LoopUnswitch.cpp revision df5cf2074c336fb4de7e5b77e7b3bbbf21948a53
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/PostOrderIterator.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include <algorithm>
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumBranches, "Number of branches unswitched");
53STATISTIC(NumSwitches, "Number of switches unswitched");
54STATISTIC(NumSelects , "Number of selects unswitched");
55STATISTIC(NumTrivial , "Number of unswitches that are trivial");
56STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
57
58namespace {
59  cl::opt<unsigned>
60  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
61            cl::init(10), cl::Hidden);
62
63  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
64    LoopInfo *LI;  // Loop information
65    LPPassManager *LPM;
66
67    // LoopProcessWorklist - Used to check if second loop needs processing
68    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
69    std::vector<Loop*> LoopProcessWorklist;
70    SmallPtrSet<Value *,8> UnswitchedVals;
71
72    bool OptimizeForSize;
73  public:
74    static char ID; // Pass ID, replacement for typeid
75    LoopUnswitch(bool Os = false) :
76      LoopPass((intptr_t)&ID), OptimizeForSize(Os) {}
77
78    bool runOnLoop(Loop *L, LPPassManager &LPM);
79
80    /// This transformation requires natural loop information & requires that
81    /// loop preheaders be inserted into the CFG...
82    ///
83    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84      AU.addRequiredID(LoopSimplifyID);
85      AU.addPreservedID(LoopSimplifyID);
86      AU.addRequired<LoopInfo>();
87      AU.addPreserved<LoopInfo>();
88      AU.addRequiredID(LCSSAID);
89    }
90
91  private:
92    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
93    /// remove it.
94    void RemoveLoopFromWorklist(Loop *L) {
95      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
96                                                 LoopProcessWorklist.end(), L);
97      if (I != LoopProcessWorklist.end())
98        LoopProcessWorklist.erase(I);
99    }
100
101    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
102    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
103    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
104                                  BasicBlock *ExitBlock);
105    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
106
107    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
108                                              Constant *Val, bool isEqual);
109
110    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
111                                        BasicBlock *TrueDest,
112                                        BasicBlock *FalseDest,
113                                        Instruction *InsertPt);
114
115    void SimplifyCode(std::vector<Instruction*> &Worklist);
116    void RemoveBlockIfDead(BasicBlock *BB,
117                           std::vector<Instruction*> &Worklist);
118    void RemoveLoopFromHierarchy(Loop *L);
119  };
120  char LoopUnswitch::ID = 0;
121  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
122}
123
124LoopPass *llvm::createLoopUnswitchPass(bool Os) {
125  return new LoopUnswitch(Os);
126}
127
128/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
129/// invariant in the loop, or has an invariant piece, return the invariant.
130/// Otherwise, return null.
131static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
132  // Constants should be folded, not unswitched on!
133  if (isa<Constant>(Cond)) return false;
134
135  // TODO: Handle: br (VARIANT|INVARIANT).
136  // TODO: Hoist simple expressions out of loops.
137  if (L->isLoopInvariant(Cond)) return Cond;
138
139  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
140    if (BO->getOpcode() == Instruction::And ||
141        BO->getOpcode() == Instruction::Or) {
142      // If either the left or right side is invariant, we can unswitch on this,
143      // which will cause the branch to go away in one loop and the condition to
144      // simplify in the other one.
145      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
146        return LHS;
147      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
148        return RHS;
149    }
150
151      return 0;
152}
153
154bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
155  assert(L->isLCSSAForm());
156  LI = &getAnalysis<LoopInfo>();
157  LPM = &LPM_Ref;
158  bool Changed = false;
159
160  // Loop over all of the basic blocks in the loop.  If we find an interior
161  // block that is branching on a loop-invariant condition, we can unswitch this
162  // loop.
163  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
164       I != E; ++I) {
165    TerminatorInst *TI = (*I)->getTerminator();
166    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
167      // If this isn't branching on an invariant condition, we can't unswitch
168      // it.
169      if (BI->isConditional()) {
170        // See if this, or some part of it, is loop invariant.  If so, we can
171        // unswitch on it if we desire.
172        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
173        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
174                                             L)) {
175          ++NumBranches;
176          return true;
177        }
178      }
179    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
180      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
181      if (LoopCond && SI->getNumCases() > 1) {
182        // Find a value to unswitch on:
183        // FIXME: this should chose the most expensive case!
184        Constant *UnswitchVal = SI->getCaseValue(1);
185        // Do not process same value again and again.
186        if (!UnswitchedVals.insert(UnswitchVal))
187          continue;
188
189        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
190          ++NumSwitches;
191          return true;
192        }
193      }
194    }
195
196    // Scan the instructions to check for unswitchable values.
197    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
198         BBI != E; ++BBI)
199      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
200        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
201        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
202                                             L)) {
203          ++NumSelects;
204          return true;
205        }
206      }
207  }
208
209  assert(L->isLCSSAForm());
210
211  return Changed;
212}
213
214/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
215///   1. Exit the loop with no side effects.
216///   2. Branch to the latch block with no side-effects.
217///
218/// If these conditions are true, we return true and set ExitBB to the block we
219/// exit through.
220///
221static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
222                                         BasicBlock *&ExitBB,
223                                         std::set<BasicBlock*> &Visited) {
224  if (!Visited.insert(BB).second) {
225    // Already visited and Ok, end of recursion.
226    return true;
227  } else if (!L->contains(BB)) {
228    // Otherwise, this is a loop exit, this is fine so long as this is the
229    // first exit.
230    if (ExitBB != 0) return false;
231    ExitBB = BB;
232    return true;
233  }
234
235  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
236  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
237    // Check to see if the successor is a trivial loop exit.
238    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
239      return false;
240  }
241
242  // Okay, everything after this looks good, check to make sure that this block
243  // doesn't include any side effects.
244  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
245    if (I->mayWriteToMemory())
246      return false;
247
248  return true;
249}
250
251/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
252/// leads to an exit from the specified loop, and has no side-effects in the
253/// process.  If so, return the block that is exited to, otherwise return null.
254static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
255  std::set<BasicBlock*> Visited;
256  Visited.insert(L->getHeader());  // Branches to header are ok.
257  BasicBlock *ExitBB = 0;
258  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
259    return ExitBB;
260  return 0;
261}
262
263/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
264/// trivial: that is, that the condition controls whether or not the loop does
265/// anything at all.  If this is a trivial condition, unswitching produces no
266/// code duplications (equivalently, it produces a simpler loop and a new empty
267/// loop, which gets deleted).
268///
269/// If this is a trivial condition, return true, otherwise return false.  When
270/// returning true, this sets Cond and Val to the condition that controls the
271/// trivial condition: when Cond dynamically equals Val, the loop is known to
272/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
273/// Cond == Val.
274///
275static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
276                                       BasicBlock **LoopExit = 0) {
277  BasicBlock *Header = L->getHeader();
278  TerminatorInst *HeaderTerm = Header->getTerminator();
279
280  BasicBlock *LoopExitBB = 0;
281  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
282    // If the header block doesn't end with a conditional branch on Cond, we
283    // can't handle it.
284    if (!BI->isConditional() || BI->getCondition() != Cond)
285      return false;
286
287    // Check to see if a successor of the branch is guaranteed to go to the
288    // latch block or exit through a one exit block without having any
289    // side-effects.  If so, determine the value of Cond that causes it to do
290    // this.
291    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
292      if (Val) *Val = ConstantInt::getTrue();
293    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
294      if (Val) *Val = ConstantInt::getFalse();
295    }
296  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
297    // If this isn't a switch on Cond, we can't handle it.
298    if (SI->getCondition() != Cond) return false;
299
300    // Check to see if a successor of the switch is guaranteed to go to the
301    // latch block or exit through a one exit block without having any
302    // side-effects.  If so, determine the value of Cond that causes it to do
303    // this.  Note that we can't trivially unswitch on the default case.
304    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
305      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
306        // Okay, we found a trivial case, remember the value that is trivial.
307        if (Val) *Val = SI->getCaseValue(i);
308        break;
309      }
310  }
311
312  // If we didn't find a single unique LoopExit block, or if the loop exit block
313  // contains phi nodes, this isn't trivial.
314  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
315    return false;   // Can't handle this.
316
317  if (LoopExit) *LoopExit = LoopExitBB;
318
319  // We already know that nothing uses any scalar values defined inside of this
320  // loop.  As such, we just have to check to see if this loop will execute any
321  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
322  // part of the loop that the code *would* execute.  We already checked the
323  // tail, check the header now.
324  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
325    if (I->mayWriteToMemory())
326      return false;
327  return true;
328}
329
330/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
331/// we choose to unswitch the specified loop on the specified value.
332///
333unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
334  // If the condition is trivial, always unswitch.  There is no code growth for
335  // this case.
336  if (IsTrivialUnswitchCondition(L, LIC))
337    return 0;
338
339  // FIXME: This is really overly conservative.  However, more liberal
340  // estimations have thus far resulted in excessive unswitching, which is bad
341  // both in compile time and in code size.  This should be replaced once
342  // someone figures out how a good estimation.
343  return L->getBlocks().size();
344
345  unsigned Cost = 0;
346  // FIXME: this is brain dead.  It should take into consideration code
347  // shrinkage.
348  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
349       I != E; ++I) {
350    BasicBlock *BB = *I;
351    // Do not include empty blocks in the cost calculation.  This happen due to
352    // loop canonicalization and will be removed.
353    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
354      continue;
355
356    // Count basic blocks.
357    ++Cost;
358  }
359
360  return Cost;
361}
362
363/// UnswitchIfProfitable - We have found that we can unswitch L when
364/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
365/// unswitch the loop, reprocess the pieces, then return true.
366bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
367  // Check to see if it would be profitable to unswitch this loop.
368  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
369
370  // Do not do non-trivial unswitch while optimizing for size.
371  if (Cost && OptimizeForSize)
372    return false;
373
374  if (Cost > Threshold) {
375    // FIXME: this should estimate growth by the amount of code shared by the
376    // resultant unswitched loops.
377    //
378    DOUT << "NOT unswitching loop %"
379         << L->getHeader()->getName() << ", cost too high: "
380         << L->getBlocks().size() << "\n";
381    return false;
382  }
383
384  // If this is a trivial condition to unswitch (which results in no code
385  // duplication), do it now.
386  Constant *CondVal;
387  BasicBlock *ExitBlock;
388  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
389    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
390  } else {
391    UnswitchNontrivialCondition(LoopCond, Val, L);
392  }
393
394  return true;
395}
396
397// RemapInstruction - Convert the instruction operands from referencing the
398// current values into those specified by ValueMap.
399//
400static inline void RemapInstruction(Instruction *I,
401                                    DenseMap<const Value *, Value*> &ValueMap) {
402  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
403    Value *Op = I->getOperand(op);
404    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
405    if (It != ValueMap.end()) Op = It->second;
406    I->setOperand(op, Op);
407  }
408}
409
410// CloneDomInfo - NewBB is cloned from Orig basic block. Now clone Dominator Info.
411//
412// If Orig block's immediate dominator is mapped in VM then use corresponding
413// immediate dominator from the map. Otherwise Orig block's dominator is also
414// NewBB's dominator.
415//
416// OrigPreheader is loop pre-header before this pass started
417// updating CFG. NewPrehader is loops new pre-header. However, after CFG
418// manipulation, loop L may not exist. So rely on input parameter NewPreheader.
419void CloneDomInfo(BasicBlock *NewBB, BasicBlock *Orig,
420                  BasicBlock *NewPreheader, BasicBlock *OrigPreheader,
421                  BasicBlock *OrigHeader,
422                  DominatorTree *DT, DominanceFrontier *DF,
423                  DenseMap<const Value*, Value*> &VM) {
424
425  // If NewBB alreay has found its place in domiantor tree then no need to do
426  // anything.
427  if (DT->getNode(NewBB))
428    return;
429
430  // If Orig does not have any immediate domiantor then its clone, NewBB, does
431  // not need any immediate dominator.
432  DomTreeNode *OrigNode = DT->getNode(Orig);
433  if (!OrigNode)
434    return;
435  DomTreeNode *OrigIDomNode = OrigNode->getIDom();
436  if (!OrigIDomNode)
437    return;
438
439  BasicBlock *OrigIDom = NULL;
440
441  // If Orig is original loop header then its immediate dominator is
442  // NewPreheader.
443  if (Orig == OrigHeader)
444    OrigIDom = NewPreheader;
445
446  // If Orig is new pre-header then its immediate dominator is
447  // original pre-header.
448  else if (Orig == NewPreheader)
449    OrigIDom = OrigPreheader;
450
451  // Other as DT to find Orig's immediate dominator.
452  else
453     OrigIDom = OrigIDomNode->getBlock();
454
455  // Initially use Orig's immediate dominator as NewBB's immediate dominator.
456  BasicBlock *NewIDom = OrigIDom;
457  DenseMap<const Value*, Value*>::iterator I = VM.find(OrigIDom);
458  if (I != VM.end()) {
459    NewIDom = cast<BasicBlock>(I->second);
460
461    // If NewIDom does not have corresponding dominatore tree node then
462    // get one.
463    if (!DT->getNode(NewIDom))
464      CloneDomInfo(NewIDom, OrigIDom, NewPreheader, OrigPreheader,
465                   OrigHeader, DT, DF, VM);
466  }
467
468  DT->addNewBlock(NewBB, NewIDom);
469
470  // Copy cloned dominance frontiner set
471  DominanceFrontier::DomSetType NewDFSet;
472  if (DF) {
473    DominanceFrontier::iterator DFI = DF->find(Orig);
474    if ( DFI != DF->end()) {
475      DominanceFrontier::DomSetType S = DFI->second;
476      for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
477           I != E; ++I) {
478        BasicBlock *BB = *I;
479        DenseMap<const Value*, Value*>::iterator IDM = VM.find(BB);
480        if (IDM != VM.end())
481          NewDFSet.insert(cast<BasicBlock>(IDM->second));
482        else
483          NewDFSet.insert(BB);
484      }
485    }
486    DF->addBasicBlock(NewBB, NewDFSet);
487  }
488}
489
490/// CloneLoop - Recursively clone the specified loop and all of its children,
491/// mapping the blocks with the specified map.
492static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
493                       LoopInfo *LI, LPPassManager *LPM) {
494  Loop *New = new Loop();
495
496  LPM->insertLoop(New, PL);
497
498  // Add all of the blocks in L to the new loop.
499  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
500       I != E; ++I)
501    if (LI->getLoopFor(*I) == L)
502      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
503
504  // Add all of the subloops to the new loop.
505  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
506    CloneLoop(*I, New, VM, LI, LPM);
507
508  return New;
509}
510
511/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
512/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
513/// code immediately before InsertPt.
514void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
515                                                  BasicBlock *TrueDest,
516                                                  BasicBlock *FalseDest,
517                                                  Instruction *InsertPt) {
518  // Insert a conditional branch on LIC to the two preheaders.  The original
519  // code is the true version and the new code is the false version.
520  Value *BranchVal = LIC;
521  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
522    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
523  else if (Val != ConstantInt::getTrue())
524    // We want to enter the new loop when the condition is true.
525    std::swap(TrueDest, FalseDest);
526
527  // Insert the new branch.
528  BranchInst *BRI = new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
529
530  // Update dominator info.
531  // BranchVal is a new preheader so it dominates true and false destination
532  // loop headers.
533  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
534    DT->changeImmediateDominator(TrueDest, BRI->getParent());
535    DT->changeImmediateDominator(FalseDest, BRI->getParent());
536  }
537  // No need to update DominanceFrontier. BRI->getParent() dominated TrueDest
538  // and FalseDest anyway. Now it immediately dominates them.
539}
540
541
542/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
543/// condition in it (a cond branch from its header block to its latch block,
544/// where the path through the loop that doesn't execute its body has no
545/// side-effects), unswitch it.  This doesn't involve any code duplication, just
546/// moving the conditional branch outside of the loop and updating loop info.
547void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
548                                            Constant *Val,
549                                            BasicBlock *ExitBlock) {
550  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
551       << L->getHeader()->getName() << " [" << L->getBlocks().size()
552       << " blocks] in Function " << L->getHeader()->getParent()->getName()
553       << " on cond: " << *Val << " == " << *Cond << "\n";
554
555  // First step, split the preheader, so that we know that there is a safe place
556  // to insert the conditional branch.  We will change 'OrigPH' to have a
557  // conditional branch on Cond.
558  BasicBlock *OrigPH = L->getLoopPreheader();
559  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader(), this);
560
561  // Now that we have a place to insert the conditional branch, create a place
562  // to branch to: this is the exit block out of the loop that we should
563  // short-circuit to.
564
565  // Split this block now, so that the loop maintains its exit block, and so
566  // that the jump from the preheader can execute the contents of the exit block
567  // without actually branching to it (the exit block should be dominated by the
568  // loop header, not the preheader).
569  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
570  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
571
572  // Okay, now we have a position to branch from and a position to branch to,
573  // insert the new conditional branch.
574  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
575                                 OrigPH->getTerminator());
576  OrigPH->getTerminator()->eraseFromParent();
577
578  // We need to reprocess this loop, it could be unswitched again.
579  LPM->redoLoop(L);
580
581  // Now that we know that the loop is never entered when this condition is a
582  // particular value, rewrite the loop with this info.  We know that this will
583  // at least eliminate the old branch.
584  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
585  ++NumTrivial;
586}
587
588/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
589/// equal Val.  Split it into loop versions and test the condition outside of
590/// either loop.  Return the loops created as Out1/Out2.
591void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
592                                               Loop *L) {
593  Function *F = L->getHeader()->getParent();
594  DOUT << "loop-unswitch: Unswitching loop %"
595       << L->getHeader()->getName() << " [" << L->getBlocks().size()
596       << " blocks] in Function " << F->getName()
597       << " when '" << *Val << "' == " << *LIC << "\n";
598
599  // LoopBlocks contains all of the basic blocks of the loop, including the
600  // preheader of the loop, the body of the loop, and the exit blocks of the
601  // loop, in that order.
602  std::vector<BasicBlock*> LoopBlocks;
603
604  // First step, split the preheader and exit blocks, and add these blocks to
605  // the LoopBlocks list.
606  BasicBlock *OrigHeader = L->getHeader();
607  BasicBlock *OrigPreheader = L->getLoopPreheader();
608  BasicBlock *NewPreheader = SplitEdge(OrigPreheader, L->getHeader(), this);
609  LoopBlocks.push_back(NewPreheader);
610
611  // We want the loop to come after the preheader, but before the exit blocks.
612  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
613
614  std::vector<BasicBlock*> ExitBlocks;
615  L->getUniqueExitBlocks(ExitBlocks);
616
617  // Split all of the edges from inside the loop to their exit blocks.  Update
618  // the appropriate Phi nodes as we do so.
619  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
620    BasicBlock *ExitBlock = ExitBlocks[i];
621    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
622
623    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
624      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock, this);
625      BasicBlock* StartBlock = Preds[j];
626      BasicBlock* EndBlock;
627      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
628        EndBlock = MiddleBlock;
629        MiddleBlock = EndBlock->getSinglePredecessor();;
630      } else {
631        EndBlock = ExitBlock;
632      }
633
634      std::set<PHINode*> InsertedPHIs;
635      PHINode* OldLCSSA = 0;
636      for (BasicBlock::iterator I = EndBlock->begin();
637           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
638        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
639        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
640                                        OldLCSSA->getName() + ".us-lcssa",
641                                        MiddleBlock->getTerminator());
642        NewLCSSA->addIncoming(OldValue, StartBlock);
643        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
644                                   NewLCSSA);
645        InsertedPHIs.insert(NewLCSSA);
646      }
647
648      BasicBlock::iterator InsertPt = EndBlock->begin();
649      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
650      for (BasicBlock::iterator I = MiddleBlock->begin();
651         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
652         ++I) {
653        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
654                                        OldLCSSA->getName() + ".us-lcssa",
655                                        InsertPt);
656        OldLCSSA->replaceAllUsesWith(NewLCSSA);
657        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
658      }
659    }
660  }
661
662  // The exit blocks may have been changed due to edge splitting, recompute.
663  ExitBlocks.clear();
664  L->getUniqueExitBlocks(ExitBlocks);
665
666  // Add exit blocks to the loop blocks.
667  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
668
669  // Next step, clone all of the basic blocks that make up the loop (including
670  // the loop preheader and exit blocks), keeping track of the mapping between
671  // the instructions and blocks.
672  std::vector<BasicBlock*> NewBlocks;
673  NewBlocks.reserve(LoopBlocks.size());
674  DenseMap<const Value*, Value*> ValueMap;
675  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
676    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
677    NewBlocks.push_back(New);
678    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
679  }
680
681  // Update dominator info
682  DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>();
683  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>())
684    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
685      BasicBlock *LBB = LoopBlocks[i];
686      BasicBlock *NBB = NewBlocks[i];
687      CloneDomInfo(NBB, LBB, NewPreheader, OrigPreheader,
688                   OrigHeader, DT, DF, ValueMap);
689    }
690
691  // Splice the newly inserted blocks into the function right before the
692  // original preheader.
693  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
694                                NewBlocks[0], F->end());
695
696  // Now we create the new Loop object for the versioned loop.
697  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
698  Loop *ParentLoop = L->getParentLoop();
699  if (ParentLoop) {
700    // Make sure to add the cloned preheader and exit blocks to the parent loop
701    // as well.
702    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
703  }
704
705  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
706    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
707    // The new exit block should be in the same loop as the old one.
708    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
709      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
710
711    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
712           "Exit block should have been split to have one successor!");
713    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
714
715    // If the successor of the exit block had PHI nodes, add an entry for
716    // NewExit.
717    PHINode *PN;
718    for (BasicBlock::iterator I = ExitSucc->begin();
719         (PN = dyn_cast<PHINode>(I)); ++I) {
720      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
721      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
722      if (It != ValueMap.end()) V = It->second;
723      PN->addIncoming(V, NewExit);
724    }
725  }
726
727  // Rewrite the code to refer to itself.
728  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
729    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
730           E = NewBlocks[i]->end(); I != E; ++I)
731      RemapInstruction(I, ValueMap);
732
733  // Rewrite the original preheader to select between versions of the loop.
734  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
735  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
736         "Preheader splitting did not work correctly!");
737
738  // Emit the new branch that selects between the two versions of this loop.
739  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
740  OldBR->eraseFromParent();
741
742  LoopProcessWorklist.push_back(NewLoop);
743  LPM->redoLoop(L);
744
745  // Now we rewrite the original code to know that the condition is true and the
746  // new code to know that the condition is false.
747  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
748
749  // It's possible that simplifying one loop could cause the other to be
750  // deleted.  If so, don't simplify it.
751  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
752    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
753}
754
755/// RemoveFromWorklist - Remove all instances of I from the worklist vector
756/// specified.
757static void RemoveFromWorklist(Instruction *I,
758                               std::vector<Instruction*> &Worklist) {
759  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
760                                                     Worklist.end(), I);
761  while (WI != Worklist.end()) {
762    unsigned Offset = WI-Worklist.begin();
763    Worklist.erase(WI);
764    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
765  }
766}
767
768/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
769/// program, replacing all uses with V and update the worklist.
770static void ReplaceUsesOfWith(Instruction *I, Value *V,
771                              std::vector<Instruction*> &Worklist) {
772  DOUT << "Replace with '" << *V << "': " << *I;
773
774  // Add uses to the worklist, which may be dead now.
775  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
776    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
777      Worklist.push_back(Use);
778
779  // Add users to the worklist which may be simplified now.
780  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
781       UI != E; ++UI)
782    Worklist.push_back(cast<Instruction>(*UI));
783  I->replaceAllUsesWith(V);
784  I->eraseFromParent();
785  RemoveFromWorklist(I, Worklist);
786  ++NumSimplify;
787}
788
789/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
790/// information, and remove any dead successors it has.
791///
792void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
793                                     std::vector<Instruction*> &Worklist) {
794  if (pred_begin(BB) != pred_end(BB)) {
795    // This block isn't dead, since an edge to BB was just removed, see if there
796    // are any easy simplifications we can do now.
797    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
798      // If it has one pred, fold phi nodes in BB.
799      while (isa<PHINode>(BB->begin()))
800        ReplaceUsesOfWith(BB->begin(),
801                          cast<PHINode>(BB->begin())->getIncomingValue(0),
802                          Worklist);
803
804      // If this is the header of a loop and the only pred is the latch, we now
805      // have an unreachable loop.
806      if (Loop *L = LI->getLoopFor(BB))
807        if (L->getHeader() == BB && L->contains(Pred)) {
808          // Remove the branch from the latch to the header block, this makes
809          // the header dead, which will make the latch dead (because the header
810          // dominates the latch).
811          Pred->getTerminator()->eraseFromParent();
812          new UnreachableInst(Pred);
813
814          // The loop is now broken, remove it from LI.
815          RemoveLoopFromHierarchy(L);
816
817          // Reprocess the header, which now IS dead.
818          RemoveBlockIfDead(BB, Worklist);
819          return;
820        }
821
822      // If pred ends in a uncond branch, add uncond branch to worklist so that
823      // the two blocks will get merged.
824      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
825        if (BI->isUnconditional())
826          Worklist.push_back(BI);
827    }
828    return;
829  }
830
831  DOUT << "Nuking dead block: " << *BB;
832
833  // Remove the instructions in the basic block from the worklist.
834  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
835    RemoveFromWorklist(I, Worklist);
836
837    // Anything that uses the instructions in this basic block should have their
838    // uses replaced with undefs.
839    if (!I->use_empty())
840      I->replaceAllUsesWith(UndefValue::get(I->getType()));
841  }
842
843  // If this is the edge to the header block for a loop, remove the loop and
844  // promote all subloops.
845  if (Loop *BBLoop = LI->getLoopFor(BB)) {
846    if (BBLoop->getLoopLatch() == BB)
847      RemoveLoopFromHierarchy(BBLoop);
848  }
849
850  // Remove the block from the loop info, which removes it from any loops it
851  // was in.
852  LI->removeBlock(BB);
853
854
855  // Remove phi node entries in successors for this block.
856  TerminatorInst *TI = BB->getTerminator();
857  std::vector<BasicBlock*> Succs;
858  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
859    Succs.push_back(TI->getSuccessor(i));
860    TI->getSuccessor(i)->removePredecessor(BB);
861  }
862
863  // Unique the successors, remove anything with multiple uses.
864  std::sort(Succs.begin(), Succs.end());
865  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
866
867  // Remove the basic block, including all of the instructions contained in it.
868  BB->eraseFromParent();
869
870  // Remove successor blocks here that are not dead, so that we know we only
871  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
872  // then getting removed before we revisit them, which is badness.
873  //
874  for (unsigned i = 0; i != Succs.size(); ++i)
875    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
876      // One exception is loop headers.  If this block was the preheader for a
877      // loop, then we DO want to visit the loop so the loop gets deleted.
878      // We know that if the successor is a loop header, that this loop had to
879      // be the preheader: the case where this was the latch block was handled
880      // above and headers can only have two predecessors.
881      if (!LI->isLoopHeader(Succs[i])) {
882        Succs.erase(Succs.begin()+i);
883        --i;
884      }
885    }
886
887  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
888    RemoveBlockIfDead(Succs[i], Worklist);
889}
890
891/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
892/// become unwrapped, either because the backedge was deleted, or because the
893/// edge into the header was removed.  If the edge into the header from the
894/// latch block was removed, the loop is unwrapped but subloops are still alive,
895/// so they just reparent loops.  If the loops are actually dead, they will be
896/// removed later.
897void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
898  LPM->deleteLoopFromQueue(L);
899  RemoveLoopFromWorklist(L);
900}
901
902
903
904// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
905// the value specified by Val in the specified loop, or we know it does NOT have
906// that value.  Rewrite any uses of LIC or of properties correlated to it.
907void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
908                                                        Constant *Val,
909                                                        bool IsEqual) {
910  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
911
912  // FIXME: Support correlated properties, like:
913  //  for (...)
914  //    if (li1 < li2)
915  //      ...
916  //    if (li1 > li2)
917  //      ...
918
919  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
920  // selects, switches.
921  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
922  std::vector<Instruction*> Worklist;
923
924  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
925  // in the loop with the appropriate one directly.
926  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
927    Value *Replacement;
928    if (IsEqual)
929      Replacement = Val;
930    else
931      Replacement = ConstantInt::get(Type::Int1Ty,
932                                     !cast<ConstantInt>(Val)->getZExtValue());
933
934    for (unsigned i = 0, e = Users.size(); i != e; ++i)
935      if (Instruction *U = cast<Instruction>(Users[i])) {
936        if (!L->contains(U->getParent()))
937          continue;
938        U->replaceUsesOfWith(LIC, Replacement);
939        Worklist.push_back(U);
940      }
941  } else {
942    // Otherwise, we don't know the precise value of LIC, but we do know that it
943    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
944    // can.  This case occurs when we unswitch switch statements.
945    for (unsigned i = 0, e = Users.size(); i != e; ++i)
946      if (Instruction *U = cast<Instruction>(Users[i])) {
947        if (!L->contains(U->getParent()))
948          continue;
949
950        Worklist.push_back(U);
951
952        // If we know that LIC is not Val, use this info to simplify code.
953        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
954          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
955            if (SI->getCaseValue(i) == Val) {
956              // Found a dead case value.  Don't remove PHI nodes in the
957              // successor if they become single-entry, those PHI nodes may
958              // be in the Users list.
959
960              // FIXME: This is a hack.  We need to keep the successor around
961              // and hooked up so as to preserve the loop structure, because
962              // trying to update it is complicated.  So instead we preserve the
963              // loop structure and put the block on an dead code path.
964
965              BasicBlock* Old = SI->getParent();
966              BasicBlock* Split = SplitBlock(Old, SI, this);
967
968              Instruction* OldTerm = Old->getTerminator();
969              new BranchInst(Split, SI->getSuccessor(i),
970                             ConstantInt::getTrue(), OldTerm);
971
972              Old->getTerminator()->eraseFromParent();
973
974
975              PHINode *PN;
976              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
977                   (PN = dyn_cast<PHINode>(II)); ++II) {
978                Value *InVal = PN->removeIncomingValue(Split, false);
979                PN->addIncoming(InVal, Old);
980              }
981
982              SI->removeCase(i);
983              break;
984            }
985          }
986        }
987
988        // TODO: We could do other simplifications, for example, turning
989        // LIC == Val -> false.
990      }
991  }
992
993  SimplifyCode(Worklist);
994}
995
996/// SimplifyCode - Okay, now that we have simplified some instructions in the
997/// loop, walk over it and constant prop, dce, and fold control flow where
998/// possible.  Note that this is effectively a very simple loop-structure-aware
999/// optimizer.  During processing of this loop, L could very well be deleted, so
1000/// it must not be used.
1001///
1002/// FIXME: When the loop optimizer is more mature, separate this out to a new
1003/// pass.
1004///
1005void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
1006  while (!Worklist.empty()) {
1007    Instruction *I = Worklist.back();
1008    Worklist.pop_back();
1009
1010    // Simple constant folding.
1011    if (Constant *C = ConstantFoldInstruction(I)) {
1012      ReplaceUsesOfWith(I, C, Worklist);
1013      continue;
1014    }
1015
1016    // Simple DCE.
1017    if (isInstructionTriviallyDead(I)) {
1018      DOUT << "Remove dead instruction '" << *I;
1019
1020      // Add uses to the worklist, which may be dead now.
1021      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1022        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1023          Worklist.push_back(Use);
1024      I->eraseFromParent();
1025      RemoveFromWorklist(I, Worklist);
1026      ++NumSimplify;
1027      continue;
1028    }
1029
1030    // Special case hacks that appear commonly in unswitched code.
1031    switch (I->getOpcode()) {
1032    case Instruction::Select:
1033      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1034        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
1035        continue;
1036      }
1037      break;
1038    case Instruction::And:
1039      if (isa<ConstantInt>(I->getOperand(0)) &&
1040          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1041        cast<BinaryOperator>(I)->swapOperands();
1042      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1043        if (CB->getType() == Type::Int1Ty) {
1044          if (CB->isOne())      // X & 1 -> X
1045            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1046          else                  // X & 0 -> 0
1047            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1048          continue;
1049        }
1050      break;
1051    case Instruction::Or:
1052      if (isa<ConstantInt>(I->getOperand(0)) &&
1053          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1054        cast<BinaryOperator>(I)->swapOperands();
1055      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1056        if (CB->getType() == Type::Int1Ty) {
1057          if (CB->isOne())   // X | 1 -> 1
1058            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1059          else                  // X | 0 -> X
1060            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1061          continue;
1062        }
1063      break;
1064    case Instruction::Br: {
1065      BranchInst *BI = cast<BranchInst>(I);
1066      if (BI->isUnconditional()) {
1067        // If BI's parent is the only pred of the successor, fold the two blocks
1068        // together.
1069        BasicBlock *Pred = BI->getParent();
1070        BasicBlock *Succ = BI->getSuccessor(0);
1071        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1072        if (!SinglePred) continue;  // Nothing to do.
1073        assert(SinglePred == Pred && "CFG broken");
1074
1075        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1076             << Succ->getName() << "\n";
1077
1078        // Resolve any single entry PHI nodes in Succ.
1079        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1080          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1081
1082        // Move all of the successor contents from Succ to Pred.
1083        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1084                                   Succ->end());
1085        BI->eraseFromParent();
1086        RemoveFromWorklist(BI, Worklist);
1087
1088        // If Succ has any successors with PHI nodes, update them to have
1089        // entries coming from Pred instead of Succ.
1090        Succ->replaceAllUsesWith(Pred);
1091
1092        // Remove Succ from the loop tree.
1093        LI->removeBlock(Succ);
1094        Succ->eraseFromParent();
1095        ++NumSimplify;
1096      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1097        // Conditional branch.  Turn it into an unconditional branch, then
1098        // remove dead blocks.
1099        break;  // FIXME: Enable.
1100
1101        DOUT << "Folded branch: " << *BI;
1102        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1103        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1104        DeadSucc->removePredecessor(BI->getParent(), true);
1105        Worklist.push_back(new BranchInst(LiveSucc, BI));
1106        BI->eraseFromParent();
1107        RemoveFromWorklist(BI, Worklist);
1108        ++NumSimplify;
1109
1110        RemoveBlockIfDead(DeadSucc, Worklist);
1111      }
1112      break;
1113    }
1114    }
1115  }
1116}
1117