Reassociate.cpp revision 081c34b725980f995be9080eaec24cd3dfaaf065
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType() << '\t';
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    dbgs() << "[ ";
67    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68    dbgs() << ", #" << Ops[i].Rank << "] ";
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    DenseMap<BasicBlock*, unsigned> RankMap;
76    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(ID) {
81      initializeReassociatePass(*PassRegistry::getPassRegistry());
82    }
83
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88    }
89  private:
90    void BuildRankMap(Function &F);
91    unsigned getRank(Value *V);
92    Value *ReassociateExpression(BinaryOperator *I);
93    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
94                         unsigned Idx = 0);
95    Value *OptimizeExpression(BinaryOperator *I,
96                              SmallVectorImpl<ValueEntry> &Ops);
97    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
98    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
99    void LinearizeExpr(BinaryOperator *I);
100    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
101    void ReassociateBB(BasicBlock *BB);
102
103    void RemoveDeadBinaryOp(Value *V);
104  };
105}
106
107char Reassociate::ID = 0;
108INITIALIZE_PASS(Reassociate, "reassociate",
109                "Reassociate expressions", false, false)
110
111// Public interface to the Reassociate pass
112FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
113
114void Reassociate::RemoveDeadBinaryOp(Value *V) {
115  Instruction *Op = dyn_cast<Instruction>(V);
116  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
117    return;
118
119  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
120
121  ValueRankMap.erase(Op);
122  Op->eraseFromParent();
123  RemoveDeadBinaryOp(LHS);
124  RemoveDeadBinaryOp(RHS);
125}
126
127
128static bool isUnmovableInstruction(Instruction *I) {
129  if (I->getOpcode() == Instruction::PHI ||
130      I->getOpcode() == Instruction::Alloca ||
131      I->getOpcode() == Instruction::Load ||
132      I->getOpcode() == Instruction::Invoke ||
133      (I->getOpcode() == Instruction::Call &&
134       !isa<DbgInfoIntrinsic>(I)) ||
135      I->getOpcode() == Instruction::UDiv ||
136      I->getOpcode() == Instruction::SDiv ||
137      I->getOpcode() == Instruction::FDiv ||
138      I->getOpcode() == Instruction::URem ||
139      I->getOpcode() == Instruction::SRem ||
140      I->getOpcode() == Instruction::FRem)
141    return true;
142  return false;
143}
144
145void Reassociate::BuildRankMap(Function &F) {
146  unsigned i = 2;
147
148  // Assign distinct ranks to function arguments
149  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
150    ValueRankMap[&*I] = ++i;
151
152  ReversePostOrderTraversal<Function*> RPOT(&F);
153  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
154         E = RPOT.end(); I != E; ++I) {
155    BasicBlock *BB = *I;
156    unsigned BBRank = RankMap[BB] = ++i << 16;
157
158    // Walk the basic block, adding precomputed ranks for any instructions that
159    // we cannot move.  This ensures that the ranks for these instructions are
160    // all different in the block.
161    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
162      if (isUnmovableInstruction(I))
163        ValueRankMap[&*I] = ++BBRank;
164  }
165}
166
167unsigned Reassociate::getRank(Value *V) {
168  Instruction *I = dyn_cast<Instruction>(V);
169  if (I == 0) {
170    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
171    return 0;  // Otherwise it's a global or constant, rank 0.
172  }
173
174  if (unsigned Rank = ValueRankMap[I])
175    return Rank;    // Rank already known?
176
177  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
178  // we can reassociate expressions for code motion!  Since we do not recurse
179  // for PHI nodes, we cannot have infinite recursion here, because there
180  // cannot be loops in the value graph that do not go through PHI nodes.
181  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
182  for (unsigned i = 0, e = I->getNumOperands();
183       i != e && Rank != MaxRank; ++i)
184    Rank = std::max(Rank, getRank(I->getOperand(i)));
185
186  // If this is a not or neg instruction, do not count it for rank.  This
187  // assures us that X and ~X will have the same rank.
188  if (!I->getType()->isIntegerTy() ||
189      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
190    ++Rank;
191
192  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
193  //     << Rank << "\n");
194
195  return ValueRankMap[I] = Rank;
196}
197
198/// isReassociableOp - Return true if V is an instruction of the specified
199/// opcode and if it only has one use.
200static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
201  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
202      cast<Instruction>(V)->getOpcode() == Opcode)
203    return cast<BinaryOperator>(V);
204  return 0;
205}
206
207/// LowerNegateToMultiply - Replace 0-X with X*-1.
208///
209static Instruction *LowerNegateToMultiply(Instruction *Neg,
210                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
211  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
212
213  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
214  ValueRankMap.erase(Neg);
215  Res->takeName(Neg);
216  Neg->replaceAllUsesWith(Res);
217  Neg->eraseFromParent();
218  return Res;
219}
220
221// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
222// Note that if D is also part of the expression tree that we recurse to
223// linearize it as well.  Besides that case, this does not recurse into A,B, or
224// C.
225void Reassociate::LinearizeExpr(BinaryOperator *I) {
226  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
227  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
228  assert(isReassociableOp(LHS, I->getOpcode()) &&
229         isReassociableOp(RHS, I->getOpcode()) &&
230         "Not an expression that needs linearization?");
231
232  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
233
234  // Move the RHS instruction to live immediately before I, avoiding breaking
235  // dominator properties.
236  RHS->moveBefore(I);
237
238  // Move operands around to do the linearization.
239  I->setOperand(1, RHS->getOperand(0));
240  RHS->setOperand(0, LHS);
241  I->setOperand(0, RHS);
242
243  ++NumLinear;
244  MadeChange = true;
245  DEBUG(dbgs() << "Linearized: " << *I << '\n');
246
247  // If D is part of this expression tree, tail recurse.
248  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
249    LinearizeExpr(I);
250}
251
252
253/// LinearizeExprTree - Given an associative binary expression tree, traverse
254/// all of the uses putting it into canonical form.  This forces a left-linear
255/// form of the expression (((a+b)+c)+d), and collects information about the
256/// rank of the non-tree operands.
257///
258/// NOTE: These intentionally destroys the expression tree operands (turning
259/// them into undef values) to reduce #uses of the values.  This means that the
260/// caller MUST use something like RewriteExprTree to put the values back in.
261///
262void Reassociate::LinearizeExprTree(BinaryOperator *I,
263                                    SmallVectorImpl<ValueEntry> &Ops) {
264  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
265  unsigned Opcode = I->getOpcode();
266
267  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
268  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
269  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
270
271  // If this is a multiply expression tree and it contains internal negations,
272  // transform them into multiplies by -1 so they can be reassociated.
273  if (I->getOpcode() == Instruction::Mul) {
274    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
275      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
276      LHSBO = isReassociableOp(LHS, Opcode);
277    }
278    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
279      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
280      RHSBO = isReassociableOp(RHS, Opcode);
281    }
282  }
283
284  if (!LHSBO) {
285    if (!RHSBO) {
286      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
287      // such, just remember these operands and their rank.
288      Ops.push_back(ValueEntry(getRank(LHS), LHS));
289      Ops.push_back(ValueEntry(getRank(RHS), RHS));
290
291      // Clear the leaves out.
292      I->setOperand(0, UndefValue::get(I->getType()));
293      I->setOperand(1, UndefValue::get(I->getType()));
294      return;
295    }
296
297    // Turn X+(Y+Z) -> (Y+Z)+X
298    std::swap(LHSBO, RHSBO);
299    std::swap(LHS, RHS);
300    bool Success = !I->swapOperands();
301    assert(Success && "swapOperands failed");
302    Success = false;
303    MadeChange = true;
304  } else if (RHSBO) {
305    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
306    // part of the expression tree.
307    LinearizeExpr(I);
308    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
309    RHS = I->getOperand(1);
310    RHSBO = 0;
311  }
312
313  // Okay, now we know that the LHS is a nested expression and that the RHS is
314  // not.  Perform reassociation.
315  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
316
317  // Move LHS right before I to make sure that the tree expression dominates all
318  // values.
319  LHSBO->moveBefore(I);
320
321  // Linearize the expression tree on the LHS.
322  LinearizeExprTree(LHSBO, Ops);
323
324  // Remember the RHS operand and its rank.
325  Ops.push_back(ValueEntry(getRank(RHS), RHS));
326
327  // Clear the RHS leaf out.
328  I->setOperand(1, UndefValue::get(I->getType()));
329}
330
331// RewriteExprTree - Now that the operands for this expression tree are
332// linearized and optimized, emit them in-order.  This function is written to be
333// tail recursive.
334void Reassociate::RewriteExprTree(BinaryOperator *I,
335                                  SmallVectorImpl<ValueEntry> &Ops,
336                                  unsigned i) {
337  if (i+2 == Ops.size()) {
338    if (I->getOperand(0) != Ops[i].Op ||
339        I->getOperand(1) != Ops[i+1].Op) {
340      Value *OldLHS = I->getOperand(0);
341      DEBUG(dbgs() << "RA: " << *I << '\n');
342      I->setOperand(0, Ops[i].Op);
343      I->setOperand(1, Ops[i+1].Op);
344      DEBUG(dbgs() << "TO: " << *I << '\n');
345      MadeChange = true;
346      ++NumChanged;
347
348      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
349      // delete the extra, now dead, nodes.
350      RemoveDeadBinaryOp(OldLHS);
351    }
352    return;
353  }
354  assert(i+2 < Ops.size() && "Ops index out of range!");
355
356  if (I->getOperand(1) != Ops[i].Op) {
357    DEBUG(dbgs() << "RA: " << *I << '\n');
358    I->setOperand(1, Ops[i].Op);
359    DEBUG(dbgs() << "TO: " << *I << '\n');
360    MadeChange = true;
361    ++NumChanged;
362  }
363
364  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
365  assert(LHS->getOpcode() == I->getOpcode() &&
366         "Improper expression tree!");
367
368  // Compactify the tree instructions together with each other to guarantee
369  // that the expression tree is dominated by all of Ops.
370  LHS->moveBefore(I);
371  RewriteExprTree(LHS, Ops, i+1);
372}
373
374
375
376// NegateValue - Insert instructions before the instruction pointed to by BI,
377// that computes the negative version of the value specified.  The negative
378// version of the value is returned, and BI is left pointing at the instruction
379// that should be processed next by the reassociation pass.
380//
381static Value *NegateValue(Value *V, Instruction *BI) {
382  if (Constant *C = dyn_cast<Constant>(V))
383    return ConstantExpr::getNeg(C);
384
385  // We are trying to expose opportunity for reassociation.  One of the things
386  // that we want to do to achieve this is to push a negation as deep into an
387  // expression chain as possible, to expose the add instructions.  In practice,
388  // this means that we turn this:
389  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
390  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
391  // the constants.  We assume that instcombine will clean up the mess later if
392  // we introduce tons of unnecessary negation instructions.
393  //
394  if (Instruction *I = dyn_cast<Instruction>(V))
395    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
396      // Push the negates through the add.
397      I->setOperand(0, NegateValue(I->getOperand(0), BI));
398      I->setOperand(1, NegateValue(I->getOperand(1), BI));
399
400      // We must move the add instruction here, because the neg instructions do
401      // not dominate the old add instruction in general.  By moving it, we are
402      // assured that the neg instructions we just inserted dominate the
403      // instruction we are about to insert after them.
404      //
405      I->moveBefore(BI);
406      I->setName(I->getName()+".neg");
407      return I;
408    }
409
410  // Okay, we need to materialize a negated version of V with an instruction.
411  // Scan the use lists of V to see if we have one already.
412  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
413    User *U = *UI;
414    if (!BinaryOperator::isNeg(U)) continue;
415
416    // We found one!  Now we have to make sure that the definition dominates
417    // this use.  We do this by moving it to the entry block (if it is a
418    // non-instruction value) or right after the definition.  These negates will
419    // be zapped by reassociate later, so we don't need much finesse here.
420    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
421
422    // Verify that the negate is in this function, V might be a constant expr.
423    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
424      continue;
425
426    BasicBlock::iterator InsertPt;
427    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
428      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
429        InsertPt = II->getNormalDest()->begin();
430      } else {
431        InsertPt = InstInput;
432        ++InsertPt;
433      }
434      while (isa<PHINode>(InsertPt)) ++InsertPt;
435    } else {
436      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
437    }
438    TheNeg->moveBefore(InsertPt);
439    return TheNeg;
440  }
441
442  // Insert a 'neg' instruction that subtracts the value from zero to get the
443  // negation.
444  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
445}
446
447/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
448/// X-Y into (X + -Y).
449static bool ShouldBreakUpSubtract(Instruction *Sub) {
450  // If this is a negation, we can't split it up!
451  if (BinaryOperator::isNeg(Sub))
452    return false;
453
454  // Don't bother to break this up unless either the LHS is an associable add or
455  // subtract or if this is only used by one.
456  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
457      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
458    return true;
459  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
460      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
461    return true;
462  if (Sub->hasOneUse() &&
463      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
464       isReassociableOp(Sub->use_back(), Instruction::Sub)))
465    return true;
466
467  return false;
468}
469
470/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
471/// only used by an add, transform this into (X+(0-Y)) to promote better
472/// reassociation.
473static Instruction *BreakUpSubtract(Instruction *Sub,
474                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
475  // Convert a subtract into an add and a neg instruction. This allows sub
476  // instructions to be commuted with other add instructions.
477  //
478  // Calculate the negative value of Operand 1 of the sub instruction,
479  // and set it as the RHS of the add instruction we just made.
480  //
481  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
482  Instruction *New =
483    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
484  New->takeName(Sub);
485
486  // Everyone now refers to the add instruction.
487  ValueRankMap.erase(Sub);
488  Sub->replaceAllUsesWith(New);
489  Sub->eraseFromParent();
490
491  DEBUG(dbgs() << "Negated: " << *New << '\n');
492  return New;
493}
494
495/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
496/// by one, change this into a multiply by a constant to assist with further
497/// reassociation.
498static Instruction *ConvertShiftToMul(Instruction *Shl,
499                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
500  // If an operand of this shift is a reassociable multiply, or if the shift
501  // is used by a reassociable multiply or add, turn into a multiply.
502  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
503      (Shl->hasOneUse() &&
504       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
505        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
506    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
507    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
508
509    Instruction *Mul =
510      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
511    ValueRankMap.erase(Shl);
512    Mul->takeName(Shl);
513    Shl->replaceAllUsesWith(Mul);
514    Shl->eraseFromParent();
515    return Mul;
516  }
517  return 0;
518}
519
520// Scan backwards and forwards among values with the same rank as element i to
521// see if X exists.  If X does not exist, return i.  This is useful when
522// scanning for 'x' when we see '-x' because they both get the same rank.
523static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
524                                  Value *X) {
525  unsigned XRank = Ops[i].Rank;
526  unsigned e = Ops.size();
527  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
528    if (Ops[j].Op == X)
529      return j;
530  // Scan backwards.
531  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
532    if (Ops[j].Op == X)
533      return j;
534  return i;
535}
536
537/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
538/// and returning the result.  Insert the tree before I.
539static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
540  if (Ops.size() == 1) return Ops.back();
541
542  Value *V1 = Ops.back();
543  Ops.pop_back();
544  Value *V2 = EmitAddTreeOfValues(I, Ops);
545  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
546}
547
548/// RemoveFactorFromExpression - If V is an expression tree that is a
549/// multiplication sequence, and if this sequence contains a multiply by Factor,
550/// remove Factor from the tree and return the new tree.
551Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
552  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
553  if (!BO) return 0;
554
555  SmallVector<ValueEntry, 8> Factors;
556  LinearizeExprTree(BO, Factors);
557
558  bool FoundFactor = false;
559  bool NeedsNegate = false;
560  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
561    if (Factors[i].Op == Factor) {
562      FoundFactor = true;
563      Factors.erase(Factors.begin()+i);
564      break;
565    }
566
567    // If this is a negative version of this factor, remove it.
568    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
569      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
570        if (FC1->getValue() == -FC2->getValue()) {
571          FoundFactor = NeedsNegate = true;
572          Factors.erase(Factors.begin()+i);
573          break;
574        }
575  }
576
577  if (!FoundFactor) {
578    // Make sure to restore the operands to the expression tree.
579    RewriteExprTree(BO, Factors);
580    return 0;
581  }
582
583  BasicBlock::iterator InsertPt = BO; ++InsertPt;
584
585  // If this was just a single multiply, remove the multiply and return the only
586  // remaining operand.
587  if (Factors.size() == 1) {
588    ValueRankMap.erase(BO);
589    BO->eraseFromParent();
590    V = Factors[0].Op;
591  } else {
592    RewriteExprTree(BO, Factors);
593    V = BO;
594  }
595
596  if (NeedsNegate)
597    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
598
599  return V;
600}
601
602/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
603/// add its operands as factors, otherwise add V to the list of factors.
604///
605/// Ops is the top-level list of add operands we're trying to factor.
606static void FindSingleUseMultiplyFactors(Value *V,
607                                         SmallVectorImpl<Value*> &Factors,
608                                       const SmallVectorImpl<ValueEntry> &Ops,
609                                         bool IsRoot) {
610  BinaryOperator *BO;
611  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
612      !(BO = dyn_cast<BinaryOperator>(V)) ||
613      BO->getOpcode() != Instruction::Mul) {
614    Factors.push_back(V);
615    return;
616  }
617
618  // If this value has a single use because it is another input to the add
619  // tree we're reassociating and we dropped its use, it actually has two
620  // uses and we can't factor it.
621  if (!IsRoot) {
622    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
623      if (Ops[i].Op == V) {
624        Factors.push_back(V);
625        return;
626      }
627  }
628
629
630  // Otherwise, add the LHS and RHS to the list of factors.
631  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
632  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
633}
634
635/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
636/// instruction.  This optimizes based on identities.  If it can be reduced to
637/// a single Value, it is returned, otherwise the Ops list is mutated as
638/// necessary.
639static Value *OptimizeAndOrXor(unsigned Opcode,
640                               SmallVectorImpl<ValueEntry> &Ops) {
641  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
642  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
643  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
644    // First, check for X and ~X in the operand list.
645    assert(i < Ops.size());
646    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
647      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
648      unsigned FoundX = FindInOperandList(Ops, i, X);
649      if (FoundX != i) {
650        if (Opcode == Instruction::And)   // ...&X&~X = 0
651          return Constant::getNullValue(X->getType());
652
653        if (Opcode == Instruction::Or)    // ...|X|~X = -1
654          return Constant::getAllOnesValue(X->getType());
655      }
656    }
657
658    // Next, check for duplicate pairs of values, which we assume are next to
659    // each other, due to our sorting criteria.
660    assert(i < Ops.size());
661    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
662      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
663        // Drop duplicate values for And and Or.
664        Ops.erase(Ops.begin()+i);
665        --i; --e;
666        ++NumAnnihil;
667        continue;
668      }
669
670      // Drop pairs of values for Xor.
671      assert(Opcode == Instruction::Xor);
672      if (e == 2)
673        return Constant::getNullValue(Ops[0].Op->getType());
674
675      // Y ^ X^X -> Y
676      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
677      i -= 1; e -= 2;
678      ++NumAnnihil;
679    }
680  }
681  return 0;
682}
683
684/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
685/// optimizes based on identities.  If it can be reduced to a single Value, it
686/// is returned, otherwise the Ops list is mutated as necessary.
687Value *Reassociate::OptimizeAdd(Instruction *I,
688                                SmallVectorImpl<ValueEntry> &Ops) {
689  // Scan the operand lists looking for X and -X pairs.  If we find any, we
690  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
691  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
692  //
693  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
694  //
695  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
696    Value *TheOp = Ops[i].Op;
697    // Check to see if we've seen this operand before.  If so, we factor all
698    // instances of the operand together.  Due to our sorting criteria, we know
699    // that these need to be next to each other in the vector.
700    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
701      // Rescan the list, remove all instances of this operand from the expr.
702      unsigned NumFound = 0;
703      do {
704        Ops.erase(Ops.begin()+i);
705        ++NumFound;
706      } while (i != Ops.size() && Ops[i].Op == TheOp);
707
708      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
709      ++NumFactor;
710
711      // Insert a new multiply.
712      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
713      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
714
715      // Now that we have inserted a multiply, optimize it. This allows us to
716      // handle cases that require multiple factoring steps, such as this:
717      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
718      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
719
720      // If every add operand was a duplicate, return the multiply.
721      if (Ops.empty())
722        return Mul;
723
724      // Otherwise, we had some input that didn't have the dupe, such as
725      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
726      // things being added by this operation.
727      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
728
729      --i;
730      e = Ops.size();
731      continue;
732    }
733
734    // Check for X and -X in the operand list.
735    if (!BinaryOperator::isNeg(TheOp))
736      continue;
737
738    Value *X = BinaryOperator::getNegArgument(TheOp);
739    unsigned FoundX = FindInOperandList(Ops, i, X);
740    if (FoundX == i)
741      continue;
742
743    // Remove X and -X from the operand list.
744    if (Ops.size() == 2)
745      return Constant::getNullValue(X->getType());
746
747    Ops.erase(Ops.begin()+i);
748    if (i < FoundX)
749      --FoundX;
750    else
751      --i;   // Need to back up an extra one.
752    Ops.erase(Ops.begin()+FoundX);
753    ++NumAnnihil;
754    --i;     // Revisit element.
755    e -= 2;  // Removed two elements.
756  }
757
758  // Scan the operand list, checking to see if there are any common factors
759  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
760  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
761  // To efficiently find this, we count the number of times a factor occurs
762  // for any ADD operands that are MULs.
763  DenseMap<Value*, unsigned> FactorOccurrences;
764
765  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
766  // where they are actually the same multiply.
767  unsigned MaxOcc = 0;
768  Value *MaxOccVal = 0;
769  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
770    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
771    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
772      continue;
773
774    // Compute all of the factors of this added value.
775    SmallVector<Value*, 8> Factors;
776    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
777    assert(Factors.size() > 1 && "Bad linearize!");
778
779    // Add one to FactorOccurrences for each unique factor in this op.
780    SmallPtrSet<Value*, 8> Duplicates;
781    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
782      Value *Factor = Factors[i];
783      if (!Duplicates.insert(Factor)) continue;
784
785      unsigned Occ = ++FactorOccurrences[Factor];
786      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
787
788      // If Factor is a negative constant, add the negated value as a factor
789      // because we can percolate the negate out.  Watch for minint, which
790      // cannot be positivified.
791      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
792        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
793          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
794          assert(!Duplicates.count(Factor) &&
795                 "Shouldn't have two constant factors, missed a canonicalize");
796
797          unsigned Occ = ++FactorOccurrences[Factor];
798          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
799        }
800    }
801  }
802
803  // If any factor occurred more than one time, we can pull it out.
804  if (MaxOcc > 1) {
805    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
806    ++NumFactor;
807
808    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
809    // this, we could otherwise run into situations where removing a factor
810    // from an expression will drop a use of maxocc, and this can cause
811    // RemoveFactorFromExpression on successive values to behave differently.
812    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
813    SmallVector<Value*, 4> NewMulOps;
814    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
815      // Only try to remove factors from expressions we're allowed to.
816      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
817      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
818        continue;
819
820      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
821        NewMulOps.push_back(V);
822        Ops.erase(Ops.begin()+i);
823        --i; --e;
824      }
825    }
826
827    // No need for extra uses anymore.
828    delete DummyInst;
829
830    unsigned NumAddedValues = NewMulOps.size();
831    Value *V = EmitAddTreeOfValues(I, NewMulOps);
832
833    // Now that we have inserted the add tree, optimize it. This allows us to
834    // handle cases that require multiple factoring steps, such as this:
835    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
836    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
837    (void)NumAddedValues;
838    V = ReassociateExpression(cast<BinaryOperator>(V));
839
840    // Create the multiply.
841    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
842
843    // Rerun associate on the multiply in case the inner expression turned into
844    // a multiply.  We want to make sure that we keep things in canonical form.
845    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
846
847    // If every add operand included the factor (e.g. "A*B + A*C"), then the
848    // entire result expression is just the multiply "A*(B+C)".
849    if (Ops.empty())
850      return V2;
851
852    // Otherwise, we had some input that didn't have the factor, such as
853    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
854    // things being added by this operation.
855    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
856  }
857
858  return 0;
859}
860
861Value *Reassociate::OptimizeExpression(BinaryOperator *I,
862                                       SmallVectorImpl<ValueEntry> &Ops) {
863  // Now that we have the linearized expression tree, try to optimize it.
864  // Start by folding any constants that we found.
865  bool IterateOptimization = false;
866  if (Ops.size() == 1) return Ops[0].Op;
867
868  unsigned Opcode = I->getOpcode();
869
870  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
871    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
872      Ops.pop_back();
873      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
874      return OptimizeExpression(I, Ops);
875    }
876
877  // Check for destructive annihilation due to a constant being used.
878  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
879    switch (Opcode) {
880    default: break;
881    case Instruction::And:
882      if (CstVal->isZero())                  // X & 0 -> 0
883        return CstVal;
884      if (CstVal->isAllOnesValue())          // X & -1 -> X
885        Ops.pop_back();
886      break;
887    case Instruction::Mul:
888      if (CstVal->isZero()) {                // X * 0 -> 0
889        ++NumAnnihil;
890        return CstVal;
891      }
892
893      if (cast<ConstantInt>(CstVal)->isOne())
894        Ops.pop_back();                      // X * 1 -> X
895      break;
896    case Instruction::Or:
897      if (CstVal->isAllOnesValue())          // X | -1 -> -1
898        return CstVal;
899      // FALLTHROUGH!
900    case Instruction::Add:
901    case Instruction::Xor:
902      if (CstVal->isZero())                  // X [|^+] 0 -> X
903        Ops.pop_back();
904      break;
905    }
906  if (Ops.size() == 1) return Ops[0].Op;
907
908  // Handle destructive annihilation due to identities between elements in the
909  // argument list here.
910  switch (Opcode) {
911  default: break;
912  case Instruction::And:
913  case Instruction::Or:
914  case Instruction::Xor: {
915    unsigned NumOps = Ops.size();
916    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
917      return Result;
918    IterateOptimization |= Ops.size() != NumOps;
919    break;
920  }
921
922  case Instruction::Add: {
923    unsigned NumOps = Ops.size();
924    if (Value *Result = OptimizeAdd(I, Ops))
925      return Result;
926    IterateOptimization |= Ops.size() != NumOps;
927  }
928
929    break;
930  //case Instruction::Mul:
931  }
932
933  if (IterateOptimization)
934    return OptimizeExpression(I, Ops);
935  return 0;
936}
937
938
939/// ReassociateBB - Inspect all of the instructions in this basic block,
940/// reassociating them as we go.
941void Reassociate::ReassociateBB(BasicBlock *BB) {
942  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
943    Instruction *BI = BBI++;
944    if (BI->getOpcode() == Instruction::Shl &&
945        isa<ConstantInt>(BI->getOperand(1)))
946      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
947        MadeChange = true;
948        BI = NI;
949      }
950
951    // Reject cases where it is pointless to do this.
952    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
953        BI->getType()->isVectorTy())
954      continue;  // Floating point ops are not associative.
955
956    // Do not reassociate boolean (i1) expressions.  We want to preserve the
957    // original order of evaluation for short-circuited comparisons that
958    // SimplifyCFG has folded to AND/OR expressions.  If the expression
959    // is not further optimized, it is likely to be transformed back to a
960    // short-circuited form for code gen, and the source order may have been
961    // optimized for the most likely conditions.
962    if (BI->getType()->isIntegerTy(1))
963      continue;
964
965    // If this is a subtract instruction which is not already in negate form,
966    // see if we can convert it to X+-Y.
967    if (BI->getOpcode() == Instruction::Sub) {
968      if (ShouldBreakUpSubtract(BI)) {
969        BI = BreakUpSubtract(BI, ValueRankMap);
970        // Reset the BBI iterator in case BreakUpSubtract changed the
971        // instruction it points to.
972        BBI = BI;
973        ++BBI;
974        MadeChange = true;
975      } else if (BinaryOperator::isNeg(BI)) {
976        // Otherwise, this is a negation.  See if the operand is a multiply tree
977        // and if this is not an inner node of a multiply tree.
978        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
979            (!BI->hasOneUse() ||
980             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
981          BI = LowerNegateToMultiply(BI, ValueRankMap);
982          MadeChange = true;
983        }
984      }
985    }
986
987    // If this instruction is a commutative binary operator, process it.
988    if (!BI->isAssociative()) continue;
989    BinaryOperator *I = cast<BinaryOperator>(BI);
990
991    // If this is an interior node of a reassociable tree, ignore it until we
992    // get to the root of the tree, to avoid N^2 analysis.
993    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
994      continue;
995
996    // If this is an add tree that is used by a sub instruction, ignore it
997    // until we process the subtract.
998    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
999        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1000      continue;
1001
1002    ReassociateExpression(I);
1003  }
1004}
1005
1006Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1007
1008  // First, walk the expression tree, linearizing the tree, collecting the
1009  // operand information.
1010  SmallVector<ValueEntry, 8> Ops;
1011  LinearizeExprTree(I, Ops);
1012
1013  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1014
1015  // Now that we have linearized the tree to a list and have gathered all of
1016  // the operands and their ranks, sort the operands by their rank.  Use a
1017  // stable_sort so that values with equal ranks will have their relative
1018  // positions maintained (and so the compiler is deterministic).  Note that
1019  // this sorts so that the highest ranking values end up at the beginning of
1020  // the vector.
1021  std::stable_sort(Ops.begin(), Ops.end());
1022
1023  // OptimizeExpression - Now that we have the expression tree in a convenient
1024  // sorted form, optimize it globally if possible.
1025  if (Value *V = OptimizeExpression(I, Ops)) {
1026    // This expression tree simplified to something that isn't a tree,
1027    // eliminate it.
1028    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1029    I->replaceAllUsesWith(V);
1030    RemoveDeadBinaryOp(I);
1031    ++NumAnnihil;
1032    return V;
1033  }
1034
1035  // We want to sink immediates as deeply as possible except in the case where
1036  // this is a multiply tree used only by an add, and the immediate is a -1.
1037  // In this case we reassociate to put the negation on the outside so that we
1038  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1039  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1040      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1041      isa<ConstantInt>(Ops.back().Op) &&
1042      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1043    ValueEntry Tmp = Ops.pop_back_val();
1044    Ops.insert(Ops.begin(), Tmp);
1045  }
1046
1047  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1048
1049  if (Ops.size() == 1) {
1050    // This expression tree simplified to something that isn't a tree,
1051    // eliminate it.
1052    I->replaceAllUsesWith(Ops[0].Op);
1053    RemoveDeadBinaryOp(I);
1054    return Ops[0].Op;
1055  }
1056
1057  // Now that we ordered and optimized the expressions, splat them back into
1058  // the expression tree, removing any unneeded nodes.
1059  RewriteExprTree(I, Ops);
1060  return I;
1061}
1062
1063
1064bool Reassociate::runOnFunction(Function &F) {
1065  // Recalculate the rank map for F
1066  BuildRankMap(F);
1067
1068  MadeChange = false;
1069  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1070    ReassociateBB(FI);
1071
1072  // We are done with the rank map.
1073  RankMap.clear();
1074  ValueRankMap.clear();
1075  return MadeChange;
1076}
1077
1078