4492#endif
4493  Rewriter.disableCanonicalMode();
4494  Rewriter.enableLSRMode();
4495  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4496
4497  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4498  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4499         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4500    if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
4501      Rewriter.setChainedPhi(PN);
4502  }
4503
4504  // Expand the new value definitions and update the users.
4505  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4506       E = Fixups.end(); I != E; ++I) {
4507    const LSRFixup &Fixup = *I;
4508
4509    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4510
4511    Changed = true;
4512  }
4513
4514  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4515         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4516    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4517    Changed = true;
4518  }
4519  // Clean up after ourselves. This must be done before deleting any
4520  // instructions.
4521  Rewriter.clear();
4522
4523  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4524}
4525
4526LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4527  : IU(P->getAnalysis<IVUsers>()),
4528    SE(P->getAnalysis<ScalarEvolution>()),
4529    DT(P->getAnalysis<DominatorTree>()),
4530    LI(P->getAnalysis<LoopInfo>()),
4531    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
4532
4533  // If LoopSimplify form is not available, stay out of trouble.
4534  if (!L->isLoopSimplifyForm())
4535    return;
4536
4537  // All dominating loops must have preheaders, or SCEVExpander may not be able
4538  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4539  //
4540  // FIXME: This is a little absurd. I think LoopSimplify should be taught
4541  // to create a preheader under any circumstance.
4542  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4543       Rung; Rung = Rung->getIDom()) {
4544    BasicBlock *BB = Rung->getBlock();
4545    const Loop *DomLoop = LI.getLoopFor(BB);
4546    if (DomLoop && DomLoop->getHeader() == BB) {
4547      if (!DomLoop->getLoopPreheader())
4548        return;
4549    }
4550  }
4551  // If there's no interesting work to be done, bail early.
4552  if (IU.empty()) return;
4553
4554  DEBUG(dbgs() << "\nLSR on loop ";
4555        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4556        dbgs() << ":\n");
4557
4558  // First, perform some low-level loop optimizations.
4559  OptimizeShadowIV();
4560  OptimizeLoopTermCond();
4561
4562  // If loop preparation eliminates all interesting IV users, bail.
4563  if (IU.empty()) return;
4564
4565  // Skip nested loops until we can model them better with formulae.
4566  if (!EnableNested && !L->empty()) {
4567    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4568    return;
4569  }
4570
4571  // Start collecting data and preparing for the solver.
4572  CollectChains();
4573  CollectInterestingTypesAndFactors();
4574  CollectFixupsAndInitialFormulae();
4575  CollectLoopInvariantFixupsAndFormulae();
4576
4577  assert(!Uses.empty() && "IVUsers reported at least one use");
4578  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4579        print_uses(dbgs()));
4580
4581  // Now use the reuse data to generate a bunch of interesting ways
4582  // to formulate the values needed for the uses.
4583  GenerateAllReuseFormulae();
4584
4585  FilterOutUndesirableDedicatedRegisters();
4586  NarrowSearchSpaceUsingHeuristics();
4587
4588  SmallVector<const Formula *, 8> Solution;
4589  Solve(Solution);
4590
4591  // Release memory that is no longer needed.
4592  Factors.clear();
4593  Types.clear();
4594  RegUses.clear();
4595
4596  if (Solution.empty())
4597    return;
4598
4599#ifndef NDEBUG
4600  // Formulae should be legal.
4601  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4602       E = Uses.end(); I != E; ++I) {
4603     const LSRUse &LU = *I;
4604     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4605          JE = LU.Formulae.end(); J != JE; ++J)
4606        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4607                          LU.Kind, LU.AccessTy, TLI) &&
4608               "Illegal formula generated!");
4609  };
4610#endif
4611
4612  // Now that we've decided what we want, make it so.
4613  ImplementSolution(Solution, P);
4614}
4615
4616void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4617  if (Factors.empty() && Types.empty()) return;
4618
4619  OS << "LSR has identified the following interesting factors and types: ";
4620  bool First = true;
4621
4622  for (SmallSetVector<int64_t, 8>::const_iterator
4623       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4624    if (!First) OS << ", ";
4625    First = false;
4626    OS << '*' << *I;
4627  }
4628
4629  for (SmallSetVector<Type *, 4>::const_iterator
4630       I = Types.begin(), E = Types.end(); I != E; ++I) {
4631    if (!First) OS << ", ";
4632    First = false;
4633    OS << '(' << **I << ')';
4634  }
4635  OS << '\n';
4636}
4637
4638void LSRInstance::print_fixups(raw_ostream &OS) const {
4639  OS << "LSR is examining the following fixup sites:\n";
4640  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4641       E = Fixups.end(); I != E; ++I) {
4642    dbgs() << "  ";
4643    I->print(OS);
4644    OS << '\n';
4645  }
4646}
4647
4648void LSRInstance::print_uses(raw_ostream &OS) const {
4649  OS << "LSR is examining the following uses:\n";
4650  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4651       E = Uses.end(); I != E; ++I) {
4652    const LSRUse &LU = *I;
4653    dbgs() << "  ";
4654    LU.print(OS);
4655    OS << '\n';
4656    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4657         JE = LU.Formulae.end(); J != JE; ++J) {
4658      OS << "    ";
4659      J->print(OS);
4660      OS << '\n';
4661    }
4662  }
4663}
4664
4665void LSRInstance::print(raw_ostream &OS) const {
4666  print_factors_and_types(OS);
4667  print_fixups(OS);
4668  print_uses(OS);
4669}
4670
4671void LSRInstance::dump() const {
4672  print(errs()); errs() << '\n';
4673}
4674
4675namespace {
4676
4677class LoopStrengthReduce : public LoopPass {
4678  /// TLI - Keep a pointer of a TargetLowering to consult for determining
4679  /// transformation profitability.
4680  const TargetLowering *const TLI;
4681
4682public:
4683  static char ID; // Pass ID, replacement for typeid
4684  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4685
4686private:
4687  bool runOnLoop(Loop *L, LPPassManager &LPM);
4688  void getAnalysisUsage(AnalysisUsage &AU) const;
4689};
4690
4691}
4692
4693char LoopStrengthReduce::ID = 0;
4694INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4695                "Loop Strength Reduction", false, false)
4696INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4697INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4698INITIALIZE_PASS_DEPENDENCY(IVUsers)
4699INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4700INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4701INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4702                "Loop Strength Reduction", false, false)
4703
4704
4705Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4706  return new LoopStrengthReduce(TLI);
4707}
4708
4709LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
4710  : LoopPass(ID), TLI(tli) {
4711    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4712  }
4713
4714void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4715  // We split critical edges, so we change the CFG.  However, we do update
4716  // many analyses if they are around.
4717  AU.addPreservedID(LoopSimplifyID);
4718
4719  AU.addRequired<LoopInfo>();
4720  AU.addPreserved<LoopInfo>();
4721  AU.addRequiredID(LoopSimplifyID);
4722  AU.addRequired<DominatorTree>();
4723  AU.addPreserved<DominatorTree>();
4724  AU.addRequired<ScalarEvolution>();
4725  AU.addPreserved<ScalarEvolution>();
4726  // Requiring LoopSimplify a second time here prevents IVUsers from running
4727  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4728  AU.addRequiredID(LoopSimplifyID);
4729  AU.addRequired<IVUsers>();
4730  AU.addPreserved<IVUsers>();
4731}
4732
4733bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4734  bool Changed = false;
4735
4736  // Run the main LSR transformation.
4737  Changed |= LSRInstance(TLI, L, this).getChanged();
4738
4739  // Remove any extra phis created by processing inner loops.
4740  Changed |= DeleteDeadPHIs(L->getHeader());
4741  if (EnablePhiElim) {
4742    SmallVector<WeakVH, 16> DeadInsts;
4743    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4744#ifndef NDEBUG
4745    Rewriter.setDebugType(DEBUG_TYPE);
4746#endif
4747    unsigned numFolded = Rewriter.
4748      replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4749    if (numFolded) {
4750      Changed = true;
4751      DeleteTriviallyDeadInstructions(DeadInsts);
4752      DeleteDeadPHIs(L->getHeader());
4753    }
4754  }
4755  return Changed;
4756}
4757