LoopStrengthReduce.cpp revision 4da49122f3f3c8da68a52723d846b88c72166a68
1//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a strength reduction on array references inside loops that
11// have as one or more of their components the loop induction variable.  This is
12// accomplished by creating a new Value to hold the initial value of the array
13// access for the first iteration, and then creating a new GEP instruction in
14// the loop to increment the value by the appropriate amount.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "loop-reduce"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Instructions.h"
22#include "llvm/Type.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Target/TargetLowering.h"
36#include <algorithm>
37#include <set>
38using namespace llvm;
39
40namespace {
41  Statistic NumReduced ("loop-reduce", "Number of GEPs strength reduced");
42  Statistic NumInserted("loop-reduce", "Number of PHIs inserted");
43  Statistic NumVariable("loop-reduce","Number of PHIs with variable strides");
44
45  /// IVStrideUse - Keep track of one use of a strided induction variable, where
46  /// the stride is stored externally.  The Offset member keeps track of the
47  /// offset from the IV, User is the actual user of the operand, and 'Operand'
48  /// is the operand # of the User that is the use.
49  struct IVStrideUse {
50    SCEVHandle Offset;
51    Instruction *User;
52    Value *OperandValToReplace;
53
54    // isUseOfPostIncrementedValue - True if this should use the
55    // post-incremented version of this IV, not the preincremented version.
56    // This can only be set in special cases, such as the terminating setcc
57    // instruction for a loop or uses dominated by the loop.
58    bool isUseOfPostIncrementedValue;
59
60    IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
61      : Offset(Offs), User(U), OperandValToReplace(O),
62        isUseOfPostIncrementedValue(false) {}
63  };
64
65  /// IVUsersOfOneStride - This structure keeps track of all instructions that
66  /// have an operand that is based on the trip count multiplied by some stride.
67  /// The stride for all of these users is common and kept external to this
68  /// structure.
69  struct IVUsersOfOneStride {
70    /// Users - Keep track of all of the users of this stride as well as the
71    /// initial value and the operand that uses the IV.
72    std::vector<IVStrideUse> Users;
73
74    void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
75      Users.push_back(IVStrideUse(Offset, User, Operand));
76    }
77  };
78
79  /// IVInfo - This structure keeps track of one IV expression inserted during
80  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
81  /// well as the PHI node and increment value created for rewrite.
82  struct IVExpr {
83    SCEVHandle  Stride;
84    SCEVHandle  Base;
85    PHINode    *PHI;
86    Value      *IncV;
87
88    IVExpr()
89      : Stride(SCEVUnknown::getIntegerSCEV(0, Type::UIntTy)),
90        Base  (SCEVUnknown::getIntegerSCEV(0, Type::UIntTy)) {}
91    IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi,
92           Value *incv)
93      : Stride(stride), Base(base), PHI(phi), IncV(incv) {}
94  };
95
96  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
97  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
98  struct IVsOfOneStride {
99    std::vector<IVExpr> IVs;
100
101    void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI,
102               Value *IncV) {
103      IVs.push_back(IVExpr(Stride, Base, PHI, IncV));
104    }
105  };
106
107  class VISIBILITY_HIDDEN LoopStrengthReduce : public FunctionPass {
108    LoopInfo *LI;
109    ETForest *EF;
110    ScalarEvolution *SE;
111    const TargetData *TD;
112    const Type *UIntPtrTy;
113    bool Changed;
114
115    /// IVUsesByStride - Keep track of all uses of induction variables that we
116    /// are interested in.  The key of the map is the stride of the access.
117    std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
118
119    /// IVsByStride - Keep track of all IVs that have been inserted for a
120    /// particular stride.
121    std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
122
123    /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
124    /// We use this to iterate over the IVUsesByStride collection without being
125    /// dependent on random ordering of pointers in the process.
126    std::vector<SCEVHandle> StrideOrder;
127
128    /// CastedValues - As we need to cast values to uintptr_t, this keeps track
129    /// of the casted version of each value.  This is accessed by
130    /// getCastedVersionOf.
131    std::map<Value*, Value*> CastedPointers;
132
133    /// DeadInsts - Keep track of instructions we may have made dead, so that
134    /// we can remove them after we are done working.
135    std::set<Instruction*> DeadInsts;
136
137    /// TLI - Keep a pointer of a TargetLowering to consult for determining
138    /// transformation profitability.
139    const TargetLowering *TLI;
140
141  public:
142    LoopStrengthReduce(const TargetLowering *tli = NULL)
143      : TLI(tli) {
144    }
145
146    virtual bool runOnFunction(Function &) {
147      LI = &getAnalysis<LoopInfo>();
148      EF = &getAnalysis<ETForest>();
149      SE = &getAnalysis<ScalarEvolution>();
150      TD = &getAnalysis<TargetData>();
151      UIntPtrTy = TD->getIntPtrType();
152      Changed = false;
153
154      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
155        runOnLoop(*I);
156
157      return Changed;
158    }
159
160    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
161      // We split critical edges, so we change the CFG.  However, we do update
162      // many analyses if they are around.
163      AU.addPreservedID(LoopSimplifyID);
164      AU.addPreserved<LoopInfo>();
165      AU.addPreserved<DominatorSet>();
166      AU.addPreserved<ETForest>();
167      AU.addPreserved<ImmediateDominators>();
168      AU.addPreserved<DominanceFrontier>();
169      AU.addPreserved<DominatorTree>();
170
171      AU.addRequiredID(LoopSimplifyID);
172      AU.addRequired<LoopInfo>();
173      AU.addRequired<ETForest>();
174      AU.addRequired<TargetData>();
175      AU.addRequired<ScalarEvolution>();
176    }
177
178    /// getCastedVersionOf - Return the specified value casted to uintptr_t.
179    ///
180    Value *getCastedVersionOf(Value *V);
181private:
182    void runOnLoop(Loop *L);
183    bool AddUsersIfInteresting(Instruction *I, Loop *L,
184                               std::set<Instruction*> &Processed);
185    SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L);
186
187    void OptimizeIndvars(Loop *L);
188
189    unsigned CheckForIVReuse(const SCEVHandle&, IVExpr&, const Type*);
190
191    void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
192                                      IVUsersOfOneStride &Uses,
193                                      Loop *L, bool isOnlyStride);
194    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
195  };
196  RegisterPass<LoopStrengthReduce> X("loop-reduce", "Loop Strength Reduction");
197}
198
199FunctionPass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
200  return new LoopStrengthReduce(TLI);
201}
202
203/// getCastedVersionOf - Return the specified value casted to uintptr_t. This
204/// assumes that the Value* V is of integer or pointer type only.
205///
206Value *LoopStrengthReduce::getCastedVersionOf(Value *V) {
207  if (V->getType() == UIntPtrTy) return V;
208  if (Constant *CB = dyn_cast<Constant>(V))
209    if (CB->getType()->isInteger())
210      return ConstantExpr::getIntegerCast(CB, UIntPtrTy,
211                                          CB->getType()->isSigned());
212    else
213      return ConstantExpr::getPtrToInt(CB, UIntPtrTy);
214
215  Value *&New = CastedPointers[V];
216  if (New) return New;
217
218  New = SCEVExpander::InsertCastOfTo(V, UIntPtrTy);
219  DeadInsts.insert(cast<Instruction>(New));
220  return New;
221}
222
223
224/// DeleteTriviallyDeadInstructions - If any of the instructions is the
225/// specified set are trivially dead, delete them and see if this makes any of
226/// their operands subsequently dead.
227void LoopStrengthReduce::
228DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
229  while (!Insts.empty()) {
230    Instruction *I = *Insts.begin();
231    Insts.erase(Insts.begin());
232    if (isInstructionTriviallyDead(I)) {
233      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
234        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
235          Insts.insert(U);
236      SE->deleteInstructionFromRecords(I);
237      I->eraseFromParent();
238      Changed = true;
239    }
240  }
241}
242
243
244/// GetExpressionSCEV - Compute and return the SCEV for the specified
245/// instruction.
246SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) {
247  // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
248  // If this is a GEP that SE doesn't know about, compute it now and insert it.
249  // If this is not a GEP, or if we have already done this computation, just let
250  // SE figure it out.
251  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
252  if (!GEP || SE->hasSCEV(GEP))
253    return SE->getSCEV(Exp);
254
255  // Analyze all of the subscripts of this getelementptr instruction, looking
256  // for uses that are determined by the trip count of L.  First, skip all
257  // operands the are not dependent on the IV.
258
259  // Build up the base expression.  Insert an LLVM cast of the pointer to
260  // uintptr_t first.
261  SCEVHandle GEPVal = SCEVUnknown::get(getCastedVersionOf(GEP->getOperand(0)));
262
263  gep_type_iterator GTI = gep_type_begin(GEP);
264
265  for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
266    // If this is a use of a recurrence that we can analyze, and it comes before
267    // Op does in the GEP operand list, we will handle this when we process this
268    // operand.
269    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
270      const StructLayout *SL = TD->getStructLayout(STy);
271      unsigned Idx = cast<ConstantInt>(GEP->getOperand(i))->getZExtValue();
272      uint64_t Offset = SL->MemberOffsets[Idx];
273      GEPVal = SCEVAddExpr::get(GEPVal,
274                                SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy));
275    } else {
276      Value *OpVal = getCastedVersionOf(GEP->getOperand(i));
277      SCEVHandle Idx = SE->getSCEV(OpVal);
278
279      uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
280      if (TypeSize != 1)
281        Idx = SCEVMulExpr::get(Idx,
282                               SCEVConstant::get(ConstantInt::get(UIntPtrTy,
283                                                                   TypeSize)));
284      GEPVal = SCEVAddExpr::get(GEPVal, Idx);
285    }
286  }
287
288  SE->setSCEV(GEP, GEPVal);
289  return GEPVal;
290}
291
292/// getSCEVStartAndStride - Compute the start and stride of this expression,
293/// returning false if the expression is not a start/stride pair, or true if it
294/// is.  The stride must be a loop invariant expression, but the start may be
295/// a mix of loop invariant and loop variant expressions.
296static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
297                                  SCEVHandle &Start, SCEVHandle &Stride) {
298  SCEVHandle TheAddRec = Start;   // Initialize to zero.
299
300  // If the outer level is an AddExpr, the operands are all start values except
301  // for a nested AddRecExpr.
302  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
303    for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
304      if (SCEVAddRecExpr *AddRec =
305             dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
306        if (AddRec->getLoop() == L)
307          TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec);
308        else
309          return false;  // Nested IV of some sort?
310      } else {
311        Start = SCEVAddExpr::get(Start, AE->getOperand(i));
312      }
313
314  } else if (isa<SCEVAddRecExpr>(SH)) {
315    TheAddRec = SH;
316  } else {
317    return false;  // not analyzable.
318  }
319
320  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
321  if (!AddRec || AddRec->getLoop() != L) return false;
322
323  // FIXME: Generalize to non-affine IV's.
324  if (!AddRec->isAffine()) return false;
325
326  Start = SCEVAddExpr::get(Start, AddRec->getOperand(0));
327
328  if (!isa<SCEVConstant>(AddRec->getOperand(1)))
329    DOUT << "[" << L->getHeader()->getName()
330         << "] Variable stride: " << *AddRec << "\n";
331
332  Stride = AddRec->getOperand(1);
333  // Check that all constant strides are the unsigned type, we don't want to
334  // have two IV's one of signed stride 4 and one of unsigned stride 4 to not be
335  // merged.
336  assert((!isa<SCEVConstant>(Stride) || Stride->getType()->isUnsigned()) &&
337         "Constants should be canonicalized to unsigned!");
338
339  return true;
340}
341
342/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
343/// and now we need to decide whether the user should use the preinc or post-inc
344/// value.  If this user should use the post-inc version of the IV, return true.
345///
346/// Choosing wrong here can break dominance properties (if we choose to use the
347/// post-inc value when we cannot) or it can end up adding extra live-ranges to
348/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
349/// should use the post-inc value).
350static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
351                                       Loop *L, ETForest *EF, Pass *P) {
352  // If the user is in the loop, use the preinc value.
353  if (L->contains(User->getParent())) return false;
354
355  BasicBlock *LatchBlock = L->getLoopLatch();
356
357  // Ok, the user is outside of the loop.  If it is dominated by the latch
358  // block, use the post-inc value.
359  if (EF->dominates(LatchBlock, User->getParent()))
360    return true;
361
362  // There is one case we have to be careful of: PHI nodes.  These little guys
363  // can live in blocks that do not dominate the latch block, but (since their
364  // uses occur in the predecessor block, not the block the PHI lives in) should
365  // still use the post-inc value.  Check for this case now.
366  PHINode *PN = dyn_cast<PHINode>(User);
367  if (!PN) return false;  // not a phi, not dominated by latch block.
368
369  // Look at all of the uses of IV by the PHI node.  If any use corresponds to
370  // a block that is not dominated by the latch block, give up and use the
371  // preincremented value.
372  unsigned NumUses = 0;
373  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
374    if (PN->getIncomingValue(i) == IV) {
375      ++NumUses;
376      if (!EF->dominates(LatchBlock, PN->getIncomingBlock(i)))
377        return false;
378    }
379
380  // Okay, all uses of IV by PN are in predecessor blocks that really are
381  // dominated by the latch block.  Split the critical edges and use the
382  // post-incremented value.
383  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
384    if (PN->getIncomingValue(i) == IV) {
385      SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P,
386                        true);
387      // Splitting the critical edge can reduce the number of entries in this
388      // PHI.
389      e = PN->getNumIncomingValues();
390      if (--NumUses == 0) break;
391    }
392
393  return true;
394}
395
396
397
398/// AddUsersIfInteresting - Inspect the specified instruction.  If it is a
399/// reducible SCEV, recursively add its users to the IVUsesByStride set and
400/// return true.  Otherwise, return false.
401bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
402                                            std::set<Instruction*> &Processed) {
403  if (!I->getType()->isInteger() && !isa<PointerType>(I->getType()))
404      return false;   // Void and FP expressions cannot be reduced.
405  if (!Processed.insert(I).second)
406    return true;    // Instruction already handled.
407
408  // Get the symbolic expression for this instruction.
409  SCEVHandle ISE = GetExpressionSCEV(I, L);
410  if (isa<SCEVCouldNotCompute>(ISE)) return false;
411
412  // Get the start and stride for this expression.
413  SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType());
414  SCEVHandle Stride = Start;
415  if (!getSCEVStartAndStride(ISE, L, Start, Stride))
416    return false;  // Non-reducible symbolic expression, bail out.
417
418  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
419    Instruction *User = cast<Instruction>(*UI);
420
421    // Do not infinitely recurse on PHI nodes.
422    if (isa<PHINode>(User) && Processed.count(User))
423      continue;
424
425    // If this is an instruction defined in a nested loop, or outside this loop,
426    // don't recurse into it.
427    bool AddUserToIVUsers = false;
428    if (LI->getLoopFor(User->getParent()) != L) {
429      DOUT << "FOUND USER in other loop: " << *User
430           << "   OF SCEV: " << *ISE << "\n";
431      AddUserToIVUsers = true;
432    } else if (!AddUsersIfInteresting(User, L, Processed)) {
433      DOUT << "FOUND USER: " << *User
434           << "   OF SCEV: " << *ISE << "\n";
435      AddUserToIVUsers = true;
436    }
437
438    if (AddUserToIVUsers) {
439      IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
440      if (StrideUses.Users.empty())     // First occurance of this stride?
441        StrideOrder.push_back(Stride);
442
443      // Okay, we found a user that we cannot reduce.  Analyze the instruction
444      // and decide what to do with it.  If we are a use inside of the loop, use
445      // the value before incrementation, otherwise use it after incrementation.
446      if (IVUseShouldUsePostIncValue(User, I, L, EF, this)) {
447        // The value used will be incremented by the stride more than we are
448        // expecting, so subtract this off.
449        SCEVHandle NewStart = SCEV::getMinusSCEV(Start, Stride);
450        StrideUses.addUser(NewStart, User, I);
451        StrideUses.Users.back().isUseOfPostIncrementedValue = true;
452        DOUT << "   USING POSTINC SCEV, START=" << *NewStart<< "\n";
453      } else {
454        StrideUses.addUser(Start, User, I);
455      }
456    }
457  }
458  return true;
459}
460
461namespace {
462  /// BasedUser - For a particular base value, keep information about how we've
463  /// partitioned the expression so far.
464  struct BasedUser {
465    /// Base - The Base value for the PHI node that needs to be inserted for
466    /// this use.  As the use is processed, information gets moved from this
467    /// field to the Imm field (below).  BasedUser values are sorted by this
468    /// field.
469    SCEVHandle Base;
470
471    /// Inst - The instruction using the induction variable.
472    Instruction *Inst;
473
474    /// OperandValToReplace - The operand value of Inst to replace with the
475    /// EmittedBase.
476    Value *OperandValToReplace;
477
478    /// Imm - The immediate value that should be added to the base immediately
479    /// before Inst, because it will be folded into the imm field of the
480    /// instruction.
481    SCEVHandle Imm;
482
483    /// EmittedBase - The actual value* to use for the base value of this
484    /// operation.  This is null if we should just use zero so far.
485    Value *EmittedBase;
486
487    // isUseOfPostIncrementedValue - True if this should use the
488    // post-incremented version of this IV, not the preincremented version.
489    // This can only be set in special cases, such as the terminating setcc
490    // instruction for a loop and uses outside the loop that are dominated by
491    // the loop.
492    bool isUseOfPostIncrementedValue;
493
494    BasedUser(IVStrideUse &IVSU)
495      : Base(IVSU.Offset), Inst(IVSU.User),
496        OperandValToReplace(IVSU.OperandValToReplace),
497        Imm(SCEVUnknown::getIntegerSCEV(0, Base->getType())), EmittedBase(0),
498        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
499
500    // Once we rewrite the code to insert the new IVs we want, update the
501    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
502    // to it.
503    void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
504                                        SCEVExpander &Rewriter, Loop *L,
505                                        Pass *P);
506
507    Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
508                                       SCEVExpander &Rewriter,
509                                       Instruction *IP, Loop *L);
510    void dump() const;
511  };
512}
513
514void BasedUser::dump() const {
515  cerr << " Base=" << *Base;
516  cerr << " Imm=" << *Imm;
517  if (EmittedBase)
518    cerr << "  EB=" << *EmittedBase;
519
520  cerr << "   Inst: " << *Inst;
521}
522
523Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
524                                              SCEVExpander &Rewriter,
525                                              Instruction *IP, Loop *L) {
526  // Figure out where we *really* want to insert this code.  In particular, if
527  // the user is inside of a loop that is nested inside of L, we really don't
528  // want to insert this expression before the user, we'd rather pull it out as
529  // many loops as possible.
530  LoopInfo &LI = Rewriter.getLoopInfo();
531  Instruction *BaseInsertPt = IP;
532
533  // Figure out the most-nested loop that IP is in.
534  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
535
536  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
537  // the preheader of the outer-most loop where NewBase is not loop invariant.
538  while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
539    BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
540    InsertLoop = InsertLoop->getParentLoop();
541  }
542
543  // If there is no immediate value, skip the next part.
544  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
545    if (SC->getValue()->isNullValue())
546      return Rewriter.expandCodeFor(NewBase, BaseInsertPt,
547                                    OperandValToReplace->getType());
548
549  Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt);
550
551  // Always emit the immediate (if non-zero) into the same block as the user.
552  SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(Base), Imm);
553  return Rewriter.expandCodeFor(NewValSCEV, IP,
554                                OperandValToReplace->getType());
555}
556
557
558// Once we rewrite the code to insert the new IVs we want, update the
559// operands of Inst to use the new expression 'NewBase', with 'Imm' added
560// to it.
561void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
562                                               SCEVExpander &Rewriter,
563                                               Loop *L, Pass *P) {
564  if (!isa<PHINode>(Inst)) {
565    Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, Inst, L);
566    // Replace the use of the operand Value with the new Phi we just created.
567    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
568    DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst;
569    return;
570  }
571
572  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
573  // expression into each operand block that uses it.  Note that PHI nodes can
574  // have multiple entries for the same predecessor.  We use a map to make sure
575  // that a PHI node only has a single Value* for each predecessor (which also
576  // prevents us from inserting duplicate code in some blocks).
577  std::map<BasicBlock*, Value*> InsertedCode;
578  PHINode *PN = cast<PHINode>(Inst);
579  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
580    if (PN->getIncomingValue(i) == OperandValToReplace) {
581      // If this is a critical edge, split the edge so that we do not insert the
582      // code on all predecessor/successor paths.  We do this unless this is the
583      // canonical backedge for this loop, as this can make some inserted code
584      // be in an illegal position.
585      BasicBlock *PHIPred = PN->getIncomingBlock(i);
586      if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
587          (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
588
589        // First step, split the critical edge.
590        SplitCriticalEdge(PHIPred, PN->getParent(), P, true);
591
592        // Next step: move the basic block.  In particular, if the PHI node
593        // is outside of the loop, and PredTI is in the loop, we want to
594        // move the block to be immediately before the PHI block, not
595        // immediately after PredTI.
596        if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
597          BasicBlock *NewBB = PN->getIncomingBlock(i);
598          NewBB->moveBefore(PN->getParent());
599        }
600
601        // Splitting the edge can reduce the number of PHI entries we have.
602        e = PN->getNumIncomingValues();
603      }
604
605      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
606      if (!Code) {
607        // Insert the code into the end of the predecessor block.
608        Instruction *InsertPt = PN->getIncomingBlock(i)->getTerminator();
609        Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
610      }
611
612      // Replace the use of the operand Value with the new Phi we just created.
613      PN->setIncomingValue(i, Code);
614      Rewriter.clear();
615    }
616  }
617  DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst;
618}
619
620
621/// isTargetConstant - Return true if the following can be referenced by the
622/// immediate field of a target instruction.
623static bool isTargetConstant(const SCEVHandle &V, const TargetLowering *TLI) {
624  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
625    int64_t V = SC->getValue()->getSExtValue();
626    if (TLI)
627      return TLI->isLegalAddressImmediate(V);
628    else
629      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
630      return (V > -(1 << 16) && V < (1 << 16)-1);
631  }
632
633  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
634    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
635      if (CE->getOpcode() == Instruction::PtrToInt) {
636        Constant *Op0 = CE->getOperand(0);
637        if (isa<GlobalValue>(Op0) && TLI &&
638            TLI->isLegalAddressImmediate(cast<GlobalValue>(Op0)))
639          return true;
640      }
641  return false;
642}
643
644/// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are
645/// loop varying to the Imm operand.
646static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm,
647                                            Loop *L) {
648  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
649
650  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
651    std::vector<SCEVHandle> NewOps;
652    NewOps.reserve(SAE->getNumOperands());
653
654    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
655      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
656        // If this is a loop-variant expression, it must stay in the immediate
657        // field of the expression.
658        Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
659      } else {
660        NewOps.push_back(SAE->getOperand(i));
661      }
662
663    if (NewOps.empty())
664      Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
665    else
666      Val = SCEVAddExpr::get(NewOps);
667  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
668    // Try to pull immediates out of the start value of nested addrec's.
669    SCEVHandle Start = SARE->getStart();
670    MoveLoopVariantsToImediateField(Start, Imm, L);
671
672    std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
673    Ops[0] = Start;
674    Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
675  } else {
676    // Otherwise, all of Val is variant, move the whole thing over.
677    Imm = SCEVAddExpr::get(Imm, Val);
678    Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
679  }
680}
681
682
683/// MoveImmediateValues - Look at Val, and pull out any additions of constants
684/// that can fit into the immediate field of instructions in the target.
685/// Accumulate these immediate values into the Imm value.
686static void MoveImmediateValues(const TargetLowering *TLI,
687                                SCEVHandle &Val, SCEVHandle &Imm,
688                                bool isAddress, Loop *L) {
689  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
690    std::vector<SCEVHandle> NewOps;
691    NewOps.reserve(SAE->getNumOperands());
692
693    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
694      SCEVHandle NewOp = SAE->getOperand(i);
695      MoveImmediateValues(TLI, NewOp, Imm, isAddress, L);
696
697      if (!NewOp->isLoopInvariant(L)) {
698        // If this is a loop-variant expression, it must stay in the immediate
699        // field of the expression.
700        Imm = SCEVAddExpr::get(Imm, NewOp);
701      } else {
702        NewOps.push_back(NewOp);
703      }
704    }
705
706    if (NewOps.empty())
707      Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
708    else
709      Val = SCEVAddExpr::get(NewOps);
710    return;
711  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
712    // Try to pull immediates out of the start value of nested addrec's.
713    SCEVHandle Start = SARE->getStart();
714    MoveImmediateValues(TLI, Start, Imm, isAddress, L);
715
716    if (Start != SARE->getStart()) {
717      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
718      Ops[0] = Start;
719      Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
720    }
721    return;
722  } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
723    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
724    if (isAddress && isTargetConstant(SME->getOperand(0), TLI) &&
725        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
726
727      SCEVHandle SubImm = SCEVUnknown::getIntegerSCEV(0, Val->getType());
728      SCEVHandle NewOp = SME->getOperand(1);
729      MoveImmediateValues(TLI, NewOp, SubImm, isAddress, L);
730
731      // If we extracted something out of the subexpressions, see if we can
732      // simplify this!
733      if (NewOp != SME->getOperand(1)) {
734        // Scale SubImm up by "8".  If the result is a target constant, we are
735        // good.
736        SubImm = SCEVMulExpr::get(SubImm, SME->getOperand(0));
737        if (isTargetConstant(SubImm, TLI)) {
738          // Accumulate the immediate.
739          Imm = SCEVAddExpr::get(Imm, SubImm);
740
741          // Update what is left of 'Val'.
742          Val = SCEVMulExpr::get(SME->getOperand(0), NewOp);
743          return;
744        }
745      }
746    }
747  }
748
749  // Loop-variant expressions must stay in the immediate field of the
750  // expression.
751  if ((isAddress && isTargetConstant(Val, TLI)) ||
752      !Val->isLoopInvariant(L)) {
753    Imm = SCEVAddExpr::get(Imm, Val);
754    Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
755    return;
756  }
757
758  // Otherwise, no immediates to move.
759}
760
761
762/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
763/// added together.  This is used to reassociate common addition subexprs
764/// together for maximal sharing when rewriting bases.
765static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
766                             SCEVHandle Expr) {
767  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
768    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
769      SeparateSubExprs(SubExprs, AE->getOperand(j));
770  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
771    SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Expr->getType());
772    if (SARE->getOperand(0) == Zero) {
773      SubExprs.push_back(Expr);
774    } else {
775      // Compute the addrec with zero as its base.
776      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
777      Ops[0] = Zero;   // Start with zero base.
778      SubExprs.push_back(SCEVAddRecExpr::get(Ops, SARE->getLoop()));
779
780
781      SeparateSubExprs(SubExprs, SARE->getOperand(0));
782    }
783  } else if (!isa<SCEVConstant>(Expr) ||
784             !cast<SCEVConstant>(Expr)->getValue()->isNullValue()) {
785    // Do not add zero.
786    SubExprs.push_back(Expr);
787  }
788}
789
790
791/// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases,
792/// removing any common subexpressions from it.  Anything truly common is
793/// removed, accumulated, and returned.  This looks for things like (a+b+c) and
794/// (a+c+d) -> (a+c).  The common expression is *removed* from the Bases.
795static SCEVHandle
796RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses) {
797  unsigned NumUses = Uses.size();
798
799  // Only one use?  Use its base, regardless of what it is!
800  SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Uses[0].Base->getType());
801  SCEVHandle Result = Zero;
802  if (NumUses == 1) {
803    std::swap(Result, Uses[0].Base);
804    return Result;
805  }
806
807  // To find common subexpressions, count how many of Uses use each expression.
808  // If any subexpressions are used Uses.size() times, they are common.
809  std::map<SCEVHandle, unsigned> SubExpressionUseCounts;
810
811  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
812  // order we see them.
813  std::vector<SCEVHandle> UniqueSubExprs;
814
815  std::vector<SCEVHandle> SubExprs;
816  for (unsigned i = 0; i != NumUses; ++i) {
817    // If the base is zero (which is common), return zero now, there are no
818    // CSEs we can find.
819    if (Uses[i].Base == Zero) return Zero;
820
821    // Split the expression into subexprs.
822    SeparateSubExprs(SubExprs, Uses[i].Base);
823    // Add one to SubExpressionUseCounts for each subexpr present.
824    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
825      if (++SubExpressionUseCounts[SubExprs[j]] == 1)
826        UniqueSubExprs.push_back(SubExprs[j]);
827    SubExprs.clear();
828  }
829
830  // Now that we know how many times each is used, build Result.  Iterate over
831  // UniqueSubexprs so that we have a stable ordering.
832  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
833    std::map<SCEVHandle, unsigned>::iterator I =
834       SubExpressionUseCounts.find(UniqueSubExprs[i]);
835    assert(I != SubExpressionUseCounts.end() && "Entry not found?");
836    if (I->second == NumUses) {  // Found CSE!
837      Result = SCEVAddExpr::get(Result, I->first);
838    } else {
839      // Remove non-cse's from SubExpressionUseCounts.
840      SubExpressionUseCounts.erase(I);
841    }
842  }
843
844  // If we found no CSE's, return now.
845  if (Result == Zero) return Result;
846
847  // Otherwise, remove all of the CSE's we found from each of the base values.
848  for (unsigned i = 0; i != NumUses; ++i) {
849    // Split the expression into subexprs.
850    SeparateSubExprs(SubExprs, Uses[i].Base);
851
852    // Remove any common subexpressions.
853    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
854      if (SubExpressionUseCounts.count(SubExprs[j])) {
855        SubExprs.erase(SubExprs.begin()+j);
856        --j; --e;
857      }
858
859    // Finally, the non-shared expressions together.
860    if (SubExprs.empty())
861      Uses[i].Base = Zero;
862    else
863      Uses[i].Base = SCEVAddExpr::get(SubExprs);
864    SubExprs.clear();
865  }
866
867  return Result;
868}
869
870/// isZero - returns true if the scalar evolution expression is zero.
871///
872static bool isZero(SCEVHandle &V) {
873  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V))
874    return SC->getValue()->getZExtValue() == 0;
875  return false;
876}
877
878
879/// CheckForIVReuse - Returns the multiple if the stride is the multiple
880/// of a previous stride and it is a legal value for the target addressing
881/// mode scale component. This allows the users of this stride to be rewritten
882/// as prev iv * factor. It returns 0 if no reuse is possible.
883unsigned LoopStrengthReduce::CheckForIVReuse(const SCEVHandle &Stride,
884                                             IVExpr &IV, const Type *Ty) {
885  if (!TLI) return 0;
886
887  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
888    int64_t SInt = SC->getValue()->getSExtValue();
889    if (SInt == 1) return 0;
890
891    for (TargetLowering::legal_am_scale_iterator
892           I = TLI->legal_am_scale_begin(), E = TLI->legal_am_scale_end();
893         I != E; ++I) {
894      unsigned Scale = *I;
895      if (unsigned(abs(SInt)) < Scale || (SInt % Scale) != 0)
896        continue;
897      std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
898        IVsByStride.find(SCEVUnknown::getIntegerSCEV(SInt/Scale, Type::UIntTy));
899      if (SI == IVsByStride.end())
900        continue;
901      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
902             IE = SI->second.IVs.end(); II != IE; ++II)
903        // FIXME: Only handle base == 0 for now.
904        // Only reuse previous IV if it would not require a type conversion.
905        if (isZero(II->Base) &&
906            II->Base->getType()->canLosslesslyBitCastTo(Ty)) {
907          IV = *II;
908          return Scale;
909        }
910    }
911  }
912
913  return 0;
914}
915
916/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
917/// returns true if Val's isUseOfPostIncrementedValue is true.
918static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
919  return Val.isUseOfPostIncrementedValue;
920}
921
922/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
923/// stride of IV.  All of the users may have different starting values, and this
924/// may not be the only stride (we know it is if isOnlyStride is true).
925void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
926                                                      IVUsersOfOneStride &Uses,
927                                                      Loop *L,
928                                                      bool isOnlyStride) {
929  // Transform our list of users and offsets to a bit more complex table.  In
930  // this new vector, each 'BasedUser' contains 'Base' the base of the
931  // strided accessas well as the old information from Uses.  We progressively
932  // move information from the Base field to the Imm field, until we eventually
933  // have the full access expression to rewrite the use.
934  std::vector<BasedUser> UsersToProcess;
935  UsersToProcess.reserve(Uses.Users.size());
936  for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
937    UsersToProcess.push_back(Uses.Users[i]);
938
939    // Move any loop invariant operands from the offset field to the immediate
940    // field of the use, so that we don't try to use something before it is
941    // computed.
942    MoveLoopVariantsToImediateField(UsersToProcess.back().Base,
943                                    UsersToProcess.back().Imm, L);
944    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
945           "Base value is not loop invariant!");
946  }
947
948  // We now have a whole bunch of uses of like-strided induction variables, but
949  // they might all have different bases.  We want to emit one PHI node for this
950  // stride which we fold as many common expressions (between the IVs) into as
951  // possible.  Start by identifying the common expressions in the base values
952  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
953  // "A+B"), emit it to the preheader, then remove the expression from the
954  // UsersToProcess base values.
955  SCEVHandle CommonExprs =
956    RemoveCommonExpressionsFromUseBases(UsersToProcess);
957
958  // Check if it is possible to reuse a IV with stride that is factor of this
959  // stride. And the multiple is a number that can be encoded in the scale
960  // field of the target addressing mode.
961  PHINode *NewPHI = NULL;
962  Value   *IncV   = NULL;
963  IVExpr   ReuseIV;
964  unsigned RewriteFactor = CheckForIVReuse(Stride, ReuseIV,
965                                           CommonExprs->getType());
966  if (RewriteFactor != 0) {
967    DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
968         << " and BASE " << *ReuseIV.Base << " :\n";
969    NewPHI = ReuseIV.PHI;
970    IncV   = ReuseIV.IncV;
971  }
972
973  // Next, figure out what we can represent in the immediate fields of
974  // instructions.  If we can represent anything there, move it to the imm
975  // fields of the BasedUsers.  We do this so that it increases the commonality
976  // of the remaining uses.
977  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
978    // If the user is not in the current loop, this means it is using the exit
979    // value of the IV.  Do not put anything in the base, make sure it's all in
980    // the immediate field to allow as much factoring as possible.
981    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
982      UsersToProcess[i].Imm = SCEVAddExpr::get(UsersToProcess[i].Imm,
983                                               UsersToProcess[i].Base);
984      UsersToProcess[i].Base =
985        SCEVUnknown::getIntegerSCEV(0, UsersToProcess[i].Base->getType());
986    } else {
987
988      // Addressing modes can be folded into loads and stores.  Be careful that
989      // the store is through the expression, not of the expression though.
990      bool isAddress = isa<LoadInst>(UsersToProcess[i].Inst);
991      if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
992        if (SI->getOperand(1) == UsersToProcess[i].OperandValToReplace)
993          isAddress = true;
994
995      MoveImmediateValues(TLI, UsersToProcess[i].Base, UsersToProcess[i].Imm,
996                          isAddress, L);
997    }
998  }
999
1000  // Now that we know what we need to do, insert the PHI node itself.
1001  //
1002  DOUT << "INSERTING IV of STRIDE " << *Stride << " and BASE "
1003       << *CommonExprs << " :\n";
1004
1005  SCEVExpander Rewriter(*SE, *LI);
1006  SCEVExpander PreheaderRewriter(*SE, *LI);
1007
1008  BasicBlock  *Preheader = L->getLoopPreheader();
1009  Instruction *PreInsertPt = Preheader->getTerminator();
1010  Instruction *PhiInsertBefore = L->getHeader()->begin();
1011
1012  BasicBlock *LatchBlock = L->getLoopLatch();
1013
1014  const Type *ReplacedTy = CommonExprs->getType();
1015
1016  // Emit the initial base value into the loop preheader.
1017  Value *CommonBaseV
1018    = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt,
1019                                      ReplacedTy);
1020
1021  if (RewriteFactor == 0) {
1022    // Create a new Phi for this base, and stick it in the loop header.
1023    NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
1024    ++NumInserted;
1025
1026    // Add common base to the new Phi node.
1027    NewPHI->addIncoming(CommonBaseV, Preheader);
1028
1029    // Insert the stride into the preheader.
1030    Value *StrideV = PreheaderRewriter.expandCodeFor(Stride, PreInsertPt,
1031                                                     ReplacedTy);
1032    if (!isa<ConstantInt>(StrideV)) ++NumVariable;
1033
1034    // Emit the increment of the base value before the terminator of the loop
1035    // latch block, and add it to the Phi node.
1036    SCEVHandle IncExp = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
1037                                         SCEVUnknown::get(StrideV));
1038
1039    IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator(),
1040                                  ReplacedTy);
1041    IncV->setName(NewPHI->getName()+".inc");
1042    NewPHI->addIncoming(IncV, LatchBlock);
1043
1044    // Remember this in case a later stride is multiple of this.
1045    IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
1046  } else {
1047    Constant *C = dyn_cast<Constant>(CommonBaseV);
1048    if (!C ||
1049        (!C->isNullValue() &&
1050         !isTargetConstant(SCEVUnknown::get(CommonBaseV), TLI)))
1051      // We want the common base emitted into the preheader! This is just
1052      // using cast as a copy so BitCast (no-op cast) is appropriate
1053      CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1054                                    "commonbase", PreInsertPt);
1055  }
1056
1057  // We want to emit code for users inside the loop first.  To do this, we
1058  // rearrange BasedUser so that the entries at the end have
1059  // isUseOfPostIncrementedValue = false, because we pop off the end of the
1060  // vector (so we handle them first).
1061  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1062                 PartitionByIsUseOfPostIncrementedValue);
1063
1064  // Sort this by base, so that things with the same base are handled
1065  // together.  By partitioning first and stable-sorting later, we are
1066  // guaranteed that within each base we will pop off users from within the
1067  // loop before users outside of the loop with a particular base.
1068  //
1069  // We would like to use stable_sort here, but we can't.  The problem is that
1070  // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1071  // we don't have anything to do a '<' comparison on.  Because we think the
1072  // number of uses is small, do a horrible bubble sort which just relies on
1073  // ==.
1074  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1075    // Get a base value.
1076    SCEVHandle Base = UsersToProcess[i].Base;
1077
1078    // Compact everything with this base to be consequetive with this one.
1079    for (unsigned j = i+1; j != e; ++j) {
1080      if (UsersToProcess[j].Base == Base) {
1081        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1082        ++i;
1083      }
1084    }
1085  }
1086
1087  // Process all the users now.  This outer loop handles all bases, the inner
1088  // loop handles all users of a particular base.
1089  while (!UsersToProcess.empty()) {
1090    SCEVHandle Base = UsersToProcess.back().Base;
1091
1092    DOUT << "  INSERTING code for BASE = " << *Base << ":\n";
1093
1094    // Emit the code for Base into the preheader.
1095    Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt,
1096                                                   ReplacedTy);
1097
1098    // If BaseV is a constant other than 0, make sure that it gets inserted into
1099    // the preheader, instead of being forward substituted into the uses.  We do
1100    // this by forcing a BitCast (noop cast) to be inserted into the preheader
1101    // in this case.
1102    if (Constant *C = dyn_cast<Constant>(BaseV)) {
1103      if (!C->isNullValue() && !isTargetConstant(Base, TLI)) {
1104        // We want this constant emitted into the preheader! This is just
1105        // using cast as a copy so BitCast (no-op cast) is appropriate
1106        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1107                             PreInsertPt);
1108      }
1109    }
1110
1111    // Emit the code to add the immediate offset to the Phi value, just before
1112    // the instructions that we identified as using this stride and base.
1113    do {
1114      // FIXME: Use emitted users to emit other users.
1115      BasedUser &User = UsersToProcess.back();
1116
1117      // If this instruction wants to use the post-incremented value, move it
1118      // after the post-inc and use its value instead of the PHI.
1119      Value *RewriteOp = NewPHI;
1120      if (User.isUseOfPostIncrementedValue) {
1121        RewriteOp = IncV;
1122
1123        // If this user is in the loop, make sure it is the last thing in the
1124        // loop to ensure it is dominated by the increment.
1125        if (L->contains(User.Inst->getParent()))
1126          User.Inst->moveBefore(LatchBlock->getTerminator());
1127      }
1128      if (RewriteOp->getType() != ReplacedTy)
1129        RewriteOp = SCEVExpander::InsertCastOfTo(RewriteOp, ReplacedTy);
1130
1131      SCEVHandle RewriteExpr = SCEVUnknown::get(RewriteOp);
1132
1133      // Clear the SCEVExpander's expression map so that we are guaranteed
1134      // to have the code emitted where we expect it.
1135      Rewriter.clear();
1136
1137      // If we are reusing the iv, then it must be multiplied by a constant
1138      // factor take advantage of addressing mode scale component.
1139      if (RewriteFactor != 0) {
1140        RewriteExpr =
1141          SCEVMulExpr::get(SCEVUnknown::getIntegerSCEV(RewriteFactor,
1142                                                       RewriteExpr->getType()),
1143                           RewriteExpr);
1144
1145        // The common base is emitted in the loop preheader. But since we
1146        // are reusing an IV, it has not been used to initialize the PHI node.
1147        // Add it to the expression used to rewrite the uses.
1148        if (!isa<ConstantInt>(CommonBaseV) ||
1149            !cast<ConstantInt>(CommonBaseV)->isNullValue())
1150          RewriteExpr = SCEVAddExpr::get(RewriteExpr,
1151                                         SCEVUnknown::get(CommonBaseV));
1152      }
1153
1154      // Now that we know what we need to do, insert code before User for the
1155      // immediate and any loop-variant expressions.
1156      if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isNullValue())
1157        // Add BaseV to the PHI value if needed.
1158        RewriteExpr = SCEVAddExpr::get(RewriteExpr, SCEVUnknown::get(BaseV));
1159
1160      User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this);
1161
1162      // Mark old value we replaced as possibly dead, so that it is elminated
1163      // if we just replaced the last use of that value.
1164      DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
1165
1166      UsersToProcess.pop_back();
1167      ++NumReduced;
1168
1169      // If there are any more users to process with the same base, process them
1170      // now.  We sorted by base above, so we just have to check the last elt.
1171    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1172    // TODO: Next, find out which base index is the most common, pull it out.
1173  }
1174
1175  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1176  // different starting values, into different PHIs.
1177}
1178
1179// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
1180// uses in the loop, look to see if we can eliminate some, in favor of using
1181// common indvars for the different uses.
1182void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
1183  // TODO: implement optzns here.
1184
1185
1186
1187
1188  // Finally, get the terminating condition for the loop if possible.  If we
1189  // can, we want to change it to use a post-incremented version of its
1190  // induction variable, to allow coalescing the live ranges for the IV into
1191  // one register value.
1192  PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
1193  BasicBlock  *Preheader = L->getLoopPreheader();
1194  BasicBlock *LatchBlock =
1195   SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
1196  BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
1197  if (!TermBr || TermBr->isUnconditional() ||
1198      !isa<SetCondInst>(TermBr->getCondition()))
1199    return;
1200  SetCondInst *Cond = cast<SetCondInst>(TermBr->getCondition());
1201
1202  // Search IVUsesByStride to find Cond's IVUse if there is one.
1203  IVStrideUse *CondUse = 0;
1204  const SCEVHandle *CondStride = 0;
1205
1206  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
1207       ++Stride) {
1208    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1209      IVUsesByStride.find(StrideOrder[Stride]);
1210    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1211
1212    for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1213           E = SI->second.Users.end(); UI != E; ++UI)
1214      if (UI->User == Cond) {
1215        CondUse = &*UI;
1216        CondStride = &SI->first;
1217        // NOTE: we could handle setcc instructions with multiple uses here, but
1218        // InstCombine does it as well for simple uses, it's not clear that it
1219        // occurs enough in real life to handle.
1220        break;
1221      }
1222  }
1223  if (!CondUse) return;  // setcc doesn't use the IV.
1224
1225  // It's possible for the setcc instruction to be anywhere in the loop, and
1226  // possible for it to have multiple users.  If it is not immediately before
1227  // the latch block branch, move it.
1228  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
1229    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
1230      Cond->moveBefore(TermBr);
1231    } else {
1232      // Otherwise, clone the terminating condition and insert into the loopend.
1233      Cond = cast<SetCondInst>(Cond->clone());
1234      Cond->setName(L->getHeader()->getName() + ".termcond");
1235      LatchBlock->getInstList().insert(TermBr, Cond);
1236
1237      // Clone the IVUse, as the old use still exists!
1238      IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
1239                                         CondUse->OperandValToReplace);
1240      CondUse = &IVUsesByStride[*CondStride].Users.back();
1241    }
1242  }
1243
1244  // If we get to here, we know that we can transform the setcc instruction to
1245  // use the post-incremented version of the IV, allowing us to coalesce the
1246  // live ranges for the IV correctly.
1247  CondUse->Offset = SCEV::getMinusSCEV(CondUse->Offset, *CondStride);
1248  CondUse->isUseOfPostIncrementedValue = true;
1249}
1250
1251namespace {
1252  // Constant strides come first which in turns are sorted by their absolute
1253  // values. If absolute values are the same, then positive strides comes first.
1254  // e.g.
1255  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1256  struct StrideCompare {
1257    bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1258      SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1259      SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1260      if (LHSC && RHSC) {
1261        int64_t  LV = LHSC->getValue()->getSExtValue();
1262        int64_t  RV = RHSC->getValue()->getSExtValue();
1263        uint64_t ALV = (LV < 0) ? -LV : LV;
1264        uint64_t ARV = (RV < 0) ? -RV : RV;
1265        if (ALV == ARV)
1266          return LV > RV;
1267        else
1268          return ALV < ARV;
1269      }
1270      return (LHSC && !RHSC);
1271    }
1272  };
1273}
1274
1275void LoopStrengthReduce::runOnLoop(Loop *L) {
1276  // First step, transform all loops nesting inside of this loop.
1277  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
1278    runOnLoop(*I);
1279
1280  // Next, find all uses of induction variables in this loop, and catagorize
1281  // them by stride.  Start by finding all of the PHI nodes in the header for
1282  // this loop.  If they are induction variables, inspect their uses.
1283  std::set<Instruction*> Processed;   // Don't reprocess instructions.
1284  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
1285    AddUsersIfInteresting(I, L, Processed);
1286
1287  // If we have nothing to do, return.
1288  if (IVUsesByStride.empty()) return;
1289
1290  // Optimize induction variables.  Some indvar uses can be transformed to use
1291  // strides that will be needed for other purposes.  A common example of this
1292  // is the exit test for the loop, which can often be rewritten to use the
1293  // computation of some other indvar to decide when to terminate the loop.
1294  OptimizeIndvars(L);
1295
1296
1297  // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
1298  // doing computation in byte values, promote to 32-bit values if safe.
1299
1300  // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
1301  // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
1302  // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need
1303  // to be careful that IV's are all the same type.  Only works for intptr_t
1304  // indvars.
1305
1306  // If we only have one stride, we can more aggressively eliminate some things.
1307  bool HasOneStride = IVUsesByStride.size() == 1;
1308
1309#ifndef NDEBUG
1310  DOUT << "\nLSR on ";
1311  DEBUG(L->dump());
1312#endif
1313
1314  // IVsByStride keeps IVs for one particular loop.
1315  IVsByStride.clear();
1316
1317  // Sort the StrideOrder so we process larger strides first.
1318  std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
1319
1320  // Note: this processes each stride/type pair individually.  All users passed
1321  // into StrengthReduceStridedIVUsers have the same type AND stride.  Also,
1322  // node that we iterate over IVUsesByStride indirectly by using StrideOrder.
1323  // This extra layer of indirection makes the ordering of strides deterministic
1324  // - not dependent on map order.
1325  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
1326    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1327      IVUsesByStride.find(StrideOrder[Stride]);
1328    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1329    StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
1330  }
1331
1332  // Clean up after ourselves
1333  if (!DeadInsts.empty()) {
1334    DeleteTriviallyDeadInstructions(DeadInsts);
1335
1336    BasicBlock::iterator I = L->getHeader()->begin();
1337    PHINode *PN;
1338    while ((PN = dyn_cast<PHINode>(I))) {
1339      ++I;  // Preincrement iterator to avoid invalidating it when deleting PN.
1340
1341      // At this point, we know that we have killed one or more GEP
1342      // instructions.  It is worth checking to see if the cann indvar is also
1343      // dead, so that we can remove it as well.  The requirements for the cann
1344      // indvar to be considered dead are:
1345      // 1. the cann indvar has one use
1346      // 2. the use is an add instruction
1347      // 3. the add has one use
1348      // 4. the add is used by the cann indvar
1349      // If all four cases above are true, then we can remove both the add and
1350      // the cann indvar.
1351      // FIXME: this needs to eliminate an induction variable even if it's being
1352      // compared against some value to decide loop termination.
1353      if (PN->hasOneUse()) {
1354        BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
1355        if (BO && BO->hasOneUse()) {
1356          if (PN == *(BO->use_begin())) {
1357            DeadInsts.insert(BO);
1358            // Break the cycle, then delete the PHI.
1359            PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1360            SE->deleteInstructionFromRecords(PN);
1361            PN->eraseFromParent();
1362          }
1363        }
1364      }
1365    }
1366    DeleteTriviallyDeadInstructions(DeadInsts);
1367  }
1368
1369  CastedPointers.clear();
1370  IVUsesByStride.clear();
1371  StrideOrder.clear();
1372  return;
1373}
1374