LoopStrengthReduce.cpp revision 968cb939e5a00cb06aefafc89581645790c590b3
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUses;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115
116  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
117
118  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
119
120  void clear();
121
122  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124  iterator begin() { return RegSequence.begin(); }
125  iterator end()   { return RegSequence.end(); }
126  const_iterator begin() const { return RegSequence.begin(); }
127  const_iterator end() const   { return RegSequence.end(); }
128};
129
130}
131
132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134  std::pair<RegUsesTy::iterator, bool> Pair =
135    RegUses.insert(std::make_pair(Reg, RegSortData()));
136  RegSortData &RSD = Pair.first->second;
137  if (Pair.second)
138    RegSequence.push_back(Reg);
139  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140  RSD.UsedByIndices.set(LUIdx);
141}
142
143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
145  if (!RegUses.count(Reg)) return false;
146  const SmallBitVector &UsedByIndices =
147    RegUses.find(Reg)->second.UsedByIndices;
148  int i = UsedByIndices.find_first();
149  if (i == -1) return false;
150  if ((size_t)i != LUIdx) return true;
151  return UsedByIndices.find_next(i) != -1;
152}
153
154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
155  RegUsesTy::const_iterator I = RegUses.find(Reg);
156  assert(I != RegUses.end() && "Unknown register!");
157  return I->second.UsedByIndices;
158}
159
160void RegUseTracker::clear() {
161  RegUses.clear();
162  RegSequence.clear();
163}
164
165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171  /// AM - This is used to represent complex addressing, as well as other kinds
172  /// of interesting uses.
173  TargetLowering::AddrMode AM;
174
175  /// BaseRegs - The list of "base" registers for this use. When this is
176  /// non-empty, AM.HasBaseReg should be set to true.
177  SmallVector<const SCEV *, 2> BaseRegs;
178
179  /// ScaledReg - The 'scaled' register for this use. This should be non-null
180  /// when AM.Scale is not zero.
181  const SCEV *ScaledReg;
182
183  Formula() : ScaledReg(0) {}
184
185  void InitialMatch(const SCEV *S, Loop *L,
186                    ScalarEvolution &SE, DominatorTree &DT);
187
188  unsigned getNumRegs() const;
189  const Type *getType() const;
190
191  bool referencesReg(const SCEV *S) const;
192  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193                                  const RegUseTracker &RegUses) const;
194
195  void print(raw_ostream &OS) const;
196  void dump() const;
197};
198
199}
200
201/// DoInitialMatch - Recurrsion helper for InitialMatch.
202static void DoInitialMatch(const SCEV *S, Loop *L,
203                           SmallVectorImpl<const SCEV *> &Good,
204                           SmallVectorImpl<const SCEV *> &Bad,
205                           ScalarEvolution &SE, DominatorTree &DT) {
206  // Collect expressions which properly dominate the loop header.
207  if (S->properlyDominates(L->getHeader(), &DT)) {
208    Good.push_back(S);
209    return;
210  }
211
212  // Look at add operands.
213  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215         I != E; ++I)
216      DoInitialMatch(*I, L, Good, Bad, SE, DT);
217    return;
218  }
219
220  // Look at addrec operands.
221  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222    if (!AR->getStart()->isZero()) {
223      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
224      DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
225                                      AR->getStepRecurrence(SE),
226                                      AR->getLoop()),
227                     L, Good, Bad, SE, DT);
228      return;
229    }
230
231  // Handle a multiplication by -1 (negation) if it didn't fold.
232  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233    if (Mul->getOperand(0)->isAllOnesValue()) {
234      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235      const SCEV *NewMul = SE.getMulExpr(Ops);
236
237      SmallVector<const SCEV *, 4> MyGood;
238      SmallVector<const SCEV *, 4> MyBad;
239      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241        SE.getEffectiveSCEVType(NewMul->getType())));
242      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243           E = MyGood.end(); I != E; ++I)
244        Good.push_back(SE.getMulExpr(NegOne, *I));
245      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246           E = MyBad.end(); I != E; ++I)
247        Bad.push_back(SE.getMulExpr(NegOne, *I));
248      return;
249    }
250
251  // Ok, we can't do anything interesting. Just stuff the whole thing into a
252  // register and hope for the best.
253  Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260                           ScalarEvolution &SE, DominatorTree &DT) {
261  SmallVector<const SCEV *, 4> Good;
262  SmallVector<const SCEV *, 4> Bad;
263  DoInitialMatch(S, L, Good, Bad, SE, DT);
264  if (!Good.empty()) {
265    BaseRegs.push_back(SE.getAddExpr(Good));
266    AM.HasBaseReg = true;
267  }
268  if (!Bad.empty()) {
269    BaseRegs.push_back(SE.getAddExpr(Bad));
270    AM.HasBaseReg = true;
271  }
272}
273
274/// getNumRegs - Return the total number of register operands used by this
275/// formula. This does not include register uses implied by non-constant
276/// addrec strides.
277unsigned Formula::getNumRegs() const {
278  return !!ScaledReg + BaseRegs.size();
279}
280
281/// getType - Return the type of this formula, if it has one, or null
282/// otherwise. This type is meaningless except for the bit size.
283const Type *Formula::getType() const {
284  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
285         ScaledReg ? ScaledReg->getType() :
286         AM.BaseGV ? AM.BaseGV->getType() :
287         0;
288}
289
290/// referencesReg - Test if this formula references the given register.
291bool Formula::referencesReg(const SCEV *S) const {
292  return S == ScaledReg ||
293         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
294}
295
296/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
297/// which are used by uses other than the use with the given index.
298bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
299                                         const RegUseTracker &RegUses) const {
300  if (ScaledReg)
301    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
302      return true;
303  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
304       E = BaseRegs.end(); I != E; ++I)
305    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
306      return true;
307  return false;
308}
309
310void Formula::print(raw_ostream &OS) const {
311  bool First = true;
312  if (AM.BaseGV) {
313    if (!First) OS << " + "; else First = false;
314    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
315  }
316  if (AM.BaseOffs != 0) {
317    if (!First) OS << " + "; else First = false;
318    OS << AM.BaseOffs;
319  }
320  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
321       E = BaseRegs.end(); I != E; ++I) {
322    if (!First) OS << " + "; else First = false;
323    OS << "reg(" << **I << ')';
324  }
325  if (AM.Scale != 0) {
326    if (!First) OS << " + "; else First = false;
327    OS << AM.Scale << "*reg(";
328    if (ScaledReg)
329      OS << *ScaledReg;
330    else
331      OS << "<unknown>";
332    OS << ')';
333  }
334}
335
336void Formula::dump() const {
337  print(errs()); errs() << '\n';
338}
339
340/// getSDiv - Return an expression for LHS /s RHS, if it can be determined,
341/// or null otherwise. If IgnoreSignificantBits is true, expressions like
342/// (X * Y) /s Y are simplified to Y, ignoring that the multiplication may
343/// overflow, which is useful when the result will be used in a context where
344/// the most significant bits are ignored.
345static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
346                           ScalarEvolution &SE,
347                           bool IgnoreSignificantBits = false) {
348  // Handle the trivial case, which works for any SCEV type.
349  if (LHS == RHS)
350    return SE.getIntegerSCEV(1, LHS->getType());
351
352  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
353  // folding.
354  if (RHS->isAllOnesValue())
355    return SE.getMulExpr(LHS, RHS);
356
357  // Check for a division of a constant by a constant.
358  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
359    const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
360    if (!RC)
361      return 0;
362    if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
363      return 0;
364    return SE.getConstant(C->getValue()->getValue()
365               .sdiv(RC->getValue()->getValue()));
366  }
367
368  // Distribute the sdiv over addrec operands.
369  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
370    const SCEV *Start = getSDiv(AR->getStart(), RHS, SE,
371                                IgnoreSignificantBits);
372    if (!Start) return 0;
373    const SCEV *Step = getSDiv(AR->getStepRecurrence(SE), RHS, SE,
374                               IgnoreSignificantBits);
375    if (!Step) return 0;
376    return SE.getAddRecExpr(Start, Step, AR->getLoop());
377  }
378
379  // Distribute the sdiv over add operands.
380  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
381    SmallVector<const SCEV *, 8> Ops;
382    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
383         I != E; ++I) {
384      const SCEV *Op = getSDiv(*I, RHS, SE,
385                               IgnoreSignificantBits);
386      if (!Op) return 0;
387      Ops.push_back(Op);
388    }
389    return SE.getAddExpr(Ops);
390  }
391
392  // Check for a multiply operand that we can pull RHS out of.
393  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
394    if (IgnoreSignificantBits || Mul->hasNoSignedWrap()) {
395      SmallVector<const SCEV *, 4> Ops;
396      bool Found = false;
397      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
398           I != E; ++I) {
399        if (!Found)
400          if (const SCEV *Q = getSDiv(*I, RHS, SE, IgnoreSignificantBits)) {
401            Ops.push_back(Q);
402            Found = true;
403            continue;
404          }
405        Ops.push_back(*I);
406      }
407      return Found ? SE.getMulExpr(Ops) : 0;
408    }
409
410  // Otherwise we don't know.
411  return 0;
412}
413
414/// ExtractImmediate - If S involves the addition of a constant integer value,
415/// return that integer value, and mutate S to point to a new SCEV with that
416/// value excluded.
417static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
418  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
419    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
420      S = SE.getIntegerSCEV(0, C->getType());
421      return C->getValue()->getSExtValue();
422    }
423  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
424    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
425    int64_t Result = ExtractImmediate(NewOps.front(), SE);
426    S = SE.getAddExpr(NewOps);
427    return Result;
428  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
429    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
430    int64_t Result = ExtractImmediate(NewOps.front(), SE);
431    S = SE.getAddRecExpr(NewOps, AR->getLoop());
432    return Result;
433  }
434  return 0;
435}
436
437/// ExtractSymbol - If S involves the addition of a GlobalValue address,
438/// return that symbol, and mutate S to point to a new SCEV with that
439/// value excluded.
440static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
441  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
442    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
443      S = SE.getIntegerSCEV(0, GV->getType());
444      return GV;
445    }
446  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
447    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
448    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
449    S = SE.getAddExpr(NewOps);
450    return Result;
451  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
452    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
453    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
454    S = SE.getAddRecExpr(NewOps, AR->getLoop());
455    return Result;
456  }
457  return 0;
458}
459
460/// isAddressUse - Returns true if the specified instruction is using the
461/// specified value as an address.
462static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
463  bool isAddress = isa<LoadInst>(Inst);
464  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
465    if (SI->getOperand(1) == OperandVal)
466      isAddress = true;
467  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
468    // Addressing modes can also be folded into prefetches and a variety
469    // of intrinsics.
470    switch (II->getIntrinsicID()) {
471      default: break;
472      case Intrinsic::prefetch:
473      case Intrinsic::x86_sse2_loadu_dq:
474      case Intrinsic::x86_sse2_loadu_pd:
475      case Intrinsic::x86_sse_loadu_ps:
476      case Intrinsic::x86_sse_storeu_ps:
477      case Intrinsic::x86_sse2_storeu_pd:
478      case Intrinsic::x86_sse2_storeu_dq:
479      case Intrinsic::x86_sse2_storel_dq:
480        if (II->getOperand(1) == OperandVal)
481          isAddress = true;
482        break;
483    }
484  }
485  return isAddress;
486}
487
488/// getAccessType - Return the type of the memory being accessed.
489static const Type *getAccessType(const Instruction *Inst) {
490  const Type *AccessTy = Inst->getType();
491  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
492    AccessTy = SI->getOperand(0)->getType();
493  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
494    // Addressing modes can also be folded into prefetches and a variety
495    // of intrinsics.
496    switch (II->getIntrinsicID()) {
497    default: break;
498    case Intrinsic::x86_sse_storeu_ps:
499    case Intrinsic::x86_sse2_storeu_pd:
500    case Intrinsic::x86_sse2_storeu_dq:
501    case Intrinsic::x86_sse2_storel_dq:
502      AccessTy = II->getOperand(1)->getType();
503      break;
504    }
505  }
506
507  // All pointers have the same requirements, so canonicalize them to an
508  // arbitrary pointer type to minimize variation.
509  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
510    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
511                                PTy->getAddressSpace());
512
513  return AccessTy;
514}
515
516/// DeleteTriviallyDeadInstructions - If any of the instructions is the
517/// specified set are trivially dead, delete them and see if this makes any of
518/// their operands subsequently dead.
519static bool
520DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
521  bool Changed = false;
522
523  while (!DeadInsts.empty()) {
524    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
525
526    if (I == 0 || !isInstructionTriviallyDead(I))
527      continue;
528
529    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
530      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
531        *OI = 0;
532        if (U->use_empty())
533          DeadInsts.push_back(U);
534      }
535
536    I->eraseFromParent();
537    Changed = true;
538  }
539
540  return Changed;
541}
542
543namespace {
544
545/// Cost - This class is used to measure and compare candidate formulae.
546class Cost {
547  /// TODO: Some of these could be merged. Also, a lexical ordering
548  /// isn't always optimal.
549  unsigned NumRegs;
550  unsigned AddRecCost;
551  unsigned NumIVMuls;
552  unsigned NumBaseAdds;
553  unsigned ImmCost;
554  unsigned SetupCost;
555
556public:
557  Cost()
558    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
559      SetupCost(0) {}
560
561  unsigned getNumRegs() const { return NumRegs; }
562
563  bool operator<(const Cost &Other) const;
564
565  void Loose();
566
567  void RateFormula(const Formula &F,
568                   SmallPtrSet<const SCEV *, 16> &Regs,
569                   const DenseSet<const SCEV *> &VisitedRegs,
570                   const Loop *L,
571                   const SmallVectorImpl<int64_t> &Offsets,
572                   ScalarEvolution &SE, DominatorTree &DT);
573
574  void print(raw_ostream &OS) const;
575  void dump() const;
576
577private:
578  void RateRegister(const SCEV *Reg,
579                    SmallPtrSet<const SCEV *, 16> &Regs,
580                    const Loop *L,
581                    ScalarEvolution &SE, DominatorTree &DT);
582  void RatePrimaryRegister(const SCEV *Reg,
583                           SmallPtrSet<const SCEV *, 16> &Regs,
584                           const Loop *L,
585                           ScalarEvolution &SE, DominatorTree &DT);
586};
587
588}
589
590/// RateRegister - Tally up interesting quantities from the given register.
591void Cost::RateRegister(const SCEV *Reg,
592                        SmallPtrSet<const SCEV *, 16> &Regs,
593                        const Loop *L,
594                        ScalarEvolution &SE, DominatorTree &DT) {
595  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
596    if (AR->getLoop() == L)
597      AddRecCost += 1; /// TODO: This should be a function of the stride.
598
599    // If this is an addrec for a loop that's already been visited by LSR,
600    // don't second-guess its addrec phi nodes. LSR isn't currently smart
601    // enough to reason about more than one loop at a time. Consider these
602    // registers free and leave them alone.
603    else if (L->contains(AR->getLoop()) ||
604             (!AR->getLoop()->contains(L) &&
605              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
606      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
607           PHINode *PN = dyn_cast<PHINode>(I); ++I)
608        if (SE.isSCEVable(PN->getType()) &&
609            (SE.getEffectiveSCEVType(PN->getType()) ==
610             SE.getEffectiveSCEVType(AR->getType())) &&
611            SE.getSCEV(PN) == AR)
612          return;
613
614      // If this isn't one of the addrecs that the loop already has, it
615      // would require a costly new phi and add. TODO: This isn't
616      // precisely modeled right now.
617      ++NumBaseAdds;
618      if (!Regs.count(AR->getStart()))
619        RateRegister(AR->getStart(), Regs, L, SE, DT);
620    }
621
622    // Add the step value register, if it needs one.
623    // TODO: The non-affine case isn't precisely modeled here.
624    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
625      if (!Regs.count(AR->getStart()))
626        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
627  }
628  ++NumRegs;
629
630  // Rough heuristic; favor registers which don't require extra setup
631  // instructions in the preheader.
632  if (!isa<SCEVUnknown>(Reg) &&
633      !isa<SCEVConstant>(Reg) &&
634      !(isa<SCEVAddRecExpr>(Reg) &&
635        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
636         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
637    ++SetupCost;
638}
639
640/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
641/// before, rate it.
642void Cost::RatePrimaryRegister(const SCEV *Reg,
643                               SmallPtrSet<const SCEV *, 16> &Regs,
644                               const Loop *L,
645                               ScalarEvolution &SE, DominatorTree &DT) {
646  if (Regs.insert(Reg))
647    RateRegister(Reg, Regs, L, SE, DT);
648}
649
650void Cost::RateFormula(const Formula &F,
651                       SmallPtrSet<const SCEV *, 16> &Regs,
652                       const DenseSet<const SCEV *> &VisitedRegs,
653                       const Loop *L,
654                       const SmallVectorImpl<int64_t> &Offsets,
655                       ScalarEvolution &SE, DominatorTree &DT) {
656  // Tally up the registers.
657  if (const SCEV *ScaledReg = F.ScaledReg) {
658    if (VisitedRegs.count(ScaledReg)) {
659      Loose();
660      return;
661    }
662    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
663  }
664  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
665       E = F.BaseRegs.end(); I != E; ++I) {
666    const SCEV *BaseReg = *I;
667    if (VisitedRegs.count(BaseReg)) {
668      Loose();
669      return;
670    }
671    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
672
673    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
674                 BaseReg->hasComputableLoopEvolution(L);
675  }
676
677  if (F.BaseRegs.size() > 1)
678    NumBaseAdds += F.BaseRegs.size() - 1;
679
680  // Tally up the non-zero immediates.
681  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
682       E = Offsets.end(); I != E; ++I) {
683    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
684    if (F.AM.BaseGV)
685      ImmCost += 64; // Handle symbolic values conservatively.
686                     // TODO: This should probably be the pointer size.
687    else if (Offset != 0)
688      ImmCost += APInt(64, Offset, true).getMinSignedBits();
689  }
690}
691
692/// Loose - Set this cost to a loosing value.
693void Cost::Loose() {
694  NumRegs = ~0u;
695  AddRecCost = ~0u;
696  NumIVMuls = ~0u;
697  NumBaseAdds = ~0u;
698  ImmCost = ~0u;
699  SetupCost = ~0u;
700}
701
702/// operator< - Choose the lower cost.
703bool Cost::operator<(const Cost &Other) const {
704  if (NumRegs != Other.NumRegs)
705    return NumRegs < Other.NumRegs;
706  if (AddRecCost != Other.AddRecCost)
707    return AddRecCost < Other.AddRecCost;
708  if (NumIVMuls != Other.NumIVMuls)
709    return NumIVMuls < Other.NumIVMuls;
710  if (NumBaseAdds != Other.NumBaseAdds)
711    return NumBaseAdds < Other.NumBaseAdds;
712  if (ImmCost != Other.ImmCost)
713    return ImmCost < Other.ImmCost;
714  if (SetupCost != Other.SetupCost)
715    return SetupCost < Other.SetupCost;
716  return false;
717}
718
719void Cost::print(raw_ostream &OS) const {
720  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
721  if (AddRecCost != 0)
722    OS << ", with addrec cost " << AddRecCost;
723  if (NumIVMuls != 0)
724    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
725  if (NumBaseAdds != 0)
726    OS << ", plus " << NumBaseAdds << " base add"
727       << (NumBaseAdds == 1 ? "" : "s");
728  if (ImmCost != 0)
729    OS << ", plus " << ImmCost << " imm cost";
730  if (SetupCost != 0)
731    OS << ", plus " << SetupCost << " setup cost";
732}
733
734void Cost::dump() const {
735  print(errs()); errs() << '\n';
736}
737
738namespace {
739
740/// LSRFixup - An operand value in an instruction which is to be replaced
741/// with some equivalent, possibly strength-reduced, replacement.
742struct LSRFixup {
743  /// UserInst - The instruction which will be updated.
744  Instruction *UserInst;
745
746  /// OperandValToReplace - The operand of the instruction which will
747  /// be replaced. The operand may be used more than once; every instance
748  /// will be replaced.
749  Value *OperandValToReplace;
750
751  /// PostIncLoop - If this user is to use the post-incremented value of an
752  /// induction variable, this variable is non-null and holds the loop
753  /// associated with the induction variable.
754  const Loop *PostIncLoop;
755
756  /// LUIdx - The index of the LSRUse describing the expression which
757  /// this fixup needs, minus an offset (below).
758  size_t LUIdx;
759
760  /// Offset - A constant offset to be added to the LSRUse expression.
761  /// This allows multiple fixups to share the same LSRUse with different
762  /// offsets, for example in an unrolled loop.
763  int64_t Offset;
764
765  LSRFixup();
766
767  void print(raw_ostream &OS) const;
768  void dump() const;
769};
770
771}
772
773LSRFixup::LSRFixup()
774  : UserInst(0), OperandValToReplace(0), PostIncLoop(0),
775    LUIdx(~size_t(0)), Offset(0) {}
776
777void LSRFixup::print(raw_ostream &OS) const {
778  OS << "UserInst=";
779  // Store is common and interesting enough to be worth special-casing.
780  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
781    OS << "store ";
782    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
783  } else if (UserInst->getType()->isVoidTy())
784    OS << UserInst->getOpcodeName();
785  else
786    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
787
788  OS << ", OperandValToReplace=";
789  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
790
791  if (PostIncLoop) {
792    OS << ", PostIncLoop=";
793    WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false);
794  }
795
796  if (LUIdx != ~size_t(0))
797    OS << ", LUIdx=" << LUIdx;
798
799  if (Offset != 0)
800    OS << ", Offset=" << Offset;
801}
802
803void LSRFixup::dump() const {
804  print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
810/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
811struct UniquifierDenseMapInfo {
812  static SmallVector<const SCEV *, 2> getEmptyKey() {
813    SmallVector<const SCEV *, 2> V;
814    V.push_back(reinterpret_cast<const SCEV *>(-1));
815    return V;
816  }
817
818  static SmallVector<const SCEV *, 2> getTombstoneKey() {
819    SmallVector<const SCEV *, 2> V;
820    V.push_back(reinterpret_cast<const SCEV *>(-2));
821    return V;
822  }
823
824  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
825    unsigned Result = 0;
826    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
827         E = V.end(); I != E; ++I)
828      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
829    return Result;
830  }
831
832  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
833                      const SmallVector<const SCEV *, 2> &RHS) {
834    return LHS == RHS;
835  }
836};
837
838/// LSRUse - This class holds the state that LSR keeps for each use in
839/// IVUsers, as well as uses invented by LSR itself. It includes information
840/// about what kinds of things can be folded into the user, information about
841/// the user itself, and information about how the use may be satisfied.
842/// TODO: Represent multiple users of the same expression in common?
843class LSRUse {
844  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
845
846public:
847  /// KindType - An enum for a kind of use, indicating what types of
848  /// scaled and immediate operands it might support.
849  enum KindType {
850    Basic,   ///< A normal use, with no folding.
851    Special, ///< A special case of basic, allowing -1 scales.
852    Address, ///< An address use; folding according to TargetLowering
853    ICmpZero ///< An equality icmp with both operands folded into one.
854    // TODO: Add a generic icmp too?
855  };
856
857  KindType Kind;
858  const Type *AccessTy;
859
860  SmallVector<int64_t, 8> Offsets;
861  int64_t MinOffset;
862  int64_t MaxOffset;
863
864  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
865  /// LSRUse are outside of the loop, in which case some special-case heuristics
866  /// may be used.
867  bool AllFixupsOutsideLoop;
868
869  /// Formulae - A list of ways to build a value that can satisfy this user.
870  /// After the list is populated, one of these is selected heuristically and
871  /// used to formulate a replacement for OperandValToReplace in UserInst.
872  SmallVector<Formula, 12> Formulae;
873
874  /// Regs - The set of register candidates used by all formulae in this LSRUse.
875  SmallPtrSet<const SCEV *, 4> Regs;
876
877  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
878                                      MinOffset(INT64_MAX),
879                                      MaxOffset(INT64_MIN),
880                                      AllFixupsOutsideLoop(true) {}
881
882  bool InsertFormula(size_t LUIdx, const Formula &F);
883
884  void check() const;
885
886  void print(raw_ostream &OS) const;
887  void dump() const;
888};
889
890/// InsertFormula - If the given formula has not yet been inserted, add it to
891/// the list, and return true. Return false otherwise.
892bool LSRUse::InsertFormula(size_t LUIdx, const Formula &F) {
893  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
894  if (F.ScaledReg) Key.push_back(F.ScaledReg);
895  // Unstable sort by host order ok, because this is only used for uniquifying.
896  std::sort(Key.begin(), Key.end());
897
898  if (!Uniquifier.insert(Key).second)
899    return false;
900
901  // Using a register to hold the value of 0 is not profitable.
902  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
903         "Zero allocated in a scaled register!");
904#ifndef NDEBUG
905  for (SmallVectorImpl<const SCEV *>::const_iterator I =
906       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
907    assert(!(*I)->isZero() && "Zero allocated in a base register!");
908#endif
909
910  // Add the formula to the list.
911  Formulae.push_back(F);
912
913  // Record registers now being used by this use.
914  if (F.ScaledReg) Regs.insert(F.ScaledReg);
915  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
916
917  return true;
918}
919
920void LSRUse::print(raw_ostream &OS) const {
921  OS << "LSR Use: Kind=";
922  switch (Kind) {
923  case Basic:    OS << "Basic"; break;
924  case Special:  OS << "Special"; break;
925  case ICmpZero: OS << "ICmpZero"; break;
926  case Address:
927    OS << "Address of ";
928    if (AccessTy->isPointerTy())
929      OS << "pointer"; // the full pointer type could be really verbose
930    else
931      OS << *AccessTy;
932  }
933
934  OS << ", Offsets={";
935  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
936       E = Offsets.end(); I != E; ++I) {
937    OS << *I;
938    if (next(I) != E)
939      OS << ',';
940  }
941  OS << '}';
942
943  if (AllFixupsOutsideLoop)
944    OS << ", all-fixups-outside-loop";
945}
946
947void LSRUse::dump() const {
948  print(errs()); errs() << '\n';
949}
950
951/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
952/// be completely folded into the user instruction at isel time. This includes
953/// address-mode folding and special icmp tricks.
954static bool isLegalUse(const TargetLowering::AddrMode &AM,
955                       LSRUse::KindType Kind, const Type *AccessTy,
956                       const TargetLowering *TLI) {
957  switch (Kind) {
958  case LSRUse::Address:
959    // If we have low-level target information, ask the target if it can
960    // completely fold this address.
961    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
962
963    // Otherwise, just guess that reg+reg addressing is legal.
964    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
965
966  case LSRUse::ICmpZero:
967    // There's not even a target hook for querying whether it would be legal to
968    // fold a GV into an ICmp.
969    if (AM.BaseGV)
970      return false;
971
972    // ICmp only has two operands; don't allow more than two non-trivial parts.
973    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
974      return false;
975
976    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
977    // putting the scaled register in the other operand of the icmp.
978    if (AM.Scale != 0 && AM.Scale != -1)
979      return false;
980
981    // If we have low-level target information, ask the target if it can fold an
982    // integer immediate on an icmp.
983    if (AM.BaseOffs != 0) {
984      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
985      return false;
986    }
987
988    return true;
989
990  case LSRUse::Basic:
991    // Only handle single-register values.
992    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
993
994  case LSRUse::Special:
995    // Only handle -1 scales, or no scale.
996    return AM.Scale == 0 || AM.Scale == -1;
997  }
998
999  return false;
1000}
1001
1002static bool isLegalUse(TargetLowering::AddrMode AM,
1003                       int64_t MinOffset, int64_t MaxOffset,
1004                       LSRUse::KindType Kind, const Type *AccessTy,
1005                       const TargetLowering *TLI) {
1006  // Check for overflow.
1007  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1008      (MinOffset > 0))
1009    return false;
1010  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1011  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1012    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1013    // Check for overflow.
1014    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1015        (MaxOffset > 0))
1016      return false;
1017    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1018    return isLegalUse(AM, Kind, AccessTy, TLI);
1019  }
1020  return false;
1021}
1022
1023static bool isAlwaysFoldable(int64_t BaseOffs,
1024                             GlobalValue *BaseGV,
1025                             bool HasBaseReg,
1026                             LSRUse::KindType Kind, const Type *AccessTy,
1027                             const TargetLowering *TLI,
1028                             ScalarEvolution &SE) {
1029  // Fast-path: zero is always foldable.
1030  if (BaseOffs == 0 && !BaseGV) return true;
1031
1032  // Conservatively, create an address with an immediate and a
1033  // base and a scale.
1034  TargetLowering::AddrMode AM;
1035  AM.BaseOffs = BaseOffs;
1036  AM.BaseGV = BaseGV;
1037  AM.HasBaseReg = HasBaseReg;
1038  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1039
1040  return isLegalUse(AM, Kind, AccessTy, TLI);
1041}
1042
1043static bool isAlwaysFoldable(const SCEV *S,
1044                             int64_t MinOffset, int64_t MaxOffset,
1045                             bool HasBaseReg,
1046                             LSRUse::KindType Kind, const Type *AccessTy,
1047                             const TargetLowering *TLI,
1048                             ScalarEvolution &SE) {
1049  // Fast-path: zero is always foldable.
1050  if (S->isZero()) return true;
1051
1052  // Conservatively, create an address with an immediate and a
1053  // base and a scale.
1054  int64_t BaseOffs = ExtractImmediate(S, SE);
1055  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1056
1057  // If there's anything else involved, it's not foldable.
1058  if (!S->isZero()) return false;
1059
1060  // Fast-path: zero is always foldable.
1061  if (BaseOffs == 0 && !BaseGV) return true;
1062
1063  // Conservatively, create an address with an immediate and a
1064  // base and a scale.
1065  TargetLowering::AddrMode AM;
1066  AM.BaseOffs = BaseOffs;
1067  AM.BaseGV = BaseGV;
1068  AM.HasBaseReg = HasBaseReg;
1069  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1070
1071  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1072}
1073
1074/// FormulaSorter - This class implements an ordering for formulae which sorts
1075/// the by their standalone cost.
1076class FormulaSorter {
1077  /// These two sets are kept empty, so that we compute standalone costs.
1078  DenseSet<const SCEV *> VisitedRegs;
1079  SmallPtrSet<const SCEV *, 16> Regs;
1080  Loop *L;
1081  LSRUse *LU;
1082  ScalarEvolution &SE;
1083  DominatorTree &DT;
1084
1085public:
1086  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1087    : L(l), LU(&lu), SE(se), DT(dt) {}
1088
1089  bool operator()(const Formula &A, const Formula &B) {
1090    Cost CostA;
1091    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1092    Regs.clear();
1093    Cost CostB;
1094    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1095    Regs.clear();
1096    return CostA < CostB;
1097  }
1098};
1099
1100/// LSRInstance - This class holds state for the main loop strength reduction
1101/// logic.
1102class LSRInstance {
1103  IVUsers &IU;
1104  ScalarEvolution &SE;
1105  DominatorTree &DT;
1106  const TargetLowering *const TLI;
1107  Loop *const L;
1108  bool Changed;
1109
1110  /// IVIncInsertPos - This is the insert position that the current loop's
1111  /// induction variable increment should be placed. In simple loops, this is
1112  /// the latch block's terminator. But in more complicated cases, this is a
1113  /// position which will dominate all the in-loop post-increment users.
1114  Instruction *IVIncInsertPos;
1115
1116  /// Factors - Interesting factors between use strides.
1117  SmallSetVector<int64_t, 8> Factors;
1118
1119  /// Types - Interesting use types, to facilitate truncation reuse.
1120  SmallSetVector<const Type *, 4> Types;
1121
1122  /// Fixups - The list of operands which are to be replaced.
1123  SmallVector<LSRFixup, 16> Fixups;
1124
1125  /// Uses - The list of interesting uses.
1126  SmallVector<LSRUse, 16> Uses;
1127
1128  /// RegUses - Track which uses use which register candidates.
1129  RegUseTracker RegUses;
1130
1131  void OptimizeShadowIV();
1132  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1133  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1134  bool OptimizeLoopTermCond();
1135
1136  void CollectInterestingTypesAndFactors();
1137  void CollectFixupsAndInitialFormulae();
1138
1139  LSRFixup &getNewFixup() {
1140    Fixups.push_back(LSRFixup());
1141    return Fixups.back();
1142  }
1143
1144  // Support for sharing of LSRUses between LSRFixups.
1145  typedef DenseMap<const SCEV *, size_t> UseMapTy;
1146  UseMapTy UseMap;
1147
1148  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1149                          LSRUse::KindType Kind, const Type *AccessTy);
1150
1151  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1152                                    LSRUse::KindType Kind,
1153                                    const Type *AccessTy);
1154
1155public:
1156  void InsertInitialFormula(const SCEV *S, Loop *L, LSRUse &LU, size_t LUIdx);
1157  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1158  void CountRegisters(const Formula &F, size_t LUIdx);
1159  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1160
1161  void CollectLoopInvariantFixupsAndFormulae();
1162
1163  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1164                              unsigned Depth = 0);
1165  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1166  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1167  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1168  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1169  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1170  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1171  void GenerateCrossUseConstantOffsets();
1172  void GenerateAllReuseFormulae();
1173
1174  void FilterOutUndesirableDedicatedRegisters();
1175  void NarrowSearchSpaceUsingHeuristics();
1176
1177  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1178                    Cost &SolutionCost,
1179                    SmallVectorImpl<const Formula *> &Workspace,
1180                    const Cost &CurCost,
1181                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1182                    DenseSet<const SCEV *> &VisitedRegs) const;
1183  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1184
1185  Value *Expand(const LSRFixup &LF,
1186                const Formula &F,
1187                BasicBlock::iterator IP, Loop *L, Instruction *IVIncInsertPos,
1188                SCEVExpander &Rewriter,
1189                SmallVectorImpl<WeakVH> &DeadInsts,
1190                ScalarEvolution &SE, DominatorTree &DT) const;
1191  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1192                     const Formula &F,
1193                     Loop *L, Instruction *IVIncInsertPos,
1194                     SCEVExpander &Rewriter,
1195                     SmallVectorImpl<WeakVH> &DeadInsts,
1196                     ScalarEvolution &SE, DominatorTree &DT,
1197                     Pass *P) const;
1198  void Rewrite(const LSRFixup &LF,
1199               const Formula &F,
1200               Loop *L, Instruction *IVIncInsertPos,
1201               SCEVExpander &Rewriter,
1202               SmallVectorImpl<WeakVH> &DeadInsts,
1203               ScalarEvolution &SE, DominatorTree &DT,
1204               Pass *P) const;
1205  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1206                         Pass *P);
1207
1208  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1209
1210  bool getChanged() const { return Changed; }
1211
1212  void print_factors_and_types(raw_ostream &OS) const;
1213  void print_fixups(raw_ostream &OS) const;
1214  void print_uses(raw_ostream &OS) const;
1215  void print(raw_ostream &OS) const;
1216  void dump() const;
1217};
1218
1219}
1220
1221/// OptimizeShadowIV - If IV is used in a int-to-float cast
1222/// inside the loop then try to eliminate the cast opeation.
1223void LSRInstance::OptimizeShadowIV() {
1224  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1225  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1226    return;
1227
1228  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1229       UI != E; /* empty */) {
1230    IVUsers::const_iterator CandidateUI = UI;
1231    ++UI;
1232    Instruction *ShadowUse = CandidateUI->getUser();
1233    const Type *DestTy = NULL;
1234
1235    /* If shadow use is a int->float cast then insert a second IV
1236       to eliminate this cast.
1237
1238         for (unsigned i = 0; i < n; ++i)
1239           foo((double)i);
1240
1241       is transformed into
1242
1243         double d = 0.0;
1244         for (unsigned i = 0; i < n; ++i, ++d)
1245           foo(d);
1246    */
1247    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1248      DestTy = UCast->getDestTy();
1249    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1250      DestTy = SCast->getDestTy();
1251    if (!DestTy) continue;
1252
1253    if (TLI) {
1254      // If target does not support DestTy natively then do not apply
1255      // this transformation.
1256      EVT DVT = TLI->getValueType(DestTy);
1257      if (!TLI->isTypeLegal(DVT)) continue;
1258    }
1259
1260    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1261    if (!PH) continue;
1262    if (PH->getNumIncomingValues() != 2) continue;
1263
1264    const Type *SrcTy = PH->getType();
1265    int Mantissa = DestTy->getFPMantissaWidth();
1266    if (Mantissa == -1) continue;
1267    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1268      continue;
1269
1270    unsigned Entry, Latch;
1271    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1272      Entry = 0;
1273      Latch = 1;
1274    } else {
1275      Entry = 1;
1276      Latch = 0;
1277    }
1278
1279    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1280    if (!Init) continue;
1281    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1282
1283    BinaryOperator *Incr =
1284      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1285    if (!Incr) continue;
1286    if (Incr->getOpcode() != Instruction::Add
1287        && Incr->getOpcode() != Instruction::Sub)
1288      continue;
1289
1290    /* Initialize new IV, double d = 0.0 in above example. */
1291    ConstantInt *C = NULL;
1292    if (Incr->getOperand(0) == PH)
1293      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1294    else if (Incr->getOperand(1) == PH)
1295      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1296    else
1297      continue;
1298
1299    if (!C) continue;
1300
1301    // Ignore negative constants, as the code below doesn't handle them
1302    // correctly. TODO: Remove this restriction.
1303    if (!C->getValue().isStrictlyPositive()) continue;
1304
1305    /* Add new PHINode. */
1306    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1307
1308    /* create new increment. '++d' in above example. */
1309    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1310    BinaryOperator *NewIncr =
1311      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1312                               Instruction::FAdd : Instruction::FSub,
1313                             NewPH, CFP, "IV.S.next.", Incr);
1314
1315    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1316    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1317
1318    /* Remove cast operation */
1319    ShadowUse->replaceAllUsesWith(NewPH);
1320    ShadowUse->eraseFromParent();
1321    break;
1322  }
1323}
1324
1325/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1326/// set the IV user and stride information and return true, otherwise return
1327/// false.
1328bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1329                                    IVStrideUse *&CondUse) {
1330  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1331    if (UI->getUser() == Cond) {
1332      // NOTE: we could handle setcc instructions with multiple uses here, but
1333      // InstCombine does it as well for simple uses, it's not clear that it
1334      // occurs enough in real life to handle.
1335      CondUse = UI;
1336      return true;
1337    }
1338  return false;
1339}
1340
1341/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1342/// a max computation.
1343///
1344/// This is a narrow solution to a specific, but acute, problem. For loops
1345/// like this:
1346///
1347///   i = 0;
1348///   do {
1349///     p[i] = 0.0;
1350///   } while (++i < n);
1351///
1352/// the trip count isn't just 'n', because 'n' might not be positive. And
1353/// unfortunately this can come up even for loops where the user didn't use
1354/// a C do-while loop. For example, seemingly well-behaved top-test loops
1355/// will commonly be lowered like this:
1356//
1357///   if (n > 0) {
1358///     i = 0;
1359///     do {
1360///       p[i] = 0.0;
1361///     } while (++i < n);
1362///   }
1363///
1364/// and then it's possible for subsequent optimization to obscure the if
1365/// test in such a way that indvars can't find it.
1366///
1367/// When indvars can't find the if test in loops like this, it creates a
1368/// max expression, which allows it to give the loop a canonical
1369/// induction variable:
1370///
1371///   i = 0;
1372///   max = n < 1 ? 1 : n;
1373///   do {
1374///     p[i] = 0.0;
1375///   } while (++i != max);
1376///
1377/// Canonical induction variables are necessary because the loop passes
1378/// are designed around them. The most obvious example of this is the
1379/// LoopInfo analysis, which doesn't remember trip count values. It
1380/// expects to be able to rediscover the trip count each time it is
1381/// needed, and it does this using a simple analysis that only succeeds if
1382/// the loop has a canonical induction variable.
1383///
1384/// However, when it comes time to generate code, the maximum operation
1385/// can be quite costly, especially if it's inside of an outer loop.
1386///
1387/// This function solves this problem by detecting this type of loop and
1388/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1389/// the instructions for the maximum computation.
1390///
1391ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1392  // Check that the loop matches the pattern we're looking for.
1393  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1394      Cond->getPredicate() != CmpInst::ICMP_NE)
1395    return Cond;
1396
1397  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1398  if (!Sel || !Sel->hasOneUse()) return Cond;
1399
1400  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1401  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1402    return Cond;
1403  const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
1404
1405  // Add one to the backedge-taken count to get the trip count.
1406  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1407
1408  // Check for a max calculation that matches the pattern.
1409  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
1410    return Cond;
1411  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
1412  if (Max != SE.getSCEV(Sel)) return Cond;
1413
1414  // To handle a max with more than two operands, this optimization would
1415  // require additional checking and setup.
1416  if (Max->getNumOperands() != 2)
1417    return Cond;
1418
1419  const SCEV *MaxLHS = Max->getOperand(0);
1420  const SCEV *MaxRHS = Max->getOperand(1);
1421  if (!MaxLHS || MaxLHS != One) return Cond;
1422  // Check the relevant induction variable for conformance to
1423  // the pattern.
1424  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1425  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1426  if (!AR || !AR->isAffine() ||
1427      AR->getStart() != One ||
1428      AR->getStepRecurrence(SE) != One)
1429    return Cond;
1430
1431  assert(AR->getLoop() == L &&
1432         "Loop condition operand is an addrec in a different loop!");
1433
1434  // Check the right operand of the select, and remember it, as it will
1435  // be used in the new comparison instruction.
1436  Value *NewRHS = 0;
1437  if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1438    NewRHS = Sel->getOperand(1);
1439  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1440    NewRHS = Sel->getOperand(2);
1441  if (!NewRHS) return Cond;
1442
1443  // Determine the new comparison opcode. It may be signed or unsigned,
1444  // and the original comparison may be either equality or inequality.
1445  CmpInst::Predicate Pred =
1446    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
1447  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1448    Pred = CmpInst::getInversePredicate(Pred);
1449
1450  // Ok, everything looks ok to change the condition into an SLT or SGE and
1451  // delete the max calculation.
1452  ICmpInst *NewCond =
1453    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1454
1455  // Delete the max calculation instructions.
1456  Cond->replaceAllUsesWith(NewCond);
1457  CondUse->setUser(NewCond);
1458  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1459  Cond->eraseFromParent();
1460  Sel->eraseFromParent();
1461  if (Cmp->use_empty())
1462    Cmp->eraseFromParent();
1463  return NewCond;
1464}
1465
1466/// OptimizeLoopTermCond - Change loop terminating condition to use the
1467/// postinc iv when possible.
1468bool
1469LSRInstance::OptimizeLoopTermCond() {
1470  SmallPtrSet<Instruction *, 4> PostIncs;
1471
1472  BasicBlock *LatchBlock = L->getLoopLatch();
1473  SmallVector<BasicBlock*, 8> ExitingBlocks;
1474  L->getExitingBlocks(ExitingBlocks);
1475
1476  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1477    BasicBlock *ExitingBlock = ExitingBlocks[i];
1478
1479    // Get the terminating condition for the loop if possible.  If we
1480    // can, we want to change it to use a post-incremented version of its
1481    // induction variable, to allow coalescing the live ranges for the IV into
1482    // one register value.
1483
1484    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1485    if (!TermBr)
1486      continue;
1487    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1488    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1489      continue;
1490
1491    // Search IVUsesByStride to find Cond's IVUse if there is one.
1492    IVStrideUse *CondUse = 0;
1493    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1494    if (!FindIVUserForCond(Cond, CondUse))
1495      continue;
1496
1497    // If the trip count is computed in terms of a max (due to ScalarEvolution
1498    // being unable to find a sufficient guard, for example), change the loop
1499    // comparison to use SLT or ULT instead of NE.
1500    // One consequence of doing this now is that it disrupts the count-down
1501    // optimization. That's not always a bad thing though, because in such
1502    // cases it may still be worthwhile to avoid a max.
1503    Cond = OptimizeMax(Cond, CondUse);
1504
1505    // If this exiting block dominates the latch block, it may also use
1506    // the post-inc value if it won't be shared with other uses.
1507    // Check for dominance.
1508    if (!DT.dominates(ExitingBlock, LatchBlock))
1509      continue;
1510
1511    // Conservatively avoid trying to use the post-inc value in non-latch
1512    // exits if there may be pre-inc users in intervening blocks.
1513    if (LatchBlock != ExitingBlock)
1514      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1515        // Test if the use is reachable from the exiting block. This dominator
1516        // query is a conservative approximation of reachability.
1517        if (&*UI != CondUse &&
1518            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1519          // Conservatively assume there may be reuse if the quotient of their
1520          // strides could be a legal scale.
1521          const SCEV *A = CondUse->getStride();
1522          const SCEV *B = UI->getStride();
1523          if (SE.getTypeSizeInBits(A->getType()) !=
1524              SE.getTypeSizeInBits(B->getType())) {
1525            if (SE.getTypeSizeInBits(A->getType()) >
1526                SE.getTypeSizeInBits(B->getType()))
1527              B = SE.getSignExtendExpr(B, A->getType());
1528            else
1529              A = SE.getSignExtendExpr(A, B->getType());
1530          }
1531          if (const SCEVConstant *D =
1532                dyn_cast_or_null<SCEVConstant>(getSDiv(B, A, SE))) {
1533            // Stride of one or negative one can have reuse with non-addresses.
1534            if (D->getValue()->isOne() ||
1535                D->getValue()->isAllOnesValue())
1536              goto decline_post_inc;
1537            // Avoid weird situations.
1538            if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1539                D->getValue()->getValue().isMinSignedValue())
1540              goto decline_post_inc;
1541            // Without TLI, assume that any stride might be valid, and so any
1542            // use might be shared.
1543            if (!TLI)
1544              goto decline_post_inc;
1545            // Check for possible scaled-address reuse.
1546            const Type *AccessTy = getAccessType(UI->getUser());
1547            TargetLowering::AddrMode AM;
1548            AM.Scale = D->getValue()->getSExtValue();
1549            if (TLI->isLegalAddressingMode(AM, AccessTy))
1550              goto decline_post_inc;
1551            AM.Scale = -AM.Scale;
1552            if (TLI->isLegalAddressingMode(AM, AccessTy))
1553              goto decline_post_inc;
1554          }
1555        }
1556
1557    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1558                 << *Cond << '\n');
1559
1560    // It's possible for the setcc instruction to be anywhere in the loop, and
1561    // possible for it to have multiple users.  If it is not immediately before
1562    // the exiting block branch, move it.
1563    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1564      if (Cond->hasOneUse()) {
1565        Cond->moveBefore(TermBr);
1566      } else {
1567        // Clone the terminating condition and insert into the loopend.
1568        ICmpInst *OldCond = Cond;
1569        Cond = cast<ICmpInst>(Cond->clone());
1570        Cond->setName(L->getHeader()->getName() + ".termcond");
1571        ExitingBlock->getInstList().insert(TermBr, Cond);
1572
1573        // Clone the IVUse, as the old use still exists!
1574        CondUse = &IU.AddUser(CondUse->getStride(), CondUse->getOffset(),
1575                              Cond, CondUse->getOperandValToReplace());
1576        TermBr->replaceUsesOfWith(OldCond, Cond);
1577      }
1578    }
1579
1580    // If we get to here, we know that we can transform the setcc instruction to
1581    // use the post-incremented version of the IV, allowing us to coalesce the
1582    // live ranges for the IV correctly.
1583    CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(),
1584                                       CondUse->getStride()));
1585    CondUse->setIsUseOfPostIncrementedValue(true);
1586    Changed = true;
1587
1588    PostIncs.insert(Cond);
1589  decline_post_inc:;
1590  }
1591
1592  // Determine an insertion point for the loop induction variable increment. It
1593  // must dominate all the post-inc comparisons we just set up, and it must
1594  // dominate the loop latch edge.
1595  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1596  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1597       E = PostIncs.end(); I != E; ++I) {
1598    BasicBlock *BB =
1599      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1600                                    (*I)->getParent());
1601    if (BB == (*I)->getParent())
1602      IVIncInsertPos = *I;
1603    else if (BB != IVIncInsertPos->getParent())
1604      IVIncInsertPos = BB->getTerminator();
1605  }
1606
1607  return Changed;
1608}
1609
1610bool
1611LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1612                                LSRUse::KindType Kind, const Type *AccessTy) {
1613  int64_t NewMinOffset = LU.MinOffset;
1614  int64_t NewMaxOffset = LU.MaxOffset;
1615  const Type *NewAccessTy = AccessTy;
1616
1617  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1618  // something conservative, however this can pessimize in the case that one of
1619  // the uses will have all its uses outside the loop, for example.
1620  if (LU.Kind != Kind)
1621    return false;
1622  // Conservatively assume HasBaseReg is true for now.
1623  if (NewOffset < LU.MinOffset) {
1624    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
1625                          Kind, AccessTy, TLI, SE))
1626      return false;
1627    NewMinOffset = NewOffset;
1628  } else if (NewOffset > LU.MaxOffset) {
1629    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
1630                          Kind, AccessTy, TLI, SE))
1631      return false;
1632    NewMaxOffset = NewOffset;
1633  }
1634  // Check for a mismatched access type, and fall back conservatively as needed.
1635  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1636    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1637
1638  // Update the use.
1639  LU.MinOffset = NewMinOffset;
1640  LU.MaxOffset = NewMaxOffset;
1641  LU.AccessTy = NewAccessTy;
1642  if (NewOffset != LU.Offsets.back())
1643    LU.Offsets.push_back(NewOffset);
1644  return true;
1645}
1646
1647/// getUse - Return an LSRUse index and an offset value for a fixup which
1648/// needs the given expression, with the given kind and optional access type.
1649/// Either reuse an exisitng use or create a new one, as needed.
1650std::pair<size_t, int64_t>
1651LSRInstance::getUse(const SCEV *&Expr,
1652                    LSRUse::KindType Kind, const Type *AccessTy) {
1653  const SCEV *Copy = Expr;
1654  int64_t Offset = ExtractImmediate(Expr, SE);
1655
1656  // Basic uses can't accept any offset, for example.
1657  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true,
1658                        Kind, AccessTy, TLI, SE)) {
1659    Expr = Copy;
1660    Offset = 0;
1661  }
1662
1663  std::pair<UseMapTy::iterator, bool> P =
1664    UseMap.insert(std::make_pair(Expr, 0));
1665  if (!P.second) {
1666    // A use already existed with this base.
1667    size_t LUIdx = P.first->second;
1668    LSRUse &LU = Uses[LUIdx];
1669    if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1670      // Reuse this use.
1671      return std::make_pair(LUIdx, Offset);
1672  }
1673
1674  // Create a new use.
1675  size_t LUIdx = Uses.size();
1676  P.first->second = LUIdx;
1677  Uses.push_back(LSRUse(Kind, AccessTy));
1678  LSRUse &LU = Uses[LUIdx];
1679
1680  // We don't need to track redundant offsets, but we don't need to go out
1681  // of our way here to avoid them.
1682  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1683    LU.Offsets.push_back(Offset);
1684
1685  LU.MinOffset = Offset;
1686  LU.MaxOffset = Offset;
1687  return std::make_pair(LUIdx, Offset);
1688}
1689
1690void LSRInstance::CollectInterestingTypesAndFactors() {
1691  SmallSetVector<const SCEV *, 4> Strides;
1692
1693  // Collect interesting types and factors.
1694  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1695    const SCEV *Stride = UI->getStride();
1696
1697    // Collect interesting types.
1698    Types.insert(SE.getEffectiveSCEVType(Stride->getType()));
1699
1700    // Collect interesting factors.
1701    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1702         Strides.begin(), SEnd = Strides.end(); NewStrideIter != SEnd;
1703         ++NewStrideIter) {
1704      const SCEV *OldStride = Stride;
1705      const SCEV *NewStride = *NewStrideIter;
1706      if (OldStride == NewStride)
1707        continue;
1708
1709      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1710          SE.getTypeSizeInBits(NewStride->getType())) {
1711        if (SE.getTypeSizeInBits(OldStride->getType()) >
1712            SE.getTypeSizeInBits(NewStride->getType()))
1713          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1714        else
1715          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1716      }
1717      if (const SCEVConstant *Factor =
1718            dyn_cast_or_null<SCEVConstant>(getSDiv(NewStride, OldStride,
1719                                                   SE, true))) {
1720        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1721          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1722      } else if (const SCEVConstant *Factor =
1723                   dyn_cast_or_null<SCEVConstant>(getSDiv(OldStride, NewStride,
1724                                                          SE, true))) {
1725        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1726          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1727      }
1728    }
1729    Strides.insert(Stride);
1730  }
1731
1732  // If all uses use the same type, don't bother looking for truncation-based
1733  // reuse.
1734  if (Types.size() == 1)
1735    Types.clear();
1736
1737  DEBUG(print_factors_and_types(dbgs()));
1738}
1739
1740void LSRInstance::CollectFixupsAndInitialFormulae() {
1741  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1742    // Record the uses.
1743    LSRFixup &LF = getNewFixup();
1744    LF.UserInst = UI->getUser();
1745    LF.OperandValToReplace = UI->getOperandValToReplace();
1746    if (UI->isUseOfPostIncrementedValue())
1747      LF.PostIncLoop = L;
1748
1749    LSRUse::KindType Kind = LSRUse::Basic;
1750    const Type *AccessTy = 0;
1751    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1752      Kind = LSRUse::Address;
1753      AccessTy = getAccessType(LF.UserInst);
1754    }
1755
1756    const SCEV *S = IU.getCanonicalExpr(*UI);
1757
1758    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1759    // (N - i == 0), and this allows (N - i) to be the expression that we work
1760    // with rather than just N or i, so we can consider the register
1761    // requirements for both N and i at the same time. Limiting this code to
1762    // equality icmps is not a problem because all interesting loops use
1763    // equality icmps, thanks to IndVarSimplify.
1764    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1765      if (CI->isEquality()) {
1766        // Swap the operands if needed to put the OperandValToReplace on the
1767        // left, for consistency.
1768        Value *NV = CI->getOperand(1);
1769        if (NV == LF.OperandValToReplace) {
1770          CI->setOperand(1, CI->getOperand(0));
1771          CI->setOperand(0, NV);
1772        }
1773
1774        // x == y  -->  x - y == 0
1775        const SCEV *N = SE.getSCEV(NV);
1776        if (N->isLoopInvariant(L)) {
1777          Kind = LSRUse::ICmpZero;
1778          S = SE.getMinusSCEV(N, S);
1779        }
1780
1781        // -1 and the negations of all interesting strides (except the negation
1782        // of -1) are now also interesting.
1783        for (size_t i = 0, e = Factors.size(); i != e; ++i)
1784          if (Factors[i] != -1)
1785            Factors.insert(-(uint64_t)Factors[i]);
1786        Factors.insert(-1);
1787      }
1788
1789    // Set up the initial formula for this use.
1790    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1791    LF.LUIdx = P.first;
1792    LF.Offset = P.second;
1793    LSRUse &LU = Uses[LF.LUIdx];
1794    LU.AllFixupsOutsideLoop &= !L->contains(LF.UserInst);
1795
1796    // If this is the first use of this LSRUse, give it a formula.
1797    if (LU.Formulae.empty()) {
1798      InsertInitialFormula(S, L, LU, LF.LUIdx);
1799      CountRegisters(LU.Formulae.back(), LF.LUIdx);
1800    }
1801  }
1802
1803  DEBUG(print_fixups(dbgs()));
1804}
1805
1806void
1807LSRInstance::InsertInitialFormula(const SCEV *S, Loop *L,
1808                                  LSRUse &LU, size_t LUIdx) {
1809  Formula F;
1810  F.InitialMatch(S, L, SE, DT);
1811  bool Inserted = InsertFormula(LU, LUIdx, F);
1812  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1813}
1814
1815void
1816LSRInstance::InsertSupplementalFormula(const SCEV *S,
1817                                       LSRUse &LU, size_t LUIdx) {
1818  Formula F;
1819  F.BaseRegs.push_back(S);
1820  F.AM.HasBaseReg = true;
1821  bool Inserted = InsertFormula(LU, LUIdx, F);
1822  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1823}
1824
1825/// CountRegisters - Note which registers are used by the given formula,
1826/// updating RegUses.
1827void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1828  if (F.ScaledReg)
1829    RegUses.CountRegister(F.ScaledReg, LUIdx);
1830  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1831       E = F.BaseRegs.end(); I != E; ++I)
1832    RegUses.CountRegister(*I, LUIdx);
1833}
1834
1835/// InsertFormula - If the given formula has not yet been inserted, add it to
1836/// the list, and return true. Return false otherwise.
1837bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
1838  if (!LU.InsertFormula(LUIdx, F))
1839    return false;
1840
1841  CountRegisters(F, LUIdx);
1842  return true;
1843}
1844
1845/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1846/// loop-invariant values which we're tracking. These other uses will pin these
1847/// values in registers, making them less profitable for elimination.
1848/// TODO: This currently misses non-constant addrec step registers.
1849/// TODO: Should this give more weight to users inside the loop?
1850void
1851LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1852  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1853  SmallPtrSet<const SCEV *, 8> Inserted;
1854
1855  while (!Worklist.empty()) {
1856    const SCEV *S = Worklist.pop_back_val();
1857
1858    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1859      Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1860    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1861      Worklist.push_back(C->getOperand());
1862    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1863      Worklist.push_back(D->getLHS());
1864      Worklist.push_back(D->getRHS());
1865    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1866      if (!Inserted.insert(U)) continue;
1867      const Value *V = U->getValue();
1868      if (const Instruction *Inst = dyn_cast<Instruction>(V))
1869        if (L->contains(Inst)) continue;
1870      for (Value::use_const_iterator UI = V->use_begin(), UE = V->use_end();
1871           UI != UE; ++UI) {
1872        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1873        // Ignore non-instructions.
1874        if (!UserInst)
1875          continue;
1876        // Ignore instructions in other functions (as can happen with
1877        // Constants).
1878        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
1879          continue;
1880        // Ignore instructions not dominated by the loop.
1881        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1882          UserInst->getParent() :
1883          cast<PHINode>(UserInst)->getIncomingBlock(
1884            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1885        if (!DT.dominates(L->getHeader(), UseBB))
1886          continue;
1887        // Ignore uses which are part of other SCEV expressions, to avoid
1888        // analyzing them multiple times.
1889        if (SE.isSCEVable(UserInst->getType()) &&
1890            !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst))))
1891          continue;
1892        // Ignore icmp instructions which are already being analyzed.
1893        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
1894          unsigned OtherIdx = !UI.getOperandNo();
1895          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
1896          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
1897            continue;
1898        }
1899
1900        LSRFixup &LF = getNewFixup();
1901        LF.UserInst = const_cast<Instruction *>(UserInst);
1902        LF.OperandValToReplace = UI.getUse();
1903        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
1904        LF.LUIdx = P.first;
1905        LF.Offset = P.second;
1906        LSRUse &LU = Uses[LF.LUIdx];
1907        LU.AllFixupsOutsideLoop &= L->contains(LF.UserInst);
1908        InsertSupplementalFormula(U, LU, LF.LUIdx);
1909        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
1910        break;
1911      }
1912    }
1913  }
1914}
1915
1916/// CollectSubexprs - Split S into subexpressions which can be pulled out into
1917/// separate registers. If C is non-null, multiply each subexpression by C.
1918static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
1919                            SmallVectorImpl<const SCEV *> &Ops,
1920                            ScalarEvolution &SE) {
1921  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1922    // Break out add operands.
1923    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1924         I != E; ++I)
1925      CollectSubexprs(*I, C, Ops, SE);
1926    return;
1927  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1928    // Split a non-zero base out of an addrec.
1929    if (!AR->getStart()->isZero()) {
1930      CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
1931                                       AR->getStepRecurrence(SE),
1932                                       AR->getLoop()), C, Ops, SE);
1933      CollectSubexprs(AR->getStart(), C, Ops, SE);
1934      return;
1935    }
1936  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1937    // Break (C * (a + b + c)) into C*a + C*b + C*c.
1938    if (Mul->getNumOperands() == 2)
1939      if (const SCEVConstant *Op0 =
1940            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
1941        CollectSubexprs(Mul->getOperand(1),
1942                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
1943                        Ops, SE);
1944        return;
1945      }
1946  }
1947
1948  // Otherwise use the value itself.
1949  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
1950}
1951
1952/// GenerateReassociations - Split out subexpressions from adds and the bases of
1953/// addrecs.
1954void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
1955                                         Formula Base,
1956                                         unsigned Depth) {
1957  // Arbitrarily cap recursion to protect compile time.
1958  if (Depth >= 3) return;
1959
1960  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
1961    const SCEV *BaseReg = Base.BaseRegs[i];
1962
1963    SmallVector<const SCEV *, 8> AddOps;
1964    CollectSubexprs(BaseReg, 0, AddOps, SE);
1965    if (AddOps.size() == 1) continue;
1966
1967    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
1968         JE = AddOps.end(); J != JE; ++J) {
1969      // Don't pull a constant into a register if the constant could be folded
1970      // into an immediate field.
1971      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
1972                           Base.getNumRegs() > 1,
1973                           LU.Kind, LU.AccessTy, TLI, SE))
1974        continue;
1975
1976      // Collect all operands except *J.
1977      SmallVector<const SCEV *, 8> InnerAddOps;
1978      for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
1979           KE = AddOps.end(); K != KE; ++K)
1980        if (K != J)
1981          InnerAddOps.push_back(*K);
1982
1983      // Don't leave just a constant behind in a register if the constant could
1984      // be folded into an immediate field.
1985      if (InnerAddOps.size() == 1 &&
1986          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
1987                           Base.getNumRegs() > 1,
1988                           LU.Kind, LU.AccessTy, TLI, SE))
1989        continue;
1990
1991      Formula F = Base;
1992      F.BaseRegs[i] = SE.getAddExpr(InnerAddOps);
1993      F.BaseRegs.push_back(*J);
1994      if (InsertFormula(LU, LUIdx, F))
1995        // If that formula hadn't been seen before, recurse to find more like
1996        // it.
1997        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
1998    }
1999  }
2000}
2001
2002/// GenerateCombinations - Generate a formula consisting of all of the
2003/// loop-dominating registers added into a single register.
2004void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2005                                       Formula Base) {
2006  // This method is only intersting on a plurality of registers.
2007  if (Base.BaseRegs.size() <= 1) return;
2008
2009  Formula F = Base;
2010  F.BaseRegs.clear();
2011  SmallVector<const SCEV *, 4> Ops;
2012  for (SmallVectorImpl<const SCEV *>::const_iterator
2013       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2014    const SCEV *BaseReg = *I;
2015    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2016        !BaseReg->hasComputableLoopEvolution(L))
2017      Ops.push_back(BaseReg);
2018    else
2019      F.BaseRegs.push_back(BaseReg);
2020  }
2021  if (Ops.size() > 1) {
2022    const SCEV *Sum = SE.getAddExpr(Ops);
2023    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2024    // opportunity to fold something. For now, just ignore such cases
2025    // rather than procede with zero in a register.
2026    if (!Sum->isZero()) {
2027      F.BaseRegs.push_back(Sum);
2028      (void)InsertFormula(LU, LUIdx, F);
2029    }
2030  }
2031}
2032
2033/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2034void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2035                                          Formula Base) {
2036  // We can't add a symbolic offset if the address already contains one.
2037  if (Base.AM.BaseGV) return;
2038
2039  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2040    const SCEV *G = Base.BaseRegs[i];
2041    GlobalValue *GV = ExtractSymbol(G, SE);
2042    if (G->isZero() || !GV)
2043      continue;
2044    Formula F = Base;
2045    F.AM.BaseGV = GV;
2046    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2047                    LU.Kind, LU.AccessTy, TLI))
2048      continue;
2049    F.BaseRegs[i] = G;
2050    (void)InsertFormula(LU, LUIdx, F);
2051  }
2052}
2053
2054/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2055void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2056                                          Formula Base) {
2057  // TODO: For now, just add the min and max offset, because it usually isn't
2058  // worthwhile looking at everything inbetween.
2059  SmallVector<int64_t, 4> Worklist;
2060  Worklist.push_back(LU.MinOffset);
2061  if (LU.MaxOffset != LU.MinOffset)
2062    Worklist.push_back(LU.MaxOffset);
2063
2064  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2065    const SCEV *G = Base.BaseRegs[i];
2066
2067    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2068         E = Worklist.end(); I != E; ++I) {
2069      Formula F = Base;
2070      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2071      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2072                     LU.Kind, LU.AccessTy, TLI)) {
2073        F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType()));
2074
2075        (void)InsertFormula(LU, LUIdx, F);
2076      }
2077    }
2078
2079    int64_t Imm = ExtractImmediate(G, SE);
2080    if (G->isZero() || Imm == 0)
2081      continue;
2082    Formula F = Base;
2083    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2084    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2085                    LU.Kind, LU.AccessTy, TLI))
2086      continue;
2087    F.BaseRegs[i] = G;
2088    (void)InsertFormula(LU, LUIdx, F);
2089  }
2090}
2091
2092/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2093/// the comparison. For example, x == y -> x*c == y*c.
2094void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2095                                         Formula Base) {
2096  if (LU.Kind != LSRUse::ICmpZero) return;
2097
2098  // Determine the integer type for the base formula.
2099  const Type *IntTy = Base.getType();
2100  if (!IntTy) return;
2101  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2102
2103  // Don't do this if there is more than one offset.
2104  if (LU.MinOffset != LU.MaxOffset) return;
2105
2106  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2107
2108  // Check each interesting stride.
2109  for (SmallSetVector<int64_t, 8>::const_iterator
2110       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2111    int64_t Factor = *I;
2112    Formula F = Base;
2113
2114    // Check that the multiplication doesn't overflow.
2115    if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2116      continue;
2117    F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2118    if ((int64_t)F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
2119      continue;
2120
2121    // Check that multiplying with the use offset doesn't overflow.
2122    int64_t Offset = LU.MinOffset;
2123    if (Offset == INT64_MIN && Factor == -1)
2124      continue;
2125    Offset = (uint64_t)Offset * Factor;
2126    if ((int64_t)Offset / Factor != LU.MinOffset)
2127      continue;
2128
2129    // Check that this scale is legal.
2130    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2131      continue;
2132
2133    // Compensate for the use having MinOffset built into it.
2134    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2135
2136    const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2137
2138    // Check that multiplying with each base register doesn't overflow.
2139    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2140      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2141      if (getSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2142        goto next;
2143    }
2144
2145    // Check that multiplying with the scaled register doesn't overflow.
2146    if (F.ScaledReg) {
2147      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2148      if (getSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2149        continue;
2150    }
2151
2152    // If we make it here and it's legal, add it.
2153    (void)InsertFormula(LU, LUIdx, F);
2154  next:;
2155  }
2156}
2157
2158/// GenerateScales - Generate stride factor reuse formulae by making use of
2159/// scaled-offset address modes, for example.
2160void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2161                                 Formula Base) {
2162  // Determine the integer type for the base formula.
2163  const Type *IntTy = Base.getType();
2164  if (!IntTy) return;
2165
2166  // If this Formula already has a scaled register, we can't add another one.
2167  if (Base.AM.Scale != 0) return;
2168
2169  // Check each interesting stride.
2170  for (SmallSetVector<int64_t, 8>::const_iterator
2171       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2172    int64_t Factor = *I;
2173
2174    Base.AM.Scale = Factor;
2175    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2176    // Check whether this scale is going to be legal.
2177    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2178                    LU.Kind, LU.AccessTy, TLI)) {
2179      // As a special-case, handle special out-of-loop Basic users specially.
2180      // TODO: Reconsider this special case.
2181      if (LU.Kind == LSRUse::Basic &&
2182          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2183                     LSRUse::Special, LU.AccessTy, TLI) &&
2184          LU.AllFixupsOutsideLoop)
2185        LU.Kind = LSRUse::Special;
2186      else
2187        continue;
2188    }
2189    // For an ICmpZero, negating a solitary base register won't lead to
2190    // new solutions.
2191    if (LU.Kind == LSRUse::ICmpZero &&
2192        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2193      continue;
2194    // For each addrec base reg, apply the scale, if possible.
2195    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2196      if (const SCEVAddRecExpr *AR =
2197            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2198        const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2199        if (FactorS->isZero())
2200          continue;
2201        // Divide out the factor, ignoring high bits, since we'll be
2202        // scaling the value back up in the end.
2203        if (const SCEV *Quotient = getSDiv(AR, FactorS, SE, true)) {
2204          // TODO: This could be optimized to avoid all the copying.
2205          Formula F = Base;
2206          F.ScaledReg = Quotient;
2207          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2208          F.BaseRegs.pop_back();
2209          (void)InsertFormula(LU, LUIdx, F);
2210        }
2211      }
2212  }
2213}
2214
2215/// GenerateTruncates - Generate reuse formulae from different IV types.
2216void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2217                                    Formula Base) {
2218  // This requires TargetLowering to tell us which truncates are free.
2219  if (!TLI) return;
2220
2221  // Don't bother truncating symbolic values.
2222  if (Base.AM.BaseGV) return;
2223
2224  // Determine the integer type for the base formula.
2225  const Type *DstTy = Base.getType();
2226  if (!DstTy) return;
2227  DstTy = SE.getEffectiveSCEVType(DstTy);
2228
2229  for (SmallSetVector<const Type *, 4>::const_iterator
2230       I = Types.begin(), E = Types.end(); I != E; ++I) {
2231    const Type *SrcTy = *I;
2232    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2233      Formula F = Base;
2234
2235      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2236      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2237           JE = F.BaseRegs.end(); J != JE; ++J)
2238        *J = SE.getAnyExtendExpr(*J, SrcTy);
2239
2240      // TODO: This assumes we've done basic processing on all uses and
2241      // have an idea what the register usage is.
2242      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2243        continue;
2244
2245      (void)InsertFormula(LU, LUIdx, F);
2246    }
2247  }
2248}
2249
2250namespace {
2251
2252/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2253/// defer modifications so that the search phase doesn't have to worry about
2254/// the data structures moving underneath it.
2255struct WorkItem {
2256  size_t LUIdx;
2257  int64_t Imm;
2258  const SCEV *OrigReg;
2259
2260  WorkItem(size_t LI, int64_t I, const SCEV *R)
2261    : LUIdx(LI), Imm(I), OrigReg(R) {}
2262
2263  void print(raw_ostream &OS) const;
2264  void dump() const;
2265};
2266
2267}
2268
2269void WorkItem::print(raw_ostream &OS) const {
2270  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2271     << " , add offset " << Imm;
2272}
2273
2274void WorkItem::dump() const {
2275  print(errs()); errs() << '\n';
2276}
2277
2278/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2279/// distance apart and try to form reuse opportunities between them.
2280void LSRInstance::GenerateCrossUseConstantOffsets() {
2281  // Group the registers by their value without any added constant offset.
2282  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2283  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2284  RegMapTy Map;
2285  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2286  SmallVector<const SCEV *, 8> Sequence;
2287  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2288       I != E; ++I) {
2289    const SCEV *Reg = *I;
2290    int64_t Imm = ExtractImmediate(Reg, SE);
2291    std::pair<RegMapTy::iterator, bool> Pair =
2292      Map.insert(std::make_pair(Reg, ImmMapTy()));
2293    if (Pair.second)
2294      Sequence.push_back(Reg);
2295    Pair.first->second.insert(std::make_pair(Imm, *I));
2296    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2297  }
2298
2299  // Now examine each set of registers with the same base value. Build up
2300  // a list of work to do and do the work in a separate step so that we're
2301  // not adding formulae and register counts while we're searching.
2302  SmallVector<WorkItem, 32> WorkItems;
2303  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2304  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2305       E = Sequence.end(); I != E; ++I) {
2306    const SCEV *Reg = *I;
2307    const ImmMapTy &Imms = Map.find(Reg)->second;
2308
2309    // It's not worthwhile looking for reuse if there's only one offset.
2310    if (Imms.size() == 1)
2311      continue;
2312
2313    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2314          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2315               J != JE; ++J)
2316            dbgs() << ' ' << J->first;
2317          dbgs() << '\n');
2318
2319    // Examine each offset.
2320    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2321         J != JE; ++J) {
2322      const SCEV *OrigReg = J->second;
2323
2324      int64_t JImm = J->first;
2325      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2326
2327      if (!isa<SCEVConstant>(OrigReg) &&
2328          UsedByIndicesMap[Reg].count() == 1) {
2329        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2330        continue;
2331      }
2332
2333      // Conservatively examine offsets between this orig reg a few selected
2334      // other orig regs.
2335      ImmMapTy::const_iterator OtherImms[] = {
2336        Imms.begin(), prior(Imms.end()),
2337        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2338      };
2339      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2340        ImmMapTy::const_iterator M = OtherImms[i];
2341        if (M == J || M == JE) continue;
2342
2343        // Compute the difference between the two.
2344        int64_t Imm = (uint64_t)JImm - M->first;
2345        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2346             LUIdx = UsedByIndices.find_next(LUIdx))
2347          // Make a memo of this use, offset, and register tuple.
2348          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2349            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2350      }
2351    }
2352  }
2353
2354  Map.clear();
2355  Sequence.clear();
2356  UsedByIndicesMap.clear();
2357  UniqueItems.clear();
2358
2359  // Now iterate through the worklist and add new formulae.
2360  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2361       E = WorkItems.end(); I != E; ++I) {
2362    const WorkItem &WI = *I;
2363    size_t LUIdx = WI.LUIdx;
2364    LSRUse &LU = Uses[LUIdx];
2365    int64_t Imm = WI.Imm;
2366    const SCEV *OrigReg = WI.OrigReg;
2367
2368    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2369    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2370    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2371
2372    // TODO: Use a more targetted data structure.
2373    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2374      Formula F = LU.Formulae[L];
2375      // Use the immediate in the scaled register.
2376      if (F.ScaledReg == OrigReg) {
2377        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2378                       Imm * (uint64_t)F.AM.Scale;
2379        // Don't create 50 + reg(-50).
2380        if (F.referencesReg(SE.getSCEV(
2381                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2382          continue;
2383        Formula NewF = F;
2384        NewF.AM.BaseOffs = Offs;
2385        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2386                        LU.Kind, LU.AccessTy, TLI))
2387          continue;
2388        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2389
2390        // If the new scale is a constant in a register, and adding the constant
2391        // value to the immediate would produce a value closer to zero than the
2392        // immediate itself, then the formula isn't worthwhile.
2393        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2394          if (C->getValue()->getValue().isNegative() !=
2395                (NewF.AM.BaseOffs < 0) &&
2396              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2397                .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2398            continue;
2399
2400        // OK, looks good.
2401        (void)InsertFormula(LU, LUIdx, NewF);
2402      } else {
2403        // Use the immediate in a base register.
2404        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2405          const SCEV *BaseReg = F.BaseRegs[N];
2406          if (BaseReg != OrigReg)
2407            continue;
2408          Formula NewF = F;
2409          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2410          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2411                          LU.Kind, LU.AccessTy, TLI))
2412            continue;
2413          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2414
2415          // If the new formula has a constant in a register, and adding the
2416          // constant value to the immediate would produce a value closer to
2417          // zero than the immediate itself, then the formula isn't worthwhile.
2418          for (SmallVectorImpl<const SCEV *>::const_iterator
2419               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2420               J != JE; ++J)
2421            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2422              if (C->getValue()->getValue().isNegative() !=
2423                    (NewF.AM.BaseOffs < 0) &&
2424                  C->getValue()->getValue().abs()
2425                    .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2426                goto skip_formula;
2427
2428          // Ok, looks good.
2429          (void)InsertFormula(LU, LUIdx, NewF);
2430          break;
2431        skip_formula:;
2432        }
2433      }
2434    }
2435  }
2436}
2437
2438/// GenerateAllReuseFormulae - Generate formulae for each use.
2439void
2440LSRInstance::GenerateAllReuseFormulae() {
2441  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2442  // queries are more precise.
2443  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2444    LSRUse &LU = Uses[LUIdx];
2445    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2446      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2447    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2448      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2449  }
2450  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2451    LSRUse &LU = Uses[LUIdx];
2452    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2453      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2454    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2455      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2456    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2457      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2458    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2459      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2460  }
2461  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2462    LSRUse &LU = Uses[LUIdx];
2463    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2464      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2465  }
2466
2467  GenerateCrossUseConstantOffsets();
2468}
2469
2470/// If their are multiple formulae with the same set of registers used
2471/// by other uses, pick the best one and delete the others.
2472void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2473#ifndef NDEBUG
2474  bool Changed = false;
2475#endif
2476
2477  // Collect the best formula for each unique set of shared registers. This
2478  // is reset for each use.
2479  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2480    BestFormulaeTy;
2481  BestFormulaeTy BestFormulae;
2482
2483  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2484    LSRUse &LU = Uses[LUIdx];
2485    FormulaSorter Sorter(L, LU, SE, DT);
2486
2487    // Clear out the set of used regs; it will be recomputed.
2488    LU.Regs.clear();
2489
2490    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2491         FIdx != NumForms; ++FIdx) {
2492      Formula &F = LU.Formulae[FIdx];
2493
2494      SmallVector<const SCEV *, 2> Key;
2495      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2496           JE = F.BaseRegs.end(); J != JE; ++J) {
2497        const SCEV *Reg = *J;
2498        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2499          Key.push_back(Reg);
2500      }
2501      if (F.ScaledReg &&
2502          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2503        Key.push_back(F.ScaledReg);
2504      // Unstable sort by host order ok, because this is only used for
2505      // uniquifying.
2506      std::sort(Key.begin(), Key.end());
2507
2508      std::pair<BestFormulaeTy::const_iterator, bool> P =
2509        BestFormulae.insert(std::make_pair(Key, FIdx));
2510      if (!P.second) {
2511        Formula &Best = LU.Formulae[P.first->second];
2512        if (Sorter.operator()(F, Best))
2513          std::swap(F, Best);
2514        DEBUG(dbgs() << "Filtering out "; F.print(dbgs());
2515              dbgs() << "\n"
2516                        "  in favor of "; Best.print(dbgs());
2517              dbgs() << '\n');
2518#ifndef NDEBUG
2519        Changed = true;
2520#endif
2521        std::swap(F, LU.Formulae.back());
2522        LU.Formulae.pop_back();
2523        --FIdx;
2524        --NumForms;
2525        continue;
2526      }
2527      if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2528      LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2529    }
2530    BestFormulae.clear();
2531  }
2532
2533  DEBUG(if (Changed) {
2534          dbgs() << "\n"
2535                    "After filtering out undesirable candidates:\n";
2536          print_uses(dbgs());
2537        });
2538}
2539
2540/// NarrowSearchSpaceUsingHeuristics - If there are an extrordinary number of
2541/// formulae to choose from, use some rough heuristics to prune down the number
2542/// of formulae. This keeps the main solver from taking an extrordinary amount
2543/// of time in some worst-case scenarios.
2544void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2545  // This is a rough guess that seems to work fairly well.
2546  const size_t Limit = UINT16_MAX;
2547
2548  SmallPtrSet<const SCEV *, 4> Taken;
2549  for (;;) {
2550    // Estimate the worst-case number of solutions we might consider. We almost
2551    // never consider this many solutions because we prune the search space,
2552    // but the pruning isn't always sufficient.
2553    uint32_t Power = 1;
2554    for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2555         E = Uses.end(); I != E; ++I) {
2556      size_t FSize = I->Formulae.size();
2557      if (FSize >= Limit) {
2558        Power = Limit;
2559        break;
2560      }
2561      Power *= FSize;
2562      if (Power >= Limit)
2563        break;
2564    }
2565    if (Power < Limit)
2566      break;
2567
2568    // Ok, we have too many of formulae on our hands to conveniently handle.
2569    // Use a rough heuristic to thin out the list.
2570
2571    // Pick the register which is used by the most LSRUses, which is likely
2572    // to be a good reuse register candidate.
2573    const SCEV *Best = 0;
2574    unsigned BestNum = 0;
2575    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2576         I != E; ++I) {
2577      const SCEV *Reg = *I;
2578      if (Taken.count(Reg))
2579        continue;
2580      if (!Best)
2581        Best = Reg;
2582      else {
2583        unsigned Count = RegUses.getUsedByIndices(Reg).count();
2584        if (Count > BestNum) {
2585          Best = Reg;
2586          BestNum = Count;
2587        }
2588      }
2589    }
2590
2591    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
2592                 << " will yeild profitable reuse.\n");
2593    Taken.insert(Best);
2594
2595    // In any use with formulae which references this register, delete formulae
2596    // which don't reference it.
2597    for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2598         E = Uses.end(); I != E; ++I) {
2599      LSRUse &LU = *I;
2600      if (!LU.Regs.count(Best)) continue;
2601
2602      // Clear out the set of used regs; it will be recomputed.
2603      LU.Regs.clear();
2604
2605      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2606        Formula &F = LU.Formulae[i];
2607        if (!F.referencesReg(Best)) {
2608          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2609          std::swap(LU.Formulae.back(), F);
2610          LU.Formulae.pop_back();
2611          --e;
2612          --i;
2613          continue;
2614        }
2615
2616        if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2617        LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2618      }
2619    }
2620
2621    DEBUG(dbgs() << "After pre-selection:\n";
2622          print_uses(dbgs()));
2623  }
2624}
2625
2626/// SolveRecurse - This is the recursive solver.
2627void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2628                               Cost &SolutionCost,
2629                               SmallVectorImpl<const Formula *> &Workspace,
2630                               const Cost &CurCost,
2631                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
2632                               DenseSet<const SCEV *> &VisitedRegs) const {
2633  // Some ideas:
2634  //  - prune more:
2635  //    - use more aggressive filtering
2636  //    - sort the formula so that the most profitable solutions are found first
2637  //    - sort the uses too
2638  //  - search faster:
2639  //    - dont compute a cost, and then compare. compare while computing a cost
2640  //      and bail early.
2641  //    - track register sets with SmallBitVector
2642
2643  const LSRUse &LU = Uses[Workspace.size()];
2644
2645  // If this use references any register that's already a part of the
2646  // in-progress solution, consider it a requirement that a formula must
2647  // reference that register in order to be considered. This prunes out
2648  // unprofitable searching.
2649  SmallSetVector<const SCEV *, 4> ReqRegs;
2650  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2651       E = CurRegs.end(); I != E; ++I)
2652    if (LU.Regs.count(*I))
2653      ReqRegs.insert(*I);
2654
2655  bool AnySatisfiedReqRegs = false;
2656  SmallPtrSet<const SCEV *, 16> NewRegs;
2657  Cost NewCost;
2658retry:
2659  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2660       E = LU.Formulae.end(); I != E; ++I) {
2661    const Formula &F = *I;
2662
2663    // Ignore formulae which do not use any of the required registers.
2664    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2665         JE = ReqRegs.end(); J != JE; ++J) {
2666      const SCEV *Reg = *J;
2667      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2668          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2669          F.BaseRegs.end())
2670        goto skip;
2671    }
2672    AnySatisfiedReqRegs = true;
2673
2674    // Evaluate the cost of the current formula. If it's already worse than
2675    // the current best, prune the search at that point.
2676    NewCost = CurCost;
2677    NewRegs = CurRegs;
2678    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2679    if (NewCost < SolutionCost) {
2680      Workspace.push_back(&F);
2681      if (Workspace.size() != Uses.size()) {
2682        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2683                     NewRegs, VisitedRegs);
2684        if (F.getNumRegs() == 1 && Workspace.size() == 1)
2685          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2686      } else {
2687        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2688              dbgs() << ". Regs:";
2689              for (SmallPtrSet<const SCEV *, 16>::const_iterator
2690                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2691                dbgs() << ' ' << **I;
2692              dbgs() << '\n');
2693
2694        SolutionCost = NewCost;
2695        Solution = Workspace;
2696      }
2697      Workspace.pop_back();
2698    }
2699  skip:;
2700  }
2701
2702  // If none of the formulae had all of the required registers, relax the
2703  // constraint so that we don't exclude all formulae.
2704  if (!AnySatisfiedReqRegs) {
2705    ReqRegs.clear();
2706    goto retry;
2707  }
2708}
2709
2710void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2711  SmallVector<const Formula *, 8> Workspace;
2712  Cost SolutionCost;
2713  SolutionCost.Loose();
2714  Cost CurCost;
2715  SmallPtrSet<const SCEV *, 16> CurRegs;
2716  DenseSet<const SCEV *> VisitedRegs;
2717  Workspace.reserve(Uses.size());
2718
2719  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2720               CurRegs, VisitedRegs);
2721
2722  // Ok, we've now made all our decisions.
2723  DEBUG(dbgs() << "\n"
2724                  "The chosen solution requires "; SolutionCost.print(dbgs());
2725        dbgs() << ":\n";
2726        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2727          dbgs() << "  ";
2728          Uses[i].print(dbgs());
2729          dbgs() << "\n"
2730                    "    ";
2731          Solution[i]->print(dbgs());
2732          dbgs() << '\n';
2733        });
2734}
2735
2736/// getImmediateDominator - A handy utility for the specific DominatorTree
2737/// query that we need here.
2738///
2739static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2740  DomTreeNode *Node = DT.getNode(BB);
2741  if (!Node) return 0;
2742  Node = Node->getIDom();
2743  if (!Node) return 0;
2744  return Node->getBlock();
2745}
2746
2747Value *LSRInstance::Expand(const LSRFixup &LF,
2748                           const Formula &F,
2749                           BasicBlock::iterator IP,
2750                           Loop *L, Instruction *IVIncInsertPos,
2751                           SCEVExpander &Rewriter,
2752                           SmallVectorImpl<WeakVH> &DeadInsts,
2753                           ScalarEvolution &SE, DominatorTree &DT) const {
2754  const LSRUse &LU = Uses[LF.LUIdx];
2755
2756  // Then, collect some instructions which we will remain dominated by when
2757  // expanding the replacement. These must be dominated by any operands that
2758  // will be required in the expansion.
2759  SmallVector<Instruction *, 4> Inputs;
2760  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2761    Inputs.push_back(I);
2762  if (LU.Kind == LSRUse::ICmpZero)
2763    if (Instruction *I =
2764          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2765      Inputs.push_back(I);
2766  if (LF.PostIncLoop && !L->contains(LF.UserInst))
2767    Inputs.push_back(L->getLoopLatch()->getTerminator());
2768
2769  // Then, climb up the immediate dominator tree as far as we can go while
2770  // still being dominated by the input positions.
2771  for (;;) {
2772    bool AllDominate = true;
2773    Instruction *BetterPos = 0;
2774    BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT);
2775    if (!IDom) break;
2776    Instruction *Tentative = IDom->getTerminator();
2777    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2778         E = Inputs.end(); I != E; ++I) {
2779      Instruction *Inst = *I;
2780      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2781        AllDominate = false;
2782        break;
2783      }
2784      if (IDom == Inst->getParent() &&
2785          (!BetterPos || DT.dominates(BetterPos, Inst)))
2786        BetterPos = next(BasicBlock::iterator(Inst));
2787    }
2788    if (!AllDominate)
2789      break;
2790    if (BetterPos)
2791      IP = BetterPos;
2792    else
2793      IP = Tentative;
2794  }
2795  while (isa<PHINode>(IP)) ++IP;
2796
2797  // Inform the Rewriter if we have a post-increment use, so that it can
2798  // perform an advantageous expansion.
2799  Rewriter.setPostInc(LF.PostIncLoop);
2800
2801  // This is the type that the user actually needs.
2802  const Type *OpTy = LF.OperandValToReplace->getType();
2803  // This will be the type that we'll initially expand to.
2804  const Type *Ty = F.getType();
2805  if (!Ty)
2806    // No type known; just expand directly to the ultimate type.
2807    Ty = OpTy;
2808  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
2809    // Expand directly to the ultimate type if it's the right size.
2810    Ty = OpTy;
2811  // This is the type to do integer arithmetic in.
2812  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
2813
2814  // Build up a list of operands to add together to form the full base.
2815  SmallVector<const SCEV *, 8> Ops;
2816
2817  // Expand the BaseRegs portion.
2818  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2819       E = F.BaseRegs.end(); I != E; ++I) {
2820    const SCEV *Reg = *I;
2821    assert(!Reg->isZero() && "Zero allocated in a base register!");
2822
2823    // If we're expanding for a post-inc user for the add-rec's loop, make the
2824    // post-inc adjustment.
2825    const SCEV *Start = Reg;
2826    while (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Start)) {
2827      if (AR->getLoop() == LF.PostIncLoop) {
2828        Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE));
2829        // If the user is inside the loop, insert the code after the increment
2830        // so that it is dominated by its operand.
2831        if (L->contains(LF.UserInst))
2832          IP = IVIncInsertPos;
2833        break;
2834      }
2835      Start = AR->getStart();
2836    }
2837
2838    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
2839  }
2840
2841  // Expand the ScaledReg portion.
2842  Value *ICmpScaledV = 0;
2843  if (F.AM.Scale != 0) {
2844    const SCEV *ScaledS = F.ScaledReg;
2845
2846    // If we're expanding for a post-inc user for the add-rec's loop, make the
2847    // post-inc adjustment.
2848    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS))
2849      if (AR->getLoop() == LF.PostIncLoop)
2850        ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE));
2851
2852    if (LU.Kind == LSRUse::ICmpZero) {
2853      // An interesting way of "folding" with an icmp is to use a negated
2854      // scale, which we'll implement by inserting it into the other operand
2855      // of the icmp.
2856      assert(F.AM.Scale == -1 &&
2857             "The only scale supported by ICmpZero uses is -1!");
2858      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
2859    } else {
2860      // Otherwise just expand the scaled register and an explicit scale,
2861      // which is expected to be matched as part of the address.
2862      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
2863      ScaledS = SE.getMulExpr(ScaledS,
2864                              SE.getIntegerSCEV(F.AM.Scale,
2865                                                ScaledS->getType()));
2866      Ops.push_back(ScaledS);
2867    }
2868  }
2869
2870  // Expand the immediate portions.
2871  if (F.AM.BaseGV)
2872    Ops.push_back(SE.getSCEV(F.AM.BaseGV));
2873  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
2874  if (Offset != 0) {
2875    if (LU.Kind == LSRUse::ICmpZero) {
2876      // The other interesting way of "folding" with an ICmpZero is to use a
2877      // negated immediate.
2878      if (!ICmpScaledV)
2879        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
2880      else {
2881        Ops.push_back(SE.getUnknown(ICmpScaledV));
2882        ICmpScaledV = ConstantInt::get(IntTy, Offset);
2883      }
2884    } else {
2885      // Just add the immediate values. These again are expected to be matched
2886      // as part of the address.
2887      Ops.push_back(SE.getIntegerSCEV(Offset, IntTy));
2888    }
2889  }
2890
2891  // Emit instructions summing all the operands.
2892  const SCEV *FullS = Ops.empty() ?
2893                      SE.getIntegerSCEV(0, IntTy) :
2894                      SE.getAddExpr(Ops);
2895  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
2896
2897  // We're done expanding now, so reset the rewriter.
2898  Rewriter.setPostInc(0);
2899
2900  // An ICmpZero Formula represents an ICmp which we're handling as a
2901  // comparison against zero. Now that we've expanded an expression for that
2902  // form, update the ICmp's other operand.
2903  if (LU.Kind == LSRUse::ICmpZero) {
2904    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
2905    DeadInsts.push_back(CI->getOperand(1));
2906    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
2907                           "a scale at the same time!");
2908    if (F.AM.Scale == -1) {
2909      if (ICmpScaledV->getType() != OpTy) {
2910        Instruction *Cast =
2911          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
2912                                                   OpTy, false),
2913                           ICmpScaledV, OpTy, "tmp", CI);
2914        ICmpScaledV = Cast;
2915      }
2916      CI->setOperand(1, ICmpScaledV);
2917    } else {
2918      assert(F.AM.Scale == 0 &&
2919             "ICmp does not support folding a global value and "
2920             "a scale at the same time!");
2921      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
2922                                           -(uint64_t)Offset);
2923      if (C->getType() != OpTy)
2924        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2925                                                          OpTy, false),
2926                                  C, OpTy);
2927
2928      CI->setOperand(1, C);
2929    }
2930  }
2931
2932  return FullV;
2933}
2934
2935/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
2936/// of their operands effectively happens in their predecessor blocks, so the
2937/// expression may need to be expanded in multiple places.
2938void LSRInstance::RewriteForPHI(PHINode *PN,
2939                                const LSRFixup &LF,
2940                                const Formula &F,
2941                                Loop *L, Instruction *IVIncInsertPos,
2942                                SCEVExpander &Rewriter,
2943                                SmallVectorImpl<WeakVH> &DeadInsts,
2944                                ScalarEvolution &SE, DominatorTree &DT,
2945                                Pass *P) const {
2946  DenseMap<BasicBlock *, Value *> Inserted;
2947  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2948    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
2949      BasicBlock *BB = PN->getIncomingBlock(i);
2950
2951      // If this is a critical edge, split the edge so that we do not insert
2952      // the code on all predecessor/successor paths.  We do this unless this
2953      // is the canonical backedge for this loop, which complicates post-inc
2954      // users.
2955      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
2956          !isa<IndirectBrInst>(BB->getTerminator()) &&
2957          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
2958        // Split the critical edge.
2959        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
2960
2961        // If PN is outside of the loop and BB is in the loop, we want to
2962        // move the block to be immediately before the PHI block, not
2963        // immediately after BB.
2964        if (L->contains(BB) && !L->contains(PN))
2965          NewBB->moveBefore(PN->getParent());
2966
2967        // Splitting the edge can reduce the number of PHI entries we have.
2968        e = PN->getNumIncomingValues();
2969        BB = NewBB;
2970        i = PN->getBasicBlockIndex(BB);
2971      }
2972
2973      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
2974        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
2975      if (!Pair.second)
2976        PN->setIncomingValue(i, Pair.first->second);
2977      else {
2978        Value *FullV = Expand(LF, F, BB->getTerminator(), L, IVIncInsertPos,
2979                              Rewriter, DeadInsts, SE, DT);
2980
2981        // If this is reuse-by-noop-cast, insert the noop cast.
2982        const Type *OpTy = LF.OperandValToReplace->getType();
2983        if (FullV->getType() != OpTy)
2984          FullV =
2985            CastInst::Create(CastInst::getCastOpcode(FullV, false,
2986                                                     OpTy, false),
2987                             FullV, LF.OperandValToReplace->getType(),
2988                             "tmp", BB->getTerminator());
2989
2990        PN->setIncomingValue(i, FullV);
2991        Pair.first->second = FullV;
2992      }
2993    }
2994}
2995
2996/// Rewrite - Emit instructions for the leading candidate expression for this
2997/// LSRUse (this is called "expanding"), and update the UserInst to reference
2998/// the newly expanded value.
2999void LSRInstance::Rewrite(const LSRFixup &LF,
3000                          const Formula &F,
3001                          Loop *L, Instruction *IVIncInsertPos,
3002                          SCEVExpander &Rewriter,
3003                          SmallVectorImpl<WeakVH> &DeadInsts,
3004                          ScalarEvolution &SE, DominatorTree &DT,
3005                          Pass *P) const {
3006  // First, find an insertion point that dominates UserInst. For PHI nodes,
3007  // find the nearest block which dominates all the relevant uses.
3008  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3009    RewriteForPHI(PN, LF, F, L, IVIncInsertPos, Rewriter, DeadInsts, SE, DT, P);
3010  } else {
3011    Value *FullV = Expand(LF, F, LF.UserInst, L, IVIncInsertPos,
3012                          Rewriter, DeadInsts, SE, DT);
3013
3014    // If this is reuse-by-noop-cast, insert the noop cast.
3015    const Type *OpTy = LF.OperandValToReplace->getType();
3016    if (FullV->getType() != OpTy) {
3017      Instruction *Cast =
3018        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3019                         FullV, OpTy, "tmp", LF.UserInst);
3020      FullV = Cast;
3021    }
3022
3023    // Update the user. ICmpZero is handled specially here (for now) because
3024    // Expand may have updated one of the operands of the icmp already, and
3025    // its new value may happen to be equal to LF.OperandValToReplace, in
3026    // which case doing replaceUsesOfWith leads to replacing both operands
3027    // with the same value. TODO: Reorganize this.
3028    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3029      LF.UserInst->setOperand(0, FullV);
3030    else
3031      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3032  }
3033
3034  DeadInsts.push_back(LF.OperandValToReplace);
3035}
3036
3037void
3038LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3039                               Pass *P) {
3040  // Keep track of instructions we may have made dead, so that
3041  // we can remove them after we are done working.
3042  SmallVector<WeakVH, 16> DeadInsts;
3043
3044  SCEVExpander Rewriter(SE);
3045  Rewriter.disableCanonicalMode();
3046  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3047
3048  // Expand the new value definitions and update the users.
3049  for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3050    size_t LUIdx = Fixups[i].LUIdx;
3051
3052    Rewrite(Fixups[i], *Solution[LUIdx], L, IVIncInsertPos, Rewriter,
3053            DeadInsts, SE, DT, P);
3054
3055    Changed = true;
3056  }
3057
3058  // Clean up after ourselves. This must be done before deleting any
3059  // instructions.
3060  Rewriter.clear();
3061
3062  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3063}
3064
3065LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3066  : IU(P->getAnalysis<IVUsers>()),
3067    SE(P->getAnalysis<ScalarEvolution>()),
3068    DT(P->getAnalysis<DominatorTree>()),
3069    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3070
3071  // If LoopSimplify form is not available, stay out of trouble.
3072  if (!L->isLoopSimplifyForm()) return;
3073
3074  // If there's no interesting work to be done, bail early.
3075  if (IU.empty()) return;
3076
3077  DEBUG(dbgs() << "\nLSR on loop ";
3078        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3079        dbgs() << ":\n");
3080
3081  /// OptimizeShadowIV - If IV is used in a int-to-float cast
3082  /// inside the loop then try to eliminate the cast opeation.
3083  OptimizeShadowIV();
3084
3085  // Change loop terminating condition to use the postinc iv when possible.
3086  Changed |= OptimizeLoopTermCond();
3087
3088  CollectInterestingTypesAndFactors();
3089  CollectFixupsAndInitialFormulae();
3090  CollectLoopInvariantFixupsAndFormulae();
3091
3092  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3093        print_uses(dbgs()));
3094
3095  // Now use the reuse data to generate a bunch of interesting ways
3096  // to formulate the values needed for the uses.
3097  GenerateAllReuseFormulae();
3098
3099  DEBUG(dbgs() << "\n"
3100                  "After generating reuse formulae:\n";
3101        print_uses(dbgs()));
3102
3103  FilterOutUndesirableDedicatedRegisters();
3104  NarrowSearchSpaceUsingHeuristics();
3105
3106  SmallVector<const Formula *, 8> Solution;
3107  Solve(Solution);
3108  assert(Solution.size() == Uses.size() && "Malformed solution!");
3109
3110  // Release memory that is no longer needed.
3111  Factors.clear();
3112  Types.clear();
3113  RegUses.clear();
3114
3115#ifndef NDEBUG
3116  // Formulae should be legal.
3117  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3118       E = Uses.end(); I != E; ++I) {
3119     const LSRUse &LU = *I;
3120     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3121          JE = LU.Formulae.end(); J != JE; ++J)
3122        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3123                          LU.Kind, LU.AccessTy, TLI) &&
3124               "Illegal formula generated!");
3125  };
3126#endif
3127
3128  // Now that we've decided what we want, make it so.
3129  ImplementSolution(Solution, P);
3130}
3131
3132void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3133  if (Factors.empty() && Types.empty()) return;
3134
3135  OS << "LSR has identified the following interesting factors and types: ";
3136  bool First = true;
3137
3138  for (SmallSetVector<int64_t, 8>::const_iterator
3139       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3140    if (!First) OS << ", ";
3141    First = false;
3142    OS << '*' << *I;
3143  }
3144
3145  for (SmallSetVector<const Type *, 4>::const_iterator
3146       I = Types.begin(), E = Types.end(); I != E; ++I) {
3147    if (!First) OS << ", ";
3148    First = false;
3149    OS << '(' << **I << ')';
3150  }
3151  OS << '\n';
3152}
3153
3154void LSRInstance::print_fixups(raw_ostream &OS) const {
3155  OS << "LSR is examining the following fixup sites:\n";
3156  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3157       E = Fixups.end(); I != E; ++I) {
3158    const LSRFixup &LF = *I;
3159    dbgs() << "  ";
3160    LF.print(OS);
3161    OS << '\n';
3162  }
3163}
3164
3165void LSRInstance::print_uses(raw_ostream &OS) const {
3166  OS << "LSR is examining the following uses:\n";
3167  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3168       E = Uses.end(); I != E; ++I) {
3169    const LSRUse &LU = *I;
3170    dbgs() << "  ";
3171    LU.print(OS);
3172    OS << '\n';
3173    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3174         JE = LU.Formulae.end(); J != JE; ++J) {
3175      OS << "    ";
3176      J->print(OS);
3177      OS << '\n';
3178    }
3179  }
3180}
3181
3182void LSRInstance::print(raw_ostream &OS) const {
3183  print_factors_and_types(OS);
3184  print_fixups(OS);
3185  print_uses(OS);
3186}
3187
3188void LSRInstance::dump() const {
3189  print(errs()); errs() << '\n';
3190}
3191
3192namespace {
3193
3194class LoopStrengthReduce : public LoopPass {
3195  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3196  /// transformation profitability.
3197  const TargetLowering *const TLI;
3198
3199public:
3200  static char ID; // Pass ID, replacement for typeid
3201  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3202
3203private:
3204  bool runOnLoop(Loop *L, LPPassManager &LPM);
3205  void getAnalysisUsage(AnalysisUsage &AU) const;
3206};
3207
3208}
3209
3210char LoopStrengthReduce::ID = 0;
3211static RegisterPass<LoopStrengthReduce>
3212X("loop-reduce", "Loop Strength Reduction");
3213
3214Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3215  return new LoopStrengthReduce(TLI);
3216}
3217
3218LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3219  : LoopPass(&ID), TLI(tli) {}
3220
3221void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3222  // We split critical edges, so we change the CFG.  However, we do update
3223  // many analyses if they are around.
3224  AU.addPreservedID(LoopSimplifyID);
3225  AU.addPreserved<LoopInfo>();
3226  AU.addPreserved("domfrontier");
3227
3228  AU.addRequiredID(LoopSimplifyID);
3229  AU.addRequired<DominatorTree>();
3230  AU.addPreserved<DominatorTree>();
3231  AU.addRequired<ScalarEvolution>();
3232  AU.addPreserved<ScalarEvolution>();
3233  AU.addRequired<IVUsers>();
3234  AU.addPreserved<IVUsers>();
3235}
3236
3237bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3238  bool Changed = false;
3239
3240  // Run the main LSR transformation.
3241  Changed |= LSRInstance(TLI, L, this).getChanged();
3242
3243  // At this point, it is worth checking to see if any recurrence PHIs are also
3244  // dead, so that we can remove them as well.
3245  Changed |= DeleteDeadPHIs(L->getHeader());
3246
3247  return Changed;
3248}
3249