LoopUnswitch.cpp revision 02720242103ab7adc44580328bd8d35fa555bcb1
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/InlineCost.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Transforms/Utils/Cloning.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include <algorithm>
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumBranches, "Number of branches unswitched");
54STATISTIC(NumSwitches, "Number of switches unswitched");
55STATISTIC(NumSelects , "Number of selects unswitched");
56STATISTIC(NumTrivial , "Number of unswitches that are trivial");
57STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
58
59// The specific value of 50 here was chosen based only on intuition and a
60// few specific examples.
61static cl::opt<unsigned>
62Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
63          cl::init(50), cl::Hidden);
64
65namespace {
66  class LoopUnswitch : public LoopPass {
67    LoopInfo *LI;  // Loop information
68    LPPassManager *LPM;
69
70    // LoopProcessWorklist - Used to check if second loop needs processing
71    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
72    std::vector<Loop*> LoopProcessWorklist;
73    SmallPtrSet<Value *,8> UnswitchedVals;
74
75    bool OptimizeForSize;
76    bool redoLoop;
77
78    Loop *currentLoop;
79    DominanceFrontier *DF;
80    DominatorTree *DT;
81    BasicBlock *loopHeader;
82    BasicBlock *loopPreheader;
83
84    // LoopBlocks contains all of the basic blocks of the loop, including the
85    // preheader of the loop, the body of the loop, and the exit blocks of the
86    // loop, in that order.
87    std::vector<BasicBlock*> LoopBlocks;
88    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89    std::vector<BasicBlock*> NewBlocks;
90
91  public:
92    static char ID; // Pass ID, replacement for typeid
93    explicit LoopUnswitch(bool Os = false) :
94      LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
95      currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
96      loopPreheader(NULL) {}
97
98    bool runOnLoop(Loop *L, LPPassManager &LPM);
99    bool processCurrentLoop();
100
101    /// This transformation requires natural loop information & requires that
102    /// loop preheaders be inserted into the CFG...
103    ///
104    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105      AU.addRequiredID(LoopSimplifyID);
106      AU.addPreservedID(LoopSimplifyID);
107      AU.addRequired<LoopInfo>();
108      AU.addPreserved<LoopInfo>();
109      AU.addRequiredID(LCSSAID);
110      AU.addPreservedID(LCSSAID);
111      AU.addPreserved<DominatorTree>();
112      AU.addPreserved<DominanceFrontier>();
113    }
114
115  private:
116
117    virtual void releaseMemory() {
118      UnswitchedVals.clear();
119    }
120
121    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
122    /// remove it.
123    void RemoveLoopFromWorklist(Loop *L) {
124      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
125                                                 LoopProcessWorklist.end(), L);
126      if (I != LoopProcessWorklist.end())
127        LoopProcessWorklist.erase(I);
128    }
129
130    void initLoopData() {
131      loopHeader = currentLoop->getHeader();
132      loopPreheader = currentLoop->getLoopPreheader();
133    }
134
135    /// Split all of the edges from inside the loop to their exit blocks.
136    /// Update the appropriate Phi nodes as we do so.
137    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
138
139    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
140    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
141                                  BasicBlock *ExitBlock);
142    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
143
144    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
145                                              Constant *Val, bool isEqual);
146
147    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
148                                        BasicBlock *TrueDest,
149                                        BasicBlock *FalseDest,
150                                        Instruction *InsertPt);
151
152    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
153    void RemoveBlockIfDead(BasicBlock *BB,
154                           std::vector<Instruction*> &Worklist, Loop *l);
155    void RemoveLoopFromHierarchy(Loop *L);
156    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
157                                    BasicBlock **LoopExit = 0);
158
159  };
160}
161char LoopUnswitch::ID = 0;
162static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
163
164Pass *llvm::createLoopUnswitchPass(bool Os) {
165  return new LoopUnswitch(Os);
166}
167
168/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
169/// invariant in the loop, or has an invariant piece, return the invariant.
170/// Otherwise, return null.
171static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
172  // We can never unswitch on vector conditions.
173  if (Cond->getType()->isVectorTy())
174    return 0;
175
176  // Constants should be folded, not unswitched on!
177  if (isa<Constant>(Cond)) return 0;
178
179  // TODO: Handle: br (VARIANT|INVARIANT).
180
181  // Hoist simple values out.
182  if (L->makeLoopInvariant(Cond, Changed))
183    return Cond;
184
185  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
186    if (BO->getOpcode() == Instruction::And ||
187        BO->getOpcode() == Instruction::Or) {
188      // If either the left or right side is invariant, we can unswitch on this,
189      // which will cause the branch to go away in one loop and the condition to
190      // simplify in the other one.
191      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
192        return LHS;
193      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
194        return RHS;
195    }
196
197  return 0;
198}
199
200bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
201  LI = &getAnalysis<LoopInfo>();
202  LPM = &LPM_Ref;
203  DF = getAnalysisIfAvailable<DominanceFrontier>();
204  DT = getAnalysisIfAvailable<DominatorTree>();
205  currentLoop = L;
206  Function *F = currentLoop->getHeader()->getParent();
207  bool Changed = false;
208  do {
209    assert(currentLoop->isLCSSAForm(*DT));
210    redoLoop = false;
211    Changed |= processCurrentLoop();
212  } while(redoLoop);
213
214  if (Changed) {
215    // FIXME: Reconstruct dom info, because it is not preserved properly.
216    if (DT)
217      DT->runOnFunction(*F);
218    if (DF)
219      DF->runOnFunction(*F);
220  }
221  return Changed;
222}
223
224/// processCurrentLoop - Do actual work and unswitch loop if possible
225/// and profitable.
226bool LoopUnswitch::processCurrentLoop() {
227  bool Changed = false;
228  LLVMContext &Context = currentLoop->getHeader()->getContext();
229
230  // Loop over all of the basic blocks in the loop.  If we find an interior
231  // block that is branching on a loop-invariant condition, we can unswitch this
232  // loop.
233  for (Loop::block_iterator I = currentLoop->block_begin(),
234         E = currentLoop->block_end();
235       I != E; ++I) {
236    TerminatorInst *TI = (*I)->getTerminator();
237    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
238      // If this isn't branching on an invariant condition, we can't unswitch
239      // it.
240      if (BI->isConditional()) {
241        // See if this, or some part of it, is loop invariant.  If so, we can
242        // unswitch on it if we desire.
243        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
244                                               currentLoop, Changed);
245        if (LoopCond && UnswitchIfProfitable(LoopCond,
246                                             ConstantInt::getTrue(Context))) {
247          ++NumBranches;
248          return true;
249        }
250      }
251    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
252      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
253                                             currentLoop, Changed);
254      if (LoopCond && SI->getNumCases() > 1) {
255        // Find a value to unswitch on:
256        // FIXME: this should chose the most expensive case!
257        Constant *UnswitchVal = SI->getCaseValue(1);
258        // Do not process same value again and again.
259        if (!UnswitchedVals.insert(UnswitchVal))
260          continue;
261
262        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
263          ++NumSwitches;
264          return true;
265        }
266      }
267    }
268
269    // Scan the instructions to check for unswitchable values.
270    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
271         BBI != E; ++BBI)
272      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
273        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
274                                               currentLoop, Changed);
275        if (LoopCond && UnswitchIfProfitable(LoopCond,
276                                             ConstantInt::getTrue(Context))) {
277          ++NumSelects;
278          return true;
279        }
280      }
281  }
282  return Changed;
283}
284
285/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
286///   1. Exit the loop with no side effects.
287///   2. Branch to the latch block with no side-effects.
288///
289/// If these conditions are true, we return true and set ExitBB to the block we
290/// exit through.
291///
292static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
293                                         BasicBlock *&ExitBB,
294                                         std::set<BasicBlock*> &Visited) {
295  if (!Visited.insert(BB).second) {
296    // Already visited and Ok, end of recursion.
297    return true;
298  } else if (!L->contains(BB)) {
299    // Otherwise, this is a loop exit, this is fine so long as this is the
300    // first exit.
301    if (ExitBB != 0) return false;
302    ExitBB = BB;
303    return true;
304  }
305
306  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
307  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
308    // Check to see if the successor is a trivial loop exit.
309    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
310      return false;
311  }
312
313  // Okay, everything after this looks good, check to make sure that this block
314  // doesn't include any side effects.
315  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
316    if (I->mayHaveSideEffects())
317      return false;
318
319  return true;
320}
321
322/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
323/// leads to an exit from the specified loop, and has no side-effects in the
324/// process.  If so, return the block that is exited to, otherwise return null.
325static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
326  std::set<BasicBlock*> Visited;
327  Visited.insert(L->getHeader());  // Branches to header are ok.
328  BasicBlock *ExitBB = 0;
329  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
330    return ExitBB;
331  return 0;
332}
333
334/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
335/// trivial: that is, that the condition controls whether or not the loop does
336/// anything at all.  If this is a trivial condition, unswitching produces no
337/// code duplications (equivalently, it produces a simpler loop and a new empty
338/// loop, which gets deleted).
339///
340/// If this is a trivial condition, return true, otherwise return false.  When
341/// returning true, this sets Cond and Val to the condition that controls the
342/// trivial condition: when Cond dynamically equals Val, the loop is known to
343/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
344/// Cond == Val.
345///
346bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
347                                       BasicBlock **LoopExit) {
348  BasicBlock *Header = currentLoop->getHeader();
349  TerminatorInst *HeaderTerm = Header->getTerminator();
350  LLVMContext &Context = Header->getContext();
351
352  BasicBlock *LoopExitBB = 0;
353  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
354    // If the header block doesn't end with a conditional branch on Cond, we
355    // can't handle it.
356    if (!BI->isConditional() || BI->getCondition() != Cond)
357      return false;
358
359    // Check to see if a successor of the branch is guaranteed to go to the
360    // latch block or exit through a one exit block without having any
361    // side-effects.  If so, determine the value of Cond that causes it to do
362    // this.
363    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
364                                             BI->getSuccessor(0)))) {
365      if (Val) *Val = ConstantInt::getTrue(Context);
366    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
367                                                    BI->getSuccessor(1)))) {
368      if (Val) *Val = ConstantInt::getFalse(Context);
369    }
370  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
371    // If this isn't a switch on Cond, we can't handle it.
372    if (SI->getCondition() != Cond) return false;
373
374    // Check to see if a successor of the switch is guaranteed to go to the
375    // latch block or exit through a one exit block without having any
376    // side-effects.  If so, determine the value of Cond that causes it to do
377    // this.  Note that we can't trivially unswitch on the default case.
378    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
379      if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
380                                               SI->getSuccessor(i)))) {
381        // Okay, we found a trivial case, remember the value that is trivial.
382        if (Val) *Val = SI->getCaseValue(i);
383        break;
384      }
385  }
386
387  // If we didn't find a single unique LoopExit block, or if the loop exit block
388  // contains phi nodes, this isn't trivial.
389  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
390    return false;   // Can't handle this.
391
392  if (LoopExit) *LoopExit = LoopExitBB;
393
394  // We already know that nothing uses any scalar values defined inside of this
395  // loop.  As such, we just have to check to see if this loop will execute any
396  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
397  // part of the loop that the code *would* execute.  We already checked the
398  // tail, check the header now.
399  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
400    if (I->mayHaveSideEffects())
401      return false;
402  return true;
403}
404
405/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
406/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
407/// unswitch the loop, reprocess the pieces, then return true.
408bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
409
410  initLoopData();
411
412  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
413  if (!loopPreheader)
414    return false;
415
416  Function *F = loopHeader->getParent();
417
418  Constant *CondVal = 0;
419  BasicBlock *ExitBlock = 0;
420  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
421    // If the condition is trivial, always unswitch. There is no code growth
422    // for this case.
423    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
424    return true;
425  }
426
427  // Check to see if it would be profitable to unswitch current loop.
428
429  // Do not do non-trivial unswitch while optimizing for size.
430  if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
431    return false;
432
433  // FIXME: This is overly conservative because it does not take into
434  // consideration code simplification opportunities and code that can
435  // be shared by the resultant unswitched loops.
436  CodeMetrics Metrics;
437  for (Loop::block_iterator I = currentLoop->block_begin(),
438         E = currentLoop->block_end();
439       I != E; ++I)
440    Metrics.analyzeBasicBlock(*I);
441
442  // Limit the number of instructions to avoid causing significant code
443  // expansion, and the number of basic blocks, to avoid loops with
444  // large numbers of branches which cause loop unswitching to go crazy.
445  // This is a very ad-hoc heuristic.
446  if (Metrics.NumInsts > Threshold ||
447      Metrics.NumBlocks * 5 > Threshold ||
448      Metrics.NeverInline) {
449    DEBUG(dbgs() << "NOT unswitching loop %"
450          << currentLoop->getHeader()->getName() << ", cost too high: "
451          << currentLoop->getBlocks().size() << "\n");
452    return false;
453  }
454
455  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
456  return true;
457}
458
459// RemapInstruction - Convert the instruction operands from referencing the
460// current values into those specified by ValueMap.
461//
462static inline void RemapInstruction(Instruction *I,
463                                    DenseMap<const Value *, Value*> &ValueMap) {
464  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
465    Value *Op = I->getOperand(op);
466    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
467    if (It != ValueMap.end()) Op = It->second;
468    I->setOperand(op, Op);
469  }
470}
471
472/// CloneLoop - Recursively clone the specified loop and all of its children,
473/// mapping the blocks with the specified map.
474static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
475                       LoopInfo *LI, LPPassManager *LPM) {
476  Loop *New = new Loop();
477
478  LPM->insertLoop(New, PL);
479
480  // Add all of the blocks in L to the new loop.
481  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
482       I != E; ++I)
483    if (LI->getLoopFor(*I) == L)
484      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
485
486  // Add all of the subloops to the new loop.
487  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
488    CloneLoop(*I, New, VM, LI, LPM);
489
490  return New;
491}
492
493/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
494/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
495/// code immediately before InsertPt.
496void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
497                                                  BasicBlock *TrueDest,
498                                                  BasicBlock *FalseDest,
499                                                  Instruction *InsertPt) {
500  // Insert a conditional branch on LIC to the two preheaders.  The original
501  // code is the true version and the new code is the false version.
502  Value *BranchVal = LIC;
503  if (!isa<ConstantInt>(Val) ||
504      Val->getType() != Type::getInt1Ty(LIC->getContext()))
505    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
506  else if (Val != ConstantInt::getTrue(Val->getContext()))
507    // We want to enter the new loop when the condition is true.
508    std::swap(TrueDest, FalseDest);
509
510  // Insert the new branch.
511  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
512
513  // If either edge is critical, split it. This helps preserve LoopSimplify
514  // form for enclosing loops.
515  SplitCriticalEdge(BI, 0, this);
516  SplitCriticalEdge(BI, 1, this);
517}
518
519/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
520/// condition in it (a cond branch from its header block to its latch block,
521/// where the path through the loop that doesn't execute its body has no
522/// side-effects), unswitch it.  This doesn't involve any code duplication, just
523/// moving the conditional branch outside of the loop and updating loop info.
524void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
525                                            Constant *Val,
526                                            BasicBlock *ExitBlock) {
527  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
528        << loopHeader->getName() << " [" << L->getBlocks().size()
529        << " blocks] in Function " << L->getHeader()->getParent()->getName()
530        << " on cond: " << *Val << " == " << *Cond << "\n");
531
532  // First step, split the preheader, so that we know that there is a safe place
533  // to insert the conditional branch.  We will change loopPreheader to have a
534  // conditional branch on Cond.
535  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
536
537  // Now that we have a place to insert the conditional branch, create a place
538  // to branch to: this is the exit block out of the loop that we should
539  // short-circuit to.
540
541  // Split this block now, so that the loop maintains its exit block, and so
542  // that the jump from the preheader can execute the contents of the exit block
543  // without actually branching to it (the exit block should be dominated by the
544  // loop header, not the preheader).
545  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
546  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
547
548  // Okay, now we have a position to branch from and a position to branch to,
549  // insert the new conditional branch.
550  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
551                                 loopPreheader->getTerminator());
552  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
553  loopPreheader->getTerminator()->eraseFromParent();
554
555  // We need to reprocess this loop, it could be unswitched again.
556  redoLoop = true;
557
558  // Now that we know that the loop is never entered when this condition is a
559  // particular value, rewrite the loop with this info.  We know that this will
560  // at least eliminate the old branch.
561  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
562  ++NumTrivial;
563}
564
565/// SplitExitEdges - Split all of the edges from inside the loop to their exit
566/// blocks.  Update the appropriate Phi nodes as we do so.
567void LoopUnswitch::SplitExitEdges(Loop *L,
568                                const SmallVector<BasicBlock *, 8> &ExitBlocks)
569{
570
571  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
572    BasicBlock *ExitBlock = ExitBlocks[i];
573    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
574                                       pred_end(ExitBlock));
575    SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
576                           ".us-lcssa", this);
577  }
578}
579
580/// UnswitchNontrivialCondition - We determined that the loop is profitable
581/// to unswitch when LIC equal Val.  Split it into loop versions and test the
582/// condition outside of either loop.  Return the loops created as Out1/Out2.
583void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
584                                               Loop *L) {
585  Function *F = loopHeader->getParent();
586  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
587        << loopHeader->getName() << " [" << L->getBlocks().size()
588        << " blocks] in Function " << F->getName()
589        << " when '" << *Val << "' == " << *LIC << "\n");
590
591  LoopBlocks.clear();
592  NewBlocks.clear();
593
594  // First step, split the preheader and exit blocks, and add these blocks to
595  // the LoopBlocks list.
596  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
597  LoopBlocks.push_back(NewPreheader);
598
599  // We want the loop to come after the preheader, but before the exit blocks.
600  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
601
602  SmallVector<BasicBlock*, 8> ExitBlocks;
603  L->getUniqueExitBlocks(ExitBlocks);
604
605  // Split all of the edges from inside the loop to their exit blocks.  Update
606  // the appropriate Phi nodes as we do so.
607  SplitExitEdges(L, ExitBlocks);
608
609  // The exit blocks may have been changed due to edge splitting, recompute.
610  ExitBlocks.clear();
611  L->getUniqueExitBlocks(ExitBlocks);
612
613  // Add exit blocks to the loop blocks.
614  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
615
616  // Next step, clone all of the basic blocks that make up the loop (including
617  // the loop preheader and exit blocks), keeping track of the mapping between
618  // the instructions and blocks.
619  NewBlocks.reserve(LoopBlocks.size());
620  DenseMap<const Value*, Value*> ValueMap;
621  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
622    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
623    NewBlocks.push_back(New);
624    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
625    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
626  }
627
628  // Splice the newly inserted blocks into the function right before the
629  // original preheader.
630  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
631                                NewBlocks[0], F->end());
632
633  // Now we create the new Loop object for the versioned loop.
634  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
635  Loop *ParentLoop = L->getParentLoop();
636  if (ParentLoop) {
637    // Make sure to add the cloned preheader and exit blocks to the parent loop
638    // as well.
639    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
640  }
641
642  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
643    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
644    // The new exit block should be in the same loop as the old one.
645    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
646      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
647
648    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
649           "Exit block should have been split to have one successor!");
650    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
651
652    // If the successor of the exit block had PHI nodes, add an entry for
653    // NewExit.
654    PHINode *PN;
655    for (BasicBlock::iterator I = ExitSucc->begin();
656         (PN = dyn_cast<PHINode>(I)); ++I) {
657      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
658      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
659      if (It != ValueMap.end()) V = It->second;
660      PN->addIncoming(V, NewExit);
661    }
662  }
663
664  // Rewrite the code to refer to itself.
665  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
666    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
667           E = NewBlocks[i]->end(); I != E; ++I)
668      RemapInstruction(I, ValueMap);
669
670  // Rewrite the original preheader to select between versions of the loop.
671  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
672  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
673         "Preheader splitting did not work correctly!");
674
675  // Emit the new branch that selects between the two versions of this loop.
676  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
677  LPM->deleteSimpleAnalysisValue(OldBR, L);
678  OldBR->eraseFromParent();
679
680  LoopProcessWorklist.push_back(NewLoop);
681  redoLoop = true;
682
683  // Now we rewrite the original code to know that the condition is true and the
684  // new code to know that the condition is false.
685  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
686
687  // It's possible that simplifying one loop could cause the other to be
688  // deleted.  If so, don't simplify it.
689  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
690    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
691
692}
693
694/// RemoveFromWorklist - Remove all instances of I from the worklist vector
695/// specified.
696static void RemoveFromWorklist(Instruction *I,
697                               std::vector<Instruction*> &Worklist) {
698  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
699                                                     Worklist.end(), I);
700  while (WI != Worklist.end()) {
701    unsigned Offset = WI-Worklist.begin();
702    Worklist.erase(WI);
703    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
704  }
705}
706
707/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
708/// program, replacing all uses with V and update the worklist.
709static void ReplaceUsesOfWith(Instruction *I, Value *V,
710                              std::vector<Instruction*> &Worklist,
711                              Loop *L, LPPassManager *LPM) {
712  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
713
714  // Add uses to the worklist, which may be dead now.
715  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
716    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
717      Worklist.push_back(Use);
718
719  // Add users to the worklist which may be simplified now.
720  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
721       UI != E; ++UI)
722    Worklist.push_back(cast<Instruction>(*UI));
723  LPM->deleteSimpleAnalysisValue(I, L);
724  RemoveFromWorklist(I, Worklist);
725  I->replaceAllUsesWith(V);
726  I->eraseFromParent();
727  ++NumSimplify;
728}
729
730/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
731/// information, and remove any dead successors it has.
732///
733void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
734                                     std::vector<Instruction*> &Worklist,
735                                     Loop *L) {
736  if (pred_begin(BB) != pred_end(BB)) {
737    // This block isn't dead, since an edge to BB was just removed, see if there
738    // are any easy simplifications we can do now.
739    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
740      // If it has one pred, fold phi nodes in BB.
741      while (isa<PHINode>(BB->begin()))
742        ReplaceUsesOfWith(BB->begin(),
743                          cast<PHINode>(BB->begin())->getIncomingValue(0),
744                          Worklist, L, LPM);
745
746      // If this is the header of a loop and the only pred is the latch, we now
747      // have an unreachable loop.
748      if (Loop *L = LI->getLoopFor(BB))
749        if (loopHeader == BB && L->contains(Pred)) {
750          // Remove the branch from the latch to the header block, this makes
751          // the header dead, which will make the latch dead (because the header
752          // dominates the latch).
753          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
754          Pred->getTerminator()->eraseFromParent();
755          new UnreachableInst(BB->getContext(), Pred);
756
757          // The loop is now broken, remove it from LI.
758          RemoveLoopFromHierarchy(L);
759
760          // Reprocess the header, which now IS dead.
761          RemoveBlockIfDead(BB, Worklist, L);
762          return;
763        }
764
765      // If pred ends in a uncond branch, add uncond branch to worklist so that
766      // the two blocks will get merged.
767      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
768        if (BI->isUnconditional())
769          Worklist.push_back(BI);
770    }
771    return;
772  }
773
774  DEBUG(dbgs() << "Nuking dead block: " << *BB);
775
776  // Remove the instructions in the basic block from the worklist.
777  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
778    RemoveFromWorklist(I, Worklist);
779
780    // Anything that uses the instructions in this basic block should have their
781    // uses replaced with undefs.
782    // If I is not void type then replaceAllUsesWith undef.
783    // This allows ValueHandlers and custom metadata to adjust itself.
784    if (!I->getType()->isVoidTy())
785      I->replaceAllUsesWith(UndefValue::get(I->getType()));
786  }
787
788  // If this is the edge to the header block for a loop, remove the loop and
789  // promote all subloops.
790  if (Loop *BBLoop = LI->getLoopFor(BB)) {
791    if (BBLoop->getLoopLatch() == BB)
792      RemoveLoopFromHierarchy(BBLoop);
793  }
794
795  // Remove the block from the loop info, which removes it from any loops it
796  // was in.
797  LI->removeBlock(BB);
798
799
800  // Remove phi node entries in successors for this block.
801  TerminatorInst *TI = BB->getTerminator();
802  SmallVector<BasicBlock*, 4> Succs;
803  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
804    Succs.push_back(TI->getSuccessor(i));
805    TI->getSuccessor(i)->removePredecessor(BB);
806  }
807
808  // Unique the successors, remove anything with multiple uses.
809  array_pod_sort(Succs.begin(), Succs.end());
810  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
811
812  // Remove the basic block, including all of the instructions contained in it.
813  LPM->deleteSimpleAnalysisValue(BB, L);
814  BB->eraseFromParent();
815  // Remove successor blocks here that are not dead, so that we know we only
816  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
817  // then getting removed before we revisit them, which is badness.
818  //
819  for (unsigned i = 0; i != Succs.size(); ++i)
820    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
821      // One exception is loop headers.  If this block was the preheader for a
822      // loop, then we DO want to visit the loop so the loop gets deleted.
823      // We know that if the successor is a loop header, that this loop had to
824      // be the preheader: the case where this was the latch block was handled
825      // above and headers can only have two predecessors.
826      if (!LI->isLoopHeader(Succs[i])) {
827        Succs.erase(Succs.begin()+i);
828        --i;
829      }
830    }
831
832  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
833    RemoveBlockIfDead(Succs[i], Worklist, L);
834}
835
836/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
837/// become unwrapped, either because the backedge was deleted, or because the
838/// edge into the header was removed.  If the edge into the header from the
839/// latch block was removed, the loop is unwrapped but subloops are still alive,
840/// so they just reparent loops.  If the loops are actually dead, they will be
841/// removed later.
842void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
843  LPM->deleteLoopFromQueue(L);
844  RemoveLoopFromWorklist(L);
845}
846
847// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
848// the value specified by Val in the specified loop, or we know it does NOT have
849// that value.  Rewrite any uses of LIC or of properties correlated to it.
850void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
851                                                        Constant *Val,
852                                                        bool IsEqual) {
853  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
854
855  // FIXME: Support correlated properties, like:
856  //  for (...)
857  //    if (li1 < li2)
858  //      ...
859  //    if (li1 > li2)
860  //      ...
861
862  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
863  // selects, switches.
864  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
865  std::vector<Instruction*> Worklist;
866  LLVMContext &Context = Val->getContext();
867
868
869  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
870  // in the loop with the appropriate one directly.
871  if (IsEqual || (isa<ConstantInt>(Val) &&
872      Val->getType()->isIntegerTy(1))) {
873    Value *Replacement;
874    if (IsEqual)
875      Replacement = Val;
876    else
877      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
878                                     !cast<ConstantInt>(Val)->getZExtValue());
879
880    for (unsigned i = 0, e = Users.size(); i != e; ++i)
881      if (Instruction *U = cast<Instruction>(Users[i])) {
882        if (!L->contains(U))
883          continue;
884        U->replaceUsesOfWith(LIC, Replacement);
885        Worklist.push_back(U);
886      }
887  } else {
888    // Otherwise, we don't know the precise value of LIC, but we do know that it
889    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
890    // can.  This case occurs when we unswitch switch statements.
891    for (unsigned i = 0, e = Users.size(); i != e; ++i)
892      if (Instruction *U = cast<Instruction>(Users[i])) {
893        if (!L->contains(U))
894          continue;
895
896        Worklist.push_back(U);
897
898        // If we know that LIC is not Val, use this info to simplify code.
899        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
900          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
901            if (SI->getCaseValue(i) == Val) {
902              // Found a dead case value.  Don't remove PHI nodes in the
903              // successor if they become single-entry, those PHI nodes may
904              // be in the Users list.
905
906              // FIXME: This is a hack.  We need to keep the successor around
907              // and hooked up so as to preserve the loop structure, because
908              // trying to update it is complicated.  So instead we preserve the
909              // loop structure and put the block on a dead code path.
910              BasicBlock *Switch = SI->getParent();
911              SplitEdge(Switch, SI->getSuccessor(i), this);
912              // Compute the successors instead of relying on the return value
913              // of SplitEdge, since it may have split the switch successor
914              // after PHI nodes.
915              BasicBlock *NewSISucc = SI->getSuccessor(i);
916              BasicBlock *OldSISucc = *succ_begin(NewSISucc);
917              // Create an "unreachable" destination.
918              BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
919                                                     Switch->getParent(),
920                                                     OldSISucc);
921              new UnreachableInst(Context, Abort);
922              // Force the new case destination to branch to the "unreachable"
923              // block while maintaining a (dead) CFG edge to the old block.
924              NewSISucc->getTerminator()->eraseFromParent();
925              BranchInst::Create(Abort, OldSISucc,
926                                 ConstantInt::getTrue(Context), NewSISucc);
927              // Release the PHI operands for this edge.
928              for (BasicBlock::iterator II = NewSISucc->begin();
929                   PHINode *PN = dyn_cast<PHINode>(II); ++II)
930                PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
931                                     UndefValue::get(PN->getType()));
932              // Tell the domtree about the new block. We don't fully update the
933              // domtree here -- instead we force it to do a full recomputation
934              // after the pass is complete -- but we do need to inform it of
935              // new blocks.
936              if (DT)
937                DT->addNewBlock(Abort, NewSISucc);
938              break;
939            }
940          }
941        }
942
943        // TODO: We could do other simplifications, for example, turning
944        // LIC == Val -> false.
945      }
946  }
947
948  SimplifyCode(Worklist, L);
949}
950
951/// SimplifyCode - Okay, now that we have simplified some instructions in the
952/// loop, walk over it and constant prop, dce, and fold control flow where
953/// possible.  Note that this is effectively a very simple loop-structure-aware
954/// optimizer.  During processing of this loop, L could very well be deleted, so
955/// it must not be used.
956///
957/// FIXME: When the loop optimizer is more mature, separate this out to a new
958/// pass.
959///
960void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
961  while (!Worklist.empty()) {
962    Instruction *I = Worklist.back();
963    Worklist.pop_back();
964
965    // Simple constant folding.
966    if (Constant *C = ConstantFoldInstruction(I)) {
967      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
968      continue;
969    }
970
971    // Simple DCE.
972    if (isInstructionTriviallyDead(I)) {
973      DEBUG(dbgs() << "Remove dead instruction '" << *I);
974
975      // Add uses to the worklist, which may be dead now.
976      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
977        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
978          Worklist.push_back(Use);
979      LPM->deleteSimpleAnalysisValue(I, L);
980      RemoveFromWorklist(I, Worklist);
981      I->eraseFromParent();
982      ++NumSimplify;
983      continue;
984    }
985
986    // Special case hacks that appear commonly in unswitched code.
987    switch (I->getOpcode()) {
988    case Instruction::Select:
989      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
990        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
991                          LPM);
992        continue;
993      }
994      break;
995    case Instruction::And:
996      if (isa<ConstantInt>(I->getOperand(0)) &&
997          // constant -> RHS
998          I->getOperand(0)->getType()->isIntegerTy(1))
999        cast<BinaryOperator>(I)->swapOperands();
1000      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1001        if (CB->getType()->isIntegerTy(1)) {
1002          if (CB->isOne())      // X & 1 -> X
1003            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1004          else                  // X & 0 -> 0
1005            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1006          continue;
1007        }
1008      break;
1009    case Instruction::Or:
1010      if (isa<ConstantInt>(I->getOperand(0)) &&
1011          // constant -> RHS
1012          I->getOperand(0)->getType()->isIntegerTy(1))
1013        cast<BinaryOperator>(I)->swapOperands();
1014      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1015        if (CB->getType()->isIntegerTy(1)) {
1016          if (CB->isOne())   // X | 1 -> 1
1017            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1018          else                  // X | 0 -> X
1019            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1020          continue;
1021        }
1022      break;
1023    case Instruction::Br: {
1024      BranchInst *BI = cast<BranchInst>(I);
1025      if (BI->isUnconditional()) {
1026        // If BI's parent is the only pred of the successor, fold the two blocks
1027        // together.
1028        BasicBlock *Pred = BI->getParent();
1029        BasicBlock *Succ = BI->getSuccessor(0);
1030        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1031        if (!SinglePred) continue;  // Nothing to do.
1032        assert(SinglePred == Pred && "CFG broken");
1033
1034        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1035              << Succ->getName() << "\n");
1036
1037        // Resolve any single entry PHI nodes in Succ.
1038        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1039          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1040
1041        // Move all of the successor contents from Succ to Pred.
1042        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1043                                   Succ->end());
1044        LPM->deleteSimpleAnalysisValue(BI, L);
1045        BI->eraseFromParent();
1046        RemoveFromWorklist(BI, Worklist);
1047
1048        // If Succ has any successors with PHI nodes, update them to have
1049        // entries coming from Pred instead of Succ.
1050        Succ->replaceAllUsesWith(Pred);
1051
1052        // Remove Succ from the loop tree.
1053        LI->removeBlock(Succ);
1054        LPM->deleteSimpleAnalysisValue(Succ, L);
1055        Succ->eraseFromParent();
1056        ++NumSimplify;
1057      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1058        // Conditional branch.  Turn it into an unconditional branch, then
1059        // remove dead blocks.
1060        break;  // FIXME: Enable.
1061
1062        DEBUG(dbgs() << "Folded branch: " << *BI);
1063        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1064        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1065        DeadSucc->removePredecessor(BI->getParent(), true);
1066        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1067        LPM->deleteSimpleAnalysisValue(BI, L);
1068        BI->eraseFromParent();
1069        RemoveFromWorklist(BI, Worklist);
1070        ++NumSimplify;
1071
1072        RemoveBlockIfDead(DeadSucc, Worklist, L);
1073      }
1074      break;
1075    }
1076    }
1077  }
1078}
1079