Reassociate.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/ValueHandle.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumChanged, "Number of insts reassociated");
46STATISTIC(NumAnnihil, "Number of expr tree annihilated");
47STATISTIC(NumFactor , "Number of multiplies factored");
48
49namespace {
50  struct ValueEntry {
51    unsigned Rank;
52    Value *Op;
53    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54  };
55  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
56    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
57  }
58}
59
60#ifndef NDEBUG
61/// PrintOps - Print out the expression identified in the Ops list.
62///
63static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
64  Module *M = I->getParent()->getParent()->getParent();
65  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
66       << *Ops[0].Op->getType() << '\t';
67  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
68    dbgs() << "[ ";
69    Ops[i].Op->printAsOperand(dbgs(), false, M);
70    dbgs() << ", #" << Ops[i].Rank << "] ";
71  }
72}
73#endif
74
75namespace {
76  /// \brief Utility class representing a base and exponent pair which form one
77  /// factor of some product.
78  struct Factor {
79    Value *Base;
80    unsigned Power;
81
82    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
83
84    /// \brief Sort factors by their Base.
85    struct BaseSorter {
86      bool operator()(const Factor &LHS, const Factor &RHS) {
87        return LHS.Base < RHS.Base;
88      }
89    };
90
91    /// \brief Compare factors for equal bases.
92    struct BaseEqual {
93      bool operator()(const Factor &LHS, const Factor &RHS) {
94        return LHS.Base == RHS.Base;
95      }
96    };
97
98    /// \brief Sort factors in descending order by their power.
99    struct PowerDescendingSorter {
100      bool operator()(const Factor &LHS, const Factor &RHS) {
101        return LHS.Power > RHS.Power;
102      }
103    };
104
105    /// \brief Compare factors for equal powers.
106    struct PowerEqual {
107      bool operator()(const Factor &LHS, const Factor &RHS) {
108        return LHS.Power == RHS.Power;
109      }
110    };
111  };
112
113  /// Utility class representing a non-constant Xor-operand. We classify
114  /// non-constant Xor-Operands into two categories:
115  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
116  ///  C2)
117  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
118  ///          constant.
119  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
120  ///          operand as "E | 0"
121  class XorOpnd {
122  public:
123    XorOpnd(Value *V);
124
125    bool isInvalid() const { return SymbolicPart == 0; }
126    bool isOrExpr() const { return isOr; }
127    Value *getValue() const { return OrigVal; }
128    Value *getSymbolicPart() const { return SymbolicPart; }
129    unsigned getSymbolicRank() const { return SymbolicRank; }
130    const APInt &getConstPart() const { return ConstPart; }
131
132    void Invalidate() { SymbolicPart = OrigVal = 0; }
133    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
134
135    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
136    // The purpose is twofold:
137    // 1) Cluster together the operands sharing the same symbolic-value.
138    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
139    //   could potentially shorten crital path, and expose more loop-invariants.
140    //   Note that values' rank are basically defined in RPO order (FIXME).
141    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
142    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
143    //   "z" in the order of X-Y-Z is better than any other orders.
144    struct PtrSortFunctor {
145      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
146        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
147      }
148    };
149  private:
150    Value *OrigVal;
151    Value *SymbolicPart;
152    APInt ConstPart;
153    unsigned SymbolicRank;
154    bool isOr;
155  };
156}
157
158namespace {
159  class Reassociate : public FunctionPass {
160    DenseMap<BasicBlock*, unsigned> RankMap;
161    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
162    SetVector<AssertingVH<Instruction> > RedoInsts;
163    bool MadeChange;
164  public:
165    static char ID; // Pass identification, replacement for typeid
166    Reassociate() : FunctionPass(ID) {
167      initializeReassociatePass(*PassRegistry::getPassRegistry());
168    }
169
170    bool runOnFunction(Function &F) override;
171
172    void getAnalysisUsage(AnalysisUsage &AU) const override {
173      AU.setPreservesCFG();
174    }
175  private:
176    void BuildRankMap(Function &F);
177    unsigned getRank(Value *V);
178    void ReassociateExpression(BinaryOperator *I);
179    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
180    Value *OptimizeExpression(BinaryOperator *I,
181                              SmallVectorImpl<ValueEntry> &Ops);
182    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
183    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
185                        Value *&Res);
186    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
187                        APInt &ConstOpnd, Value *&Res);
188    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
189                                SmallVectorImpl<Factor> &Factors);
190    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
191                                   SmallVectorImpl<Factor> &Factors);
192    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
193    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
194    void EraseInst(Instruction *I);
195    void OptimizeInst(Instruction *I);
196  };
197}
198
199XorOpnd::XorOpnd(Value *V) {
200  assert(!isa<ConstantInt>(V) && "No ConstantInt");
201  OrigVal = V;
202  Instruction *I = dyn_cast<Instruction>(V);
203  SymbolicRank = 0;
204
205  if (I && (I->getOpcode() == Instruction::Or ||
206            I->getOpcode() == Instruction::And)) {
207    Value *V0 = I->getOperand(0);
208    Value *V1 = I->getOperand(1);
209    if (isa<ConstantInt>(V0))
210      std::swap(V0, V1);
211
212    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
213      ConstPart = C->getValue();
214      SymbolicPart = V0;
215      isOr = (I->getOpcode() == Instruction::Or);
216      return;
217    }
218  }
219
220  // view the operand as "V | 0"
221  SymbolicPart = V;
222  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
223  isOr = true;
224}
225
226char Reassociate::ID = 0;
227INITIALIZE_PASS(Reassociate, "reassociate",
228                "Reassociate expressions", false, false)
229
230// Public interface to the Reassociate pass
231FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
232
233/// isReassociableOp - Return true if V is an instruction of the specified
234/// opcode and if it only has one use.
235static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
236  if (V->hasOneUse() && isa<Instruction>(V) &&
237      cast<Instruction>(V)->getOpcode() == Opcode)
238    return cast<BinaryOperator>(V);
239  return 0;
240}
241
242static bool isUnmovableInstruction(Instruction *I) {
243  switch (I->getOpcode()) {
244  case Instruction::PHI:
245  case Instruction::LandingPad:
246  case Instruction::Alloca:
247  case Instruction::Load:
248  case Instruction::Invoke:
249  case Instruction::UDiv:
250  case Instruction::SDiv:
251  case Instruction::FDiv:
252  case Instruction::URem:
253  case Instruction::SRem:
254  case Instruction::FRem:
255    return true;
256  case Instruction::Call:
257    return !isa<DbgInfoIntrinsic>(I);
258  default:
259    return false;
260  }
261}
262
263void Reassociate::BuildRankMap(Function &F) {
264  unsigned i = 2;
265
266  // Assign distinct ranks to function arguments
267  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
268    ValueRankMap[&*I] = ++i;
269
270  ReversePostOrderTraversal<Function*> RPOT(&F);
271  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
272         E = RPOT.end(); I != E; ++I) {
273    BasicBlock *BB = *I;
274    unsigned BBRank = RankMap[BB] = ++i << 16;
275
276    // Walk the basic block, adding precomputed ranks for any instructions that
277    // we cannot move.  This ensures that the ranks for these instructions are
278    // all different in the block.
279    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
280      if (isUnmovableInstruction(I))
281        ValueRankMap[&*I] = ++BBRank;
282  }
283}
284
285unsigned Reassociate::getRank(Value *V) {
286  Instruction *I = dyn_cast<Instruction>(V);
287  if (I == 0) {
288    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
289    return 0;  // Otherwise it's a global or constant, rank 0.
290  }
291
292  if (unsigned Rank = ValueRankMap[I])
293    return Rank;    // Rank already known?
294
295  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
296  // we can reassociate expressions for code motion!  Since we do not recurse
297  // for PHI nodes, we cannot have infinite recursion here, because there
298  // cannot be loops in the value graph that do not go through PHI nodes.
299  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
300  for (unsigned i = 0, e = I->getNumOperands();
301       i != e && Rank != MaxRank; ++i)
302    Rank = std::max(Rank, getRank(I->getOperand(i)));
303
304  // If this is a not or neg instruction, do not count it for rank.  This
305  // assures us that X and ~X will have the same rank.
306  if (!I->getType()->isIntegerTy() ||
307      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
308    ++Rank;
309
310  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
311  //     << Rank << "\n");
312
313  return ValueRankMap[I] = Rank;
314}
315
316/// LowerNegateToMultiply - Replace 0-X with X*-1.
317///
318static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
319  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
320
321  BinaryOperator *Res =
322    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
323  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
324  Res->takeName(Neg);
325  Neg->replaceAllUsesWith(Res);
326  Res->setDebugLoc(Neg->getDebugLoc());
327  return Res;
328}
329
330/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
331/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
332/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
333/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
334/// even x in Bitwidth-bit arithmetic.
335static unsigned CarmichaelShift(unsigned Bitwidth) {
336  if (Bitwidth < 3)
337    return Bitwidth - 1;
338  return Bitwidth - 2;
339}
340
341/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
342/// reducing the combined weight using any special properties of the operation.
343/// The existing weight LHS represents the computation X op X op ... op X where
344/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
345/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
346/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
347/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
348static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
349  // If we were working with infinite precision arithmetic then the combined
350  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
351  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
352  // for nilpotent operations and addition, but not for idempotent operations
353  // and multiplication), so it is important to correctly reduce the combined
354  // weight back into range if wrapping would be wrong.
355
356  // If RHS is zero then the weight didn't change.
357  if (RHS.isMinValue())
358    return;
359  // If LHS is zero then the combined weight is RHS.
360  if (LHS.isMinValue()) {
361    LHS = RHS;
362    return;
363  }
364  // From this point on we know that neither LHS nor RHS is zero.
365
366  if (Instruction::isIdempotent(Opcode)) {
367    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
368    // weight of 1.  Keeping weights at zero or one also means that wrapping is
369    // not a problem.
370    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
371    return; // Return a weight of 1.
372  }
373  if (Instruction::isNilpotent(Opcode)) {
374    // Nilpotent means X op X === 0, so reduce weights modulo 2.
375    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
376    LHS = 0; // 1 + 1 === 0 modulo 2.
377    return;
378  }
379  if (Opcode == Instruction::Add) {
380    // TODO: Reduce the weight by exploiting nsw/nuw?
381    LHS += RHS;
382    return;
383  }
384
385  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
386  unsigned Bitwidth = LHS.getBitWidth();
387  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
388  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
389  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
390  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
391  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
392  // which by a happy accident means that they can always be represented using
393  // Bitwidth bits.
394  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
395  // the Carmichael number).
396  if (Bitwidth > 3) {
397    /// CM - The value of Carmichael's lambda function.
398    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
399    // Any weight W >= Threshold can be replaced with W - CM.
400    APInt Threshold = CM + Bitwidth;
401    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
402    // For Bitwidth 4 or more the following sum does not overflow.
403    LHS += RHS;
404    while (LHS.uge(Threshold))
405      LHS -= CM;
406  } else {
407    // To avoid problems with overflow do everything the same as above but using
408    // a larger type.
409    unsigned CM = 1U << CarmichaelShift(Bitwidth);
410    unsigned Threshold = CM + Bitwidth;
411    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
412           "Weights not reduced!");
413    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
414    while (Total >= Threshold)
415      Total -= CM;
416    LHS = Total;
417  }
418}
419
420typedef std::pair<Value*, APInt> RepeatedValue;
421
422/// LinearizeExprTree - Given an associative binary expression, return the leaf
423/// nodes in Ops along with their weights (how many times the leaf occurs).  The
424/// original expression is the same as
425///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
426/// op
427///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
428/// op
429///   ...
430/// op
431///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
432///
433/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
434///
435/// This routine may modify the function, in which case it returns 'true'.  The
436/// changes it makes may well be destructive, changing the value computed by 'I'
437/// to something completely different.  Thus if the routine returns 'true' then
438/// you MUST either replace I with a new expression computed from the Ops array,
439/// or use RewriteExprTree to put the values back in.
440///
441/// A leaf node is either not a binary operation of the same kind as the root
442/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
443/// opcode), or is the same kind of binary operator but has a use which either
444/// does not belong to the expression, or does belong to the expression but is
445/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
446/// of the expression, while for non-leaf nodes (except for the root 'I') every
447/// use is a non-leaf node of the expression.
448///
449/// For example:
450///           expression graph        node names
451///
452///                     +        |        I
453///                    / \       |
454///                   +   +      |      A,  B
455///                  / \ / \     |
456///                 *   +   *    |    C,  D,  E
457///                / \ / \ / \   |
458///                   +   *      |      F,  G
459///
460/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
461/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
462///
463/// The expression is maximal: if some instruction is a binary operator of the
464/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
465/// then the instruction also belongs to the expression, is not a leaf node of
466/// it, and its operands also belong to the expression (but may be leaf nodes).
467///
468/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
469/// order to ensure that every non-root node in the expression has *exactly one*
470/// use by a non-leaf node of the expression.  This destruction means that the
471/// caller MUST either replace 'I' with a new expression or use something like
472/// RewriteExprTree to put the values back in if the routine indicates that it
473/// made a change by returning 'true'.
474///
475/// In the above example either the right operand of A or the left operand of B
476/// will be replaced by undef.  If it is B's operand then this gives:
477///
478///                     +        |        I
479///                    / \       |
480///                   +   +      |      A,  B - operand of B replaced with undef
481///                  / \   \     |
482///                 *   +   *    |    C,  D,  E
483///                / \ / \ / \   |
484///                   +   *      |      F,  G
485///
486/// Note that such undef operands can only be reached by passing through 'I'.
487/// For example, if you visit operands recursively starting from a leaf node
488/// then you will never see such an undef operand unless you get back to 'I',
489/// which requires passing through a phi node.
490///
491/// Note that this routine may also mutate binary operators of the wrong type
492/// that have all uses inside the expression (i.e. only used by non-leaf nodes
493/// of the expression) if it can turn them into binary operators of the right
494/// type and thus make the expression bigger.
495
496static bool LinearizeExprTree(BinaryOperator *I,
497                              SmallVectorImpl<RepeatedValue> &Ops) {
498  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
499  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
500  unsigned Opcode = I->getOpcode();
501  assert(Instruction::isAssociative(Opcode) &&
502         Instruction::isCommutative(Opcode) &&
503         "Expected an associative and commutative operation!");
504
505  // Visit all operands of the expression, keeping track of their weight (the
506  // number of paths from the expression root to the operand, or if you like
507  // the number of times that operand occurs in the linearized expression).
508  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
509  // while A has weight two.
510
511  // Worklist of non-leaf nodes (their operands are in the expression too) along
512  // with their weights, representing a certain number of paths to the operator.
513  // If an operator occurs in the worklist multiple times then we found multiple
514  // ways to get to it.
515  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
516  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
517  bool MadeChange = false;
518
519  // Leaves of the expression are values that either aren't the right kind of
520  // operation (eg: a constant, or a multiply in an add tree), or are, but have
521  // some uses that are not inside the expression.  For example, in I = X + X,
522  // X = A + B, the value X has two uses (by I) that are in the expression.  If
523  // X has any other uses, for example in a return instruction, then we consider
524  // X to be a leaf, and won't analyze it further.  When we first visit a value,
525  // if it has more than one use then at first we conservatively consider it to
526  // be a leaf.  Later, as the expression is explored, we may discover some more
527  // uses of the value from inside the expression.  If all uses turn out to be
528  // from within the expression (and the value is a binary operator of the right
529  // kind) then the value is no longer considered to be a leaf, and its operands
530  // are explored.
531
532  // Leaves - Keeps track of the set of putative leaves as well as the number of
533  // paths to each leaf seen so far.
534  typedef DenseMap<Value*, APInt> LeafMap;
535  LeafMap Leaves; // Leaf -> Total weight so far.
536  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
537
538#ifndef NDEBUG
539  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
540#endif
541  while (!Worklist.empty()) {
542    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
543    I = P.first; // We examine the operands of this binary operator.
544
545    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
546      Value *Op = I->getOperand(OpIdx);
547      APInt Weight = P.second; // Number of paths to this operand.
548      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
549      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
550
551      // If this is a binary operation of the right kind with only one use then
552      // add its operands to the expression.
553      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
554        assert(Visited.insert(Op) && "Not first visit!");
555        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
556        Worklist.push_back(std::make_pair(BO, Weight));
557        continue;
558      }
559
560      // Appears to be a leaf.  Is the operand already in the set of leaves?
561      LeafMap::iterator It = Leaves.find(Op);
562      if (It == Leaves.end()) {
563        // Not in the leaf map.  Must be the first time we saw this operand.
564        assert(Visited.insert(Op) && "Not first visit!");
565        if (!Op->hasOneUse()) {
566          // This value has uses not accounted for by the expression, so it is
567          // not safe to modify.  Mark it as being a leaf.
568          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
569          LeafOrder.push_back(Op);
570          Leaves[Op] = Weight;
571          continue;
572        }
573        // No uses outside the expression, try morphing it.
574      } else if (It != Leaves.end()) {
575        // Already in the leaf map.
576        assert(Visited.count(Op) && "In leaf map but not visited!");
577
578        // Update the number of paths to the leaf.
579        IncorporateWeight(It->second, Weight, Opcode);
580
581#if 0   // TODO: Re-enable once PR13021 is fixed.
582        // The leaf already has one use from inside the expression.  As we want
583        // exactly one such use, drop this new use of the leaf.
584        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
585        I->setOperand(OpIdx, UndefValue::get(I->getType()));
586        MadeChange = true;
587
588        // If the leaf is a binary operation of the right kind and we now see
589        // that its multiple original uses were in fact all by nodes belonging
590        // to the expression, then no longer consider it to be a leaf and add
591        // its operands to the expression.
592        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
593          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
594          Worklist.push_back(std::make_pair(BO, It->second));
595          Leaves.erase(It);
596          continue;
597        }
598#endif
599
600        // If we still have uses that are not accounted for by the expression
601        // then it is not safe to modify the value.
602        if (!Op->hasOneUse())
603          continue;
604
605        // No uses outside the expression, try morphing it.
606        Weight = It->second;
607        Leaves.erase(It); // Since the value may be morphed below.
608      }
609
610      // At this point we have a value which, first of all, is not a binary
611      // expression of the right kind, and secondly, is only used inside the
612      // expression.  This means that it can safely be modified.  See if we
613      // can usefully morph it into an expression of the right kind.
614      assert((!isa<Instruction>(Op) ||
615              cast<Instruction>(Op)->getOpcode() != Opcode) &&
616             "Should have been handled above!");
617      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
618
619      // If this is a multiply expression, turn any internal negations into
620      // multiplies by -1 so they can be reassociated.
621      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
622      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
623        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
624        BO = LowerNegateToMultiply(BO);
625        DEBUG(dbgs() << *BO << 'n');
626        Worklist.push_back(std::make_pair(BO, Weight));
627        MadeChange = true;
628        continue;
629      }
630
631      // Failed to morph into an expression of the right type.  This really is
632      // a leaf.
633      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
634      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
635      LeafOrder.push_back(Op);
636      Leaves[Op] = Weight;
637    }
638  }
639
640  // The leaves, repeated according to their weights, represent the linearized
641  // form of the expression.
642  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
643    Value *V = LeafOrder[i];
644    LeafMap::iterator It = Leaves.find(V);
645    if (It == Leaves.end())
646      // Node initially thought to be a leaf wasn't.
647      continue;
648    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
649    APInt Weight = It->second;
650    if (Weight.isMinValue())
651      // Leaf already output or weight reduction eliminated it.
652      continue;
653    // Ensure the leaf is only output once.
654    It->second = 0;
655    Ops.push_back(std::make_pair(V, Weight));
656  }
657
658  // For nilpotent operations or addition there may be no operands, for example
659  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
660  // in both cases the weight reduces to 0 causing the value to be skipped.
661  if (Ops.empty()) {
662    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
663    assert(Identity && "Associative operation without identity!");
664    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
665  }
666
667  return MadeChange;
668}
669
670// RewriteExprTree - Now that the operands for this expression tree are
671// linearized and optimized, emit them in-order.
672void Reassociate::RewriteExprTree(BinaryOperator *I,
673                                  SmallVectorImpl<ValueEntry> &Ops) {
674  assert(Ops.size() > 1 && "Single values should be used directly!");
675
676  // Since our optimizations should never increase the number of operations, the
677  // new expression can usually be written reusing the existing binary operators
678  // from the original expression tree, without creating any new instructions,
679  // though the rewritten expression may have a completely different topology.
680  // We take care to not change anything if the new expression will be the same
681  // as the original.  If more than trivial changes (like commuting operands)
682  // were made then we are obliged to clear out any optional subclass data like
683  // nsw flags.
684
685  /// NodesToRewrite - Nodes from the original expression available for writing
686  /// the new expression into.
687  SmallVector<BinaryOperator*, 8> NodesToRewrite;
688  unsigned Opcode = I->getOpcode();
689  BinaryOperator *Op = I;
690
691  /// NotRewritable - The operands being written will be the leaves of the new
692  /// expression and must not be used as inner nodes (via NodesToRewrite) by
693  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
694  /// (if they were they would have been incorporated into the expression and so
695  /// would not be leaves), so most of the time there is no danger of this.  But
696  /// in rare cases a leaf may become reassociable if an optimization kills uses
697  /// of it, or it may momentarily become reassociable during rewriting (below)
698  /// due it being removed as an operand of one of its uses.  Ensure that misuse
699  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
700  /// leaves and refusing to reuse any of them as inner nodes.
701  SmallPtrSet<Value*, 8> NotRewritable;
702  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
703    NotRewritable.insert(Ops[i].Op);
704
705  // ExpressionChanged - Non-null if the rewritten expression differs from the
706  // original in some non-trivial way, requiring the clearing of optional flags.
707  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
708  BinaryOperator *ExpressionChanged = 0;
709  for (unsigned i = 0; ; ++i) {
710    // The last operation (which comes earliest in the IR) is special as both
711    // operands will come from Ops, rather than just one with the other being
712    // a subexpression.
713    if (i+2 == Ops.size()) {
714      Value *NewLHS = Ops[i].Op;
715      Value *NewRHS = Ops[i+1].Op;
716      Value *OldLHS = Op->getOperand(0);
717      Value *OldRHS = Op->getOperand(1);
718
719      if (NewLHS == OldLHS && NewRHS == OldRHS)
720        // Nothing changed, leave it alone.
721        break;
722
723      if (NewLHS == OldRHS && NewRHS == OldLHS) {
724        // The order of the operands was reversed.  Swap them.
725        DEBUG(dbgs() << "RA: " << *Op << '\n');
726        Op->swapOperands();
727        DEBUG(dbgs() << "TO: " << *Op << '\n');
728        MadeChange = true;
729        ++NumChanged;
730        break;
731      }
732
733      // The new operation differs non-trivially from the original. Overwrite
734      // the old operands with the new ones.
735      DEBUG(dbgs() << "RA: " << *Op << '\n');
736      if (NewLHS != OldLHS) {
737        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
738        if (BO && !NotRewritable.count(BO))
739          NodesToRewrite.push_back(BO);
740        Op->setOperand(0, NewLHS);
741      }
742      if (NewRHS != OldRHS) {
743        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
744        if (BO && !NotRewritable.count(BO))
745          NodesToRewrite.push_back(BO);
746        Op->setOperand(1, NewRHS);
747      }
748      DEBUG(dbgs() << "TO: " << *Op << '\n');
749
750      ExpressionChanged = Op;
751      MadeChange = true;
752      ++NumChanged;
753
754      break;
755    }
756
757    // Not the last operation.  The left-hand side will be a sub-expression
758    // while the right-hand side will be the current element of Ops.
759    Value *NewRHS = Ops[i].Op;
760    if (NewRHS != Op->getOperand(1)) {
761      DEBUG(dbgs() << "RA: " << *Op << '\n');
762      if (NewRHS == Op->getOperand(0)) {
763        // The new right-hand side was already present as the left operand.  If
764        // we are lucky then swapping the operands will sort out both of them.
765        Op->swapOperands();
766      } else {
767        // Overwrite with the new right-hand side.
768        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
769        if (BO && !NotRewritable.count(BO))
770          NodesToRewrite.push_back(BO);
771        Op->setOperand(1, NewRHS);
772        ExpressionChanged = Op;
773      }
774      DEBUG(dbgs() << "TO: " << *Op << '\n');
775      MadeChange = true;
776      ++NumChanged;
777    }
778
779    // Now deal with the left-hand side.  If this is already an operation node
780    // from the original expression then just rewrite the rest of the expression
781    // into it.
782    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
783    if (BO && !NotRewritable.count(BO)) {
784      Op = BO;
785      continue;
786    }
787
788    // Otherwise, grab a spare node from the original expression and use that as
789    // the left-hand side.  If there are no nodes left then the optimizers made
790    // an expression with more nodes than the original!  This usually means that
791    // they did something stupid but it might mean that the problem was just too
792    // hard (finding the mimimal number of multiplications needed to realize a
793    // multiplication expression is NP-complete).  Whatever the reason, smart or
794    // stupid, create a new node if there are none left.
795    BinaryOperator *NewOp;
796    if (NodesToRewrite.empty()) {
797      Constant *Undef = UndefValue::get(I->getType());
798      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
799                                     Undef, Undef, "", I);
800    } else {
801      NewOp = NodesToRewrite.pop_back_val();
802    }
803
804    DEBUG(dbgs() << "RA: " << *Op << '\n');
805    Op->setOperand(0, NewOp);
806    DEBUG(dbgs() << "TO: " << *Op << '\n');
807    ExpressionChanged = Op;
808    MadeChange = true;
809    ++NumChanged;
810    Op = NewOp;
811  }
812
813  // If the expression changed non-trivially then clear out all subclass data
814  // starting from the operator specified in ExpressionChanged, and compactify
815  // the operators to just before the expression root to guarantee that the
816  // expression tree is dominated by all of Ops.
817  if (ExpressionChanged)
818    do {
819      ExpressionChanged->clearSubclassOptionalData();
820      if (ExpressionChanged == I)
821        break;
822      ExpressionChanged->moveBefore(I);
823      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
824    } while (1);
825
826  // Throw away any left over nodes from the original expression.
827  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
828    RedoInsts.insert(NodesToRewrite[i]);
829}
830
831/// NegateValue - Insert instructions before the instruction pointed to by BI,
832/// that computes the negative version of the value specified.  The negative
833/// version of the value is returned, and BI is left pointing at the instruction
834/// that should be processed next by the reassociation pass.
835static Value *NegateValue(Value *V, Instruction *BI) {
836  if (Constant *C = dyn_cast<Constant>(V))
837    return ConstantExpr::getNeg(C);
838
839  // We are trying to expose opportunity for reassociation.  One of the things
840  // that we want to do to achieve this is to push a negation as deep into an
841  // expression chain as possible, to expose the add instructions.  In practice,
842  // this means that we turn this:
843  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
844  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
845  // the constants.  We assume that instcombine will clean up the mess later if
846  // we introduce tons of unnecessary negation instructions.
847  //
848  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
849    // Push the negates through the add.
850    I->setOperand(0, NegateValue(I->getOperand(0), BI));
851    I->setOperand(1, NegateValue(I->getOperand(1), BI));
852
853    // We must move the add instruction here, because the neg instructions do
854    // not dominate the old add instruction in general.  By moving it, we are
855    // assured that the neg instructions we just inserted dominate the
856    // instruction we are about to insert after them.
857    //
858    I->moveBefore(BI);
859    I->setName(I->getName()+".neg");
860    return I;
861  }
862
863  // Okay, we need to materialize a negated version of V with an instruction.
864  // Scan the use lists of V to see if we have one already.
865  for (User *U : V->users()) {
866    if (!BinaryOperator::isNeg(U)) continue;
867
868    // We found one!  Now we have to make sure that the definition dominates
869    // this use.  We do this by moving it to the entry block (if it is a
870    // non-instruction value) or right after the definition.  These negates will
871    // be zapped by reassociate later, so we don't need much finesse here.
872    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
873
874    // Verify that the negate is in this function, V might be a constant expr.
875    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
876      continue;
877
878    BasicBlock::iterator InsertPt;
879    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
880      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
881        InsertPt = II->getNormalDest()->begin();
882      } else {
883        InsertPt = InstInput;
884        ++InsertPt;
885      }
886      while (isa<PHINode>(InsertPt)) ++InsertPt;
887    } else {
888      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
889    }
890    TheNeg->moveBefore(InsertPt);
891    return TheNeg;
892  }
893
894  // Insert a 'neg' instruction that subtracts the value from zero to get the
895  // negation.
896  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
897}
898
899/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
900/// X-Y into (X + -Y).
901static bool ShouldBreakUpSubtract(Instruction *Sub) {
902  // If this is a negation, we can't split it up!
903  if (BinaryOperator::isNeg(Sub))
904    return false;
905
906  // Don't bother to break this up unless either the LHS is an associable add or
907  // subtract or if this is only used by one.
908  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
909      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
910    return true;
911  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
912      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
913    return true;
914  if (Sub->hasOneUse() &&
915      (isReassociableOp(Sub->user_back(), Instruction::Add) ||
916       isReassociableOp(Sub->user_back(), Instruction::Sub)))
917    return true;
918
919  return false;
920}
921
922/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
923/// only used by an add, transform this into (X+(0-Y)) to promote better
924/// reassociation.
925static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
926  // Convert a subtract into an add and a neg instruction. This allows sub
927  // instructions to be commuted with other add instructions.
928  //
929  // Calculate the negative value of Operand 1 of the sub instruction,
930  // and set it as the RHS of the add instruction we just made.
931  //
932  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
933  BinaryOperator *New =
934    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
935  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
936  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
937  New->takeName(Sub);
938
939  // Everyone now refers to the add instruction.
940  Sub->replaceAllUsesWith(New);
941  New->setDebugLoc(Sub->getDebugLoc());
942
943  DEBUG(dbgs() << "Negated: " << *New << '\n');
944  return New;
945}
946
947/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
948/// by one, change this into a multiply by a constant to assist with further
949/// reassociation.
950static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
951  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
952  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
953
954  BinaryOperator *Mul =
955    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
956  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
957  Mul->takeName(Shl);
958  Shl->replaceAllUsesWith(Mul);
959  Mul->setDebugLoc(Shl->getDebugLoc());
960  return Mul;
961}
962
963/// FindInOperandList - Scan backwards and forwards among values with the same
964/// rank as element i to see if X exists.  If X does not exist, return i.  This
965/// is useful when scanning for 'x' when we see '-x' because they both get the
966/// same rank.
967static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
968                                  Value *X) {
969  unsigned XRank = Ops[i].Rank;
970  unsigned e = Ops.size();
971  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
972    if (Ops[j].Op == X)
973      return j;
974  // Scan backwards.
975  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
976    if (Ops[j].Op == X)
977      return j;
978  return i;
979}
980
981/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
982/// and returning the result.  Insert the tree before I.
983static Value *EmitAddTreeOfValues(Instruction *I,
984                                  SmallVectorImpl<WeakVH> &Ops){
985  if (Ops.size() == 1) return Ops.back();
986
987  Value *V1 = Ops.back();
988  Ops.pop_back();
989  Value *V2 = EmitAddTreeOfValues(I, Ops);
990  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
991}
992
993/// RemoveFactorFromExpression - If V is an expression tree that is a
994/// multiplication sequence, and if this sequence contains a multiply by Factor,
995/// remove Factor from the tree and return the new tree.
996Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
997  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
998  if (!BO) return 0;
999
1000  SmallVector<RepeatedValue, 8> Tree;
1001  MadeChange |= LinearizeExprTree(BO, Tree);
1002  SmallVector<ValueEntry, 8> Factors;
1003  Factors.reserve(Tree.size());
1004  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1005    RepeatedValue E = Tree[i];
1006    Factors.append(E.second.getZExtValue(),
1007                   ValueEntry(getRank(E.first), E.first));
1008  }
1009
1010  bool FoundFactor = false;
1011  bool NeedsNegate = false;
1012  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1013    if (Factors[i].Op == Factor) {
1014      FoundFactor = true;
1015      Factors.erase(Factors.begin()+i);
1016      break;
1017    }
1018
1019    // If this is a negative version of this factor, remove it.
1020    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1021      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1022        if (FC1->getValue() == -FC2->getValue()) {
1023          FoundFactor = NeedsNegate = true;
1024          Factors.erase(Factors.begin()+i);
1025          break;
1026        }
1027  }
1028
1029  if (!FoundFactor) {
1030    // Make sure to restore the operands to the expression tree.
1031    RewriteExprTree(BO, Factors);
1032    return 0;
1033  }
1034
1035  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1036
1037  // If this was just a single multiply, remove the multiply and return the only
1038  // remaining operand.
1039  if (Factors.size() == 1) {
1040    RedoInsts.insert(BO);
1041    V = Factors[0].Op;
1042  } else {
1043    RewriteExprTree(BO, Factors);
1044    V = BO;
1045  }
1046
1047  if (NeedsNegate)
1048    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1049
1050  return V;
1051}
1052
1053/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1054/// add its operands as factors, otherwise add V to the list of factors.
1055///
1056/// Ops is the top-level list of add operands we're trying to factor.
1057static void FindSingleUseMultiplyFactors(Value *V,
1058                                         SmallVectorImpl<Value*> &Factors,
1059                                       const SmallVectorImpl<ValueEntry> &Ops) {
1060  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1061  if (!BO) {
1062    Factors.push_back(V);
1063    return;
1064  }
1065
1066  // Otherwise, add the LHS and RHS to the list of factors.
1067  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1068  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1069}
1070
1071/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1072/// instruction.  This optimizes based on identities.  If it can be reduced to
1073/// a single Value, it is returned, otherwise the Ops list is mutated as
1074/// necessary.
1075static Value *OptimizeAndOrXor(unsigned Opcode,
1076                               SmallVectorImpl<ValueEntry> &Ops) {
1077  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1078  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1079  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1080    // First, check for X and ~X in the operand list.
1081    assert(i < Ops.size());
1082    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1083      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1084      unsigned FoundX = FindInOperandList(Ops, i, X);
1085      if (FoundX != i) {
1086        if (Opcode == Instruction::And)   // ...&X&~X = 0
1087          return Constant::getNullValue(X->getType());
1088
1089        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1090          return Constant::getAllOnesValue(X->getType());
1091      }
1092    }
1093
1094    // Next, check for duplicate pairs of values, which we assume are next to
1095    // each other, due to our sorting criteria.
1096    assert(i < Ops.size());
1097    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1098      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1099        // Drop duplicate values for And and Or.
1100        Ops.erase(Ops.begin()+i);
1101        --i; --e;
1102        ++NumAnnihil;
1103        continue;
1104      }
1105
1106      // Drop pairs of values for Xor.
1107      assert(Opcode == Instruction::Xor);
1108      if (e == 2)
1109        return Constant::getNullValue(Ops[0].Op->getType());
1110
1111      // Y ^ X^X -> Y
1112      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1113      i -= 1; e -= 2;
1114      ++NumAnnihil;
1115    }
1116  }
1117  return 0;
1118}
1119
1120/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1121/// instruction with the given two operands, and return the resulting
1122/// instruction. There are two special cases: 1) if the constant operand is 0,
1123/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1124/// be returned.
1125static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1126                             const APInt &ConstOpnd) {
1127  if (ConstOpnd != 0) {
1128    if (!ConstOpnd.isAllOnesValue()) {
1129      LLVMContext &Ctx = Opnd->getType()->getContext();
1130      Instruction *I;
1131      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1132                                    "and.ra", InsertBefore);
1133      I->setDebugLoc(InsertBefore->getDebugLoc());
1134      return I;
1135    }
1136    return Opnd;
1137  }
1138  return 0;
1139}
1140
1141// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1142// into "R ^ C", where C would be 0, and R is a symbolic value.
1143//
1144// If it was successful, true is returned, and the "R" and "C" is returned
1145// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1146// and both "Res" and "ConstOpnd" remain unchanged.
1147//
1148bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1149                                 APInt &ConstOpnd, Value *&Res) {
1150  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1151  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1152  //                       = (x & ~c1) ^ (c1 ^ c2)
1153  // It is useful only when c1 == c2.
1154  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1155    if (!Opnd1->getValue()->hasOneUse())
1156      return false;
1157
1158    const APInt &C1 = Opnd1->getConstPart();
1159    if (C1 != ConstOpnd)
1160      return false;
1161
1162    Value *X = Opnd1->getSymbolicPart();
1163    Res = createAndInstr(I, X, ~C1);
1164    // ConstOpnd was C2, now C1 ^ C2.
1165    ConstOpnd ^= C1;
1166
1167    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1168      RedoInsts.insert(T);
1169    return true;
1170  }
1171  return false;
1172}
1173
1174
1175// Helper function of OptimizeXor(). It tries to simplify
1176// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1177// symbolic value.
1178//
1179// If it was successful, true is returned, and the "R" and "C" is returned
1180// via "Res" and "ConstOpnd", respectively (If the entire expression is
1181// evaluated to a constant, the Res is set to NULL); otherwise, false is
1182// returned, and both "Res" and "ConstOpnd" remain unchanged.
1183bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1184                                 APInt &ConstOpnd, Value *&Res) {
1185  Value *X = Opnd1->getSymbolicPart();
1186  if (X != Opnd2->getSymbolicPart())
1187    return false;
1188
1189  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1190  int DeadInstNum = 1;
1191  if (Opnd1->getValue()->hasOneUse())
1192    DeadInstNum++;
1193  if (Opnd2->getValue()->hasOneUse())
1194    DeadInstNum++;
1195
1196  // Xor-Rule 2:
1197  //  (x | c1) ^ (x & c2)
1198  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1199  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1200  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1201  //
1202  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1203    if (Opnd2->isOrExpr())
1204      std::swap(Opnd1, Opnd2);
1205
1206    const APInt &C1 = Opnd1->getConstPart();
1207    const APInt &C2 = Opnd2->getConstPart();
1208    APInt C3((~C1) ^ C2);
1209
1210    // Do not increase code size!
1211    if (C3 != 0 && !C3.isAllOnesValue()) {
1212      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1213      if (NewInstNum > DeadInstNum)
1214        return false;
1215    }
1216
1217    Res = createAndInstr(I, X, C3);
1218    ConstOpnd ^= C1;
1219
1220  } else if (Opnd1->isOrExpr()) {
1221    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1222    //
1223    const APInt &C1 = Opnd1->getConstPart();
1224    const APInt &C2 = Opnd2->getConstPart();
1225    APInt C3 = C1 ^ C2;
1226
1227    // Do not increase code size
1228    if (C3 != 0 && !C3.isAllOnesValue()) {
1229      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1230      if (NewInstNum > DeadInstNum)
1231        return false;
1232    }
1233
1234    Res = createAndInstr(I, X, C3);
1235    ConstOpnd ^= C3;
1236  } else {
1237    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1238    //
1239    const APInt &C1 = Opnd1->getConstPart();
1240    const APInt &C2 = Opnd2->getConstPart();
1241    APInt C3 = C1 ^ C2;
1242    Res = createAndInstr(I, X, C3);
1243  }
1244
1245  // Put the original operands in the Redo list; hope they will be deleted
1246  // as dead code.
1247  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1248    RedoInsts.insert(T);
1249  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1250    RedoInsts.insert(T);
1251
1252  return true;
1253}
1254
1255/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1256/// to a single Value, it is returned, otherwise the Ops list is mutated as
1257/// necessary.
1258Value *Reassociate::OptimizeXor(Instruction *I,
1259                                SmallVectorImpl<ValueEntry> &Ops) {
1260  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1261    return V;
1262
1263  if (Ops.size() == 1)
1264    return 0;
1265
1266  SmallVector<XorOpnd, 8> Opnds;
1267  SmallVector<XorOpnd*, 8> OpndPtrs;
1268  Type *Ty = Ops[0].Op->getType();
1269  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1270
1271  // Step 1: Convert ValueEntry to XorOpnd
1272  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1273    Value *V = Ops[i].Op;
1274    if (!isa<ConstantInt>(V)) {
1275      XorOpnd O(V);
1276      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1277      Opnds.push_back(O);
1278    } else
1279      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1280  }
1281
1282  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1283  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1284  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1285  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1286  //  when new elements are added to the vector.
1287  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1288    OpndPtrs.push_back(&Opnds[i]);
1289
1290  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1291  //  the same symbolic value cluster together. For instance, the input operand
1292  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1293  //  ("x | 123", "x & 789", "y & 456").
1294  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1295
1296  // Step 3: Combine adjacent operands
1297  XorOpnd *PrevOpnd = 0;
1298  bool Changed = false;
1299  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1300    XorOpnd *CurrOpnd = OpndPtrs[i];
1301    // The combined value
1302    Value *CV;
1303
1304    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1305    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1306      Changed = true;
1307      if (CV)
1308        *CurrOpnd = XorOpnd(CV);
1309      else {
1310        CurrOpnd->Invalidate();
1311        continue;
1312      }
1313    }
1314
1315    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1316      PrevOpnd = CurrOpnd;
1317      continue;
1318    }
1319
1320    // step 3.2: When previous and current operands share the same symbolic
1321    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1322    //
1323    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1324      // Remove previous operand
1325      PrevOpnd->Invalidate();
1326      if (CV) {
1327        *CurrOpnd = XorOpnd(CV);
1328        PrevOpnd = CurrOpnd;
1329      } else {
1330        CurrOpnd->Invalidate();
1331        PrevOpnd = 0;
1332      }
1333      Changed = true;
1334    }
1335  }
1336
1337  // Step 4: Reassemble the Ops
1338  if (Changed) {
1339    Ops.clear();
1340    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1341      XorOpnd &O = Opnds[i];
1342      if (O.isInvalid())
1343        continue;
1344      ValueEntry VE(getRank(O.getValue()), O.getValue());
1345      Ops.push_back(VE);
1346    }
1347    if (ConstOpnd != 0) {
1348      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1349      ValueEntry VE(getRank(C), C);
1350      Ops.push_back(VE);
1351    }
1352    int Sz = Ops.size();
1353    if (Sz == 1)
1354      return Ops.back().Op;
1355    else if (Sz == 0) {
1356      assert(ConstOpnd == 0);
1357      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1358    }
1359  }
1360
1361  return 0;
1362}
1363
1364/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1365/// optimizes based on identities.  If it can be reduced to a single Value, it
1366/// is returned, otherwise the Ops list is mutated as necessary.
1367Value *Reassociate::OptimizeAdd(Instruction *I,
1368                                SmallVectorImpl<ValueEntry> &Ops) {
1369  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1370  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1371  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1372  //
1373  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1374  //
1375  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1376    Value *TheOp = Ops[i].Op;
1377    // Check to see if we've seen this operand before.  If so, we factor all
1378    // instances of the operand together.  Due to our sorting criteria, we know
1379    // that these need to be next to each other in the vector.
1380    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1381      // Rescan the list, remove all instances of this operand from the expr.
1382      unsigned NumFound = 0;
1383      do {
1384        Ops.erase(Ops.begin()+i);
1385        ++NumFound;
1386      } while (i != Ops.size() && Ops[i].Op == TheOp);
1387
1388      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1389      ++NumFactor;
1390
1391      // Insert a new multiply.
1392      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1393      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1394
1395      // Now that we have inserted a multiply, optimize it. This allows us to
1396      // handle cases that require multiple factoring steps, such as this:
1397      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1398      RedoInsts.insert(cast<Instruction>(Mul));
1399
1400      // If every add operand was a duplicate, return the multiply.
1401      if (Ops.empty())
1402        return Mul;
1403
1404      // Otherwise, we had some input that didn't have the dupe, such as
1405      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1406      // things being added by this operation.
1407      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1408
1409      --i;
1410      e = Ops.size();
1411      continue;
1412    }
1413
1414    // Check for X and -X in the operand list.
1415    if (!BinaryOperator::isNeg(TheOp))
1416      continue;
1417
1418    Value *X = BinaryOperator::getNegArgument(TheOp);
1419    unsigned FoundX = FindInOperandList(Ops, i, X);
1420    if (FoundX == i)
1421      continue;
1422
1423    // Remove X and -X from the operand list.
1424    if (Ops.size() == 2)
1425      return Constant::getNullValue(X->getType());
1426
1427    Ops.erase(Ops.begin()+i);
1428    if (i < FoundX)
1429      --FoundX;
1430    else
1431      --i;   // Need to back up an extra one.
1432    Ops.erase(Ops.begin()+FoundX);
1433    ++NumAnnihil;
1434    --i;     // Revisit element.
1435    e -= 2;  // Removed two elements.
1436  }
1437
1438  // Scan the operand list, checking to see if there are any common factors
1439  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1440  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1441  // To efficiently find this, we count the number of times a factor occurs
1442  // for any ADD operands that are MULs.
1443  DenseMap<Value*, unsigned> FactorOccurrences;
1444
1445  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1446  // where they are actually the same multiply.
1447  unsigned MaxOcc = 0;
1448  Value *MaxOccVal = 0;
1449  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1450    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1451    if (!BOp)
1452      continue;
1453
1454    // Compute all of the factors of this added value.
1455    SmallVector<Value*, 8> Factors;
1456    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1457    assert(Factors.size() > 1 && "Bad linearize!");
1458
1459    // Add one to FactorOccurrences for each unique factor in this op.
1460    SmallPtrSet<Value*, 8> Duplicates;
1461    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1462      Value *Factor = Factors[i];
1463      if (!Duplicates.insert(Factor)) continue;
1464
1465      unsigned Occ = ++FactorOccurrences[Factor];
1466      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1467
1468      // If Factor is a negative constant, add the negated value as a factor
1469      // because we can percolate the negate out.  Watch for minint, which
1470      // cannot be positivified.
1471      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1472        if (CI->isNegative() && !CI->isMinValue(true)) {
1473          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1474          assert(!Duplicates.count(Factor) &&
1475                 "Shouldn't have two constant factors, missed a canonicalize");
1476
1477          unsigned Occ = ++FactorOccurrences[Factor];
1478          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1479        }
1480    }
1481  }
1482
1483  // If any factor occurred more than one time, we can pull it out.
1484  if (MaxOcc > 1) {
1485    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1486    ++NumFactor;
1487
1488    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1489    // this, we could otherwise run into situations where removing a factor
1490    // from an expression will drop a use of maxocc, and this can cause
1491    // RemoveFactorFromExpression on successive values to behave differently.
1492    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1493    SmallVector<WeakVH, 4> NewMulOps;
1494    for (unsigned i = 0; i != Ops.size(); ++i) {
1495      // Only try to remove factors from expressions we're allowed to.
1496      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1497      if (!BOp)
1498        continue;
1499
1500      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1501        // The factorized operand may occur several times.  Convert them all in
1502        // one fell swoop.
1503        for (unsigned j = Ops.size(); j != i;) {
1504          --j;
1505          if (Ops[j].Op == Ops[i].Op) {
1506            NewMulOps.push_back(V);
1507            Ops.erase(Ops.begin()+j);
1508          }
1509        }
1510        --i;
1511      }
1512    }
1513
1514    // No need for extra uses anymore.
1515    delete DummyInst;
1516
1517    unsigned NumAddedValues = NewMulOps.size();
1518    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1519
1520    // Now that we have inserted the add tree, optimize it. This allows us to
1521    // handle cases that require multiple factoring steps, such as this:
1522    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1523    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1524    (void)NumAddedValues;
1525    if (Instruction *VI = dyn_cast<Instruction>(V))
1526      RedoInsts.insert(VI);
1527
1528    // Create the multiply.
1529    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1530
1531    // Rerun associate on the multiply in case the inner expression turned into
1532    // a multiply.  We want to make sure that we keep things in canonical form.
1533    RedoInsts.insert(V2);
1534
1535    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1536    // entire result expression is just the multiply "A*(B+C)".
1537    if (Ops.empty())
1538      return V2;
1539
1540    // Otherwise, we had some input that didn't have the factor, such as
1541    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1542    // things being added by this operation.
1543    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1544  }
1545
1546  return 0;
1547}
1548
1549/// \brief Build up a vector of value/power pairs factoring a product.
1550///
1551/// Given a series of multiplication operands, build a vector of factors and
1552/// the powers each is raised to when forming the final product. Sort them in
1553/// the order of descending power.
1554///
1555///      (x*x)          -> [(x, 2)]
1556///     ((x*x)*x)       -> [(x, 3)]
1557///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1558///
1559/// \returns Whether any factors have a power greater than one.
1560bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1561                                         SmallVectorImpl<Factor> &Factors) {
1562  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1563  // Compute the sum of powers of simplifiable factors.
1564  unsigned FactorPowerSum = 0;
1565  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1566    Value *Op = Ops[Idx-1].Op;
1567
1568    // Count the number of occurrences of this value.
1569    unsigned Count = 1;
1570    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1571      ++Count;
1572    // Track for simplification all factors which occur 2 or more times.
1573    if (Count > 1)
1574      FactorPowerSum += Count;
1575  }
1576
1577  // We can only simplify factors if the sum of the powers of our simplifiable
1578  // factors is 4 or higher. When that is the case, we will *always* have
1579  // a simplification. This is an important invariant to prevent cyclicly
1580  // trying to simplify already minimal formations.
1581  if (FactorPowerSum < 4)
1582    return false;
1583
1584  // Now gather the simplifiable factors, removing them from Ops.
1585  FactorPowerSum = 0;
1586  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1587    Value *Op = Ops[Idx-1].Op;
1588
1589    // Count the number of occurrences of this value.
1590    unsigned Count = 1;
1591    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1592      ++Count;
1593    if (Count == 1)
1594      continue;
1595    // Move an even number of occurrences to Factors.
1596    Count &= ~1U;
1597    Idx -= Count;
1598    FactorPowerSum += Count;
1599    Factors.push_back(Factor(Op, Count));
1600    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1601  }
1602
1603  // None of the adjustments above should have reduced the sum of factor powers
1604  // below our mininum of '4'.
1605  assert(FactorPowerSum >= 4);
1606
1607  std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1608  return true;
1609}
1610
1611/// \brief Build a tree of multiplies, computing the product of Ops.
1612static Value *buildMultiplyTree(IRBuilder<> &Builder,
1613                                SmallVectorImpl<Value*> &Ops) {
1614  if (Ops.size() == 1)
1615    return Ops.back();
1616
1617  Value *LHS = Ops.pop_back_val();
1618  do {
1619    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1620  } while (!Ops.empty());
1621
1622  return LHS;
1623}
1624
1625/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1626///
1627/// Given a vector of values raised to various powers, where no two values are
1628/// equal and the powers are sorted in decreasing order, compute the minimal
1629/// DAG of multiplies to compute the final product, and return that product
1630/// value.
1631Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1632                                            SmallVectorImpl<Factor> &Factors) {
1633  assert(Factors[0].Power);
1634  SmallVector<Value *, 4> OuterProduct;
1635  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1636       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1637    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1638      LastIdx = Idx;
1639      continue;
1640    }
1641
1642    // We want to multiply across all the factors with the same power so that
1643    // we can raise them to that power as a single entity. Build a mini tree
1644    // for that.
1645    SmallVector<Value *, 4> InnerProduct;
1646    InnerProduct.push_back(Factors[LastIdx].Base);
1647    do {
1648      InnerProduct.push_back(Factors[Idx].Base);
1649      ++Idx;
1650    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1651
1652    // Reset the base value of the first factor to the new expression tree.
1653    // We'll remove all the factors with the same power in a second pass.
1654    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1655    if (Instruction *MI = dyn_cast<Instruction>(M))
1656      RedoInsts.insert(MI);
1657
1658    LastIdx = Idx;
1659  }
1660  // Unique factors with equal powers -- we've folded them into the first one's
1661  // base.
1662  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1663                            Factor::PowerEqual()),
1664                Factors.end());
1665
1666  // Iteratively collect the base of each factor with an add power into the
1667  // outer product, and halve each power in preparation for squaring the
1668  // expression.
1669  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1670    if (Factors[Idx].Power & 1)
1671      OuterProduct.push_back(Factors[Idx].Base);
1672    Factors[Idx].Power >>= 1;
1673  }
1674  if (Factors[0].Power) {
1675    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1676    OuterProduct.push_back(SquareRoot);
1677    OuterProduct.push_back(SquareRoot);
1678  }
1679  if (OuterProduct.size() == 1)
1680    return OuterProduct.front();
1681
1682  Value *V = buildMultiplyTree(Builder, OuterProduct);
1683  return V;
1684}
1685
1686Value *Reassociate::OptimizeMul(BinaryOperator *I,
1687                                SmallVectorImpl<ValueEntry> &Ops) {
1688  // We can only optimize the multiplies when there is a chain of more than
1689  // three, such that a balanced tree might require fewer total multiplies.
1690  if (Ops.size() < 4)
1691    return 0;
1692
1693  // Try to turn linear trees of multiplies without other uses of the
1694  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1695  // re-use.
1696  SmallVector<Factor, 4> Factors;
1697  if (!collectMultiplyFactors(Ops, Factors))
1698    return 0; // All distinct factors, so nothing left for us to do.
1699
1700  IRBuilder<> Builder(I);
1701  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1702  if (Ops.empty())
1703    return V;
1704
1705  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1706  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1707  return 0;
1708}
1709
1710Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1711                                       SmallVectorImpl<ValueEntry> &Ops) {
1712  // Now that we have the linearized expression tree, try to optimize it.
1713  // Start by folding any constants that we found.
1714  Constant *Cst = 0;
1715  unsigned Opcode = I->getOpcode();
1716  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1717    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1718    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1719  }
1720  // If there was nothing but constants then we are done.
1721  if (Ops.empty())
1722    return Cst;
1723
1724  // Put the combined constant back at the end of the operand list, except if
1725  // there is no point.  For example, an add of 0 gets dropped here, while a
1726  // multiplication by zero turns the whole expression into zero.
1727  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1728    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1729      return Cst;
1730    Ops.push_back(ValueEntry(0, Cst));
1731  }
1732
1733  if (Ops.size() == 1) return Ops[0].Op;
1734
1735  // Handle destructive annihilation due to identities between elements in the
1736  // argument list here.
1737  unsigned NumOps = Ops.size();
1738  switch (Opcode) {
1739  default: break;
1740  case Instruction::And:
1741  case Instruction::Or:
1742    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1743      return Result;
1744    break;
1745
1746  case Instruction::Xor:
1747    if (Value *Result = OptimizeXor(I, Ops))
1748      return Result;
1749    break;
1750
1751  case Instruction::Add:
1752    if (Value *Result = OptimizeAdd(I, Ops))
1753      return Result;
1754    break;
1755
1756  case Instruction::Mul:
1757    if (Value *Result = OptimizeMul(I, Ops))
1758      return Result;
1759    break;
1760  }
1761
1762  if (Ops.size() != NumOps)
1763    return OptimizeExpression(I, Ops);
1764  return 0;
1765}
1766
1767/// EraseInst - Zap the given instruction, adding interesting operands to the
1768/// work list.
1769void Reassociate::EraseInst(Instruction *I) {
1770  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1771  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1772  // Erase the dead instruction.
1773  ValueRankMap.erase(I);
1774  RedoInsts.remove(I);
1775  I->eraseFromParent();
1776  // Optimize its operands.
1777  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1778  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1779    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1780      // If this is a node in an expression tree, climb to the expression root
1781      // and add that since that's where optimization actually happens.
1782      unsigned Opcode = Op->getOpcode();
1783      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1784             Visited.insert(Op))
1785        Op = Op->user_back();
1786      RedoInsts.insert(Op);
1787    }
1788}
1789
1790/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1791/// instructions is not allowed.
1792void Reassociate::OptimizeInst(Instruction *I) {
1793  // Only consider operations that we understand.
1794  if (!isa<BinaryOperator>(I))
1795    return;
1796
1797  if (I->getOpcode() == Instruction::Shl &&
1798      isa<ConstantInt>(I->getOperand(1)))
1799    // If an operand of this shift is a reassociable multiply, or if the shift
1800    // is used by a reassociable multiply or add, turn into a multiply.
1801    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1802        (I->hasOneUse() &&
1803         (isReassociableOp(I->user_back(), Instruction::Mul) ||
1804          isReassociableOp(I->user_back(), Instruction::Add)))) {
1805      Instruction *NI = ConvertShiftToMul(I);
1806      RedoInsts.insert(I);
1807      MadeChange = true;
1808      I = NI;
1809    }
1810
1811  // Floating point binary operators are not associative, but we can still
1812  // commute (some) of them, to canonicalize the order of their operands.
1813  // This can potentially expose more CSE opportunities, and makes writing
1814  // other transformations simpler.
1815  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1816    // FAdd and FMul can be commuted.
1817    if (I->getOpcode() != Instruction::FMul &&
1818        I->getOpcode() != Instruction::FAdd)
1819      return;
1820
1821    Value *LHS = I->getOperand(0);
1822    Value *RHS = I->getOperand(1);
1823    unsigned LHSRank = getRank(LHS);
1824    unsigned RHSRank = getRank(RHS);
1825
1826    // Sort the operands by rank.
1827    if (RHSRank < LHSRank) {
1828      I->setOperand(0, RHS);
1829      I->setOperand(1, LHS);
1830    }
1831
1832    return;
1833  }
1834
1835  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1836  // original order of evaluation for short-circuited comparisons that
1837  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1838  // is not further optimized, it is likely to be transformed back to a
1839  // short-circuited form for code gen, and the source order may have been
1840  // optimized for the most likely conditions.
1841  if (I->getType()->isIntegerTy(1))
1842    return;
1843
1844  // If this is a subtract instruction which is not already in negate form,
1845  // see if we can convert it to X+-Y.
1846  if (I->getOpcode() == Instruction::Sub) {
1847    if (ShouldBreakUpSubtract(I)) {
1848      Instruction *NI = BreakUpSubtract(I);
1849      RedoInsts.insert(I);
1850      MadeChange = true;
1851      I = NI;
1852    } else if (BinaryOperator::isNeg(I)) {
1853      // Otherwise, this is a negation.  See if the operand is a multiply tree
1854      // and if this is not an inner node of a multiply tree.
1855      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1856          (!I->hasOneUse() ||
1857           !isReassociableOp(I->user_back(), Instruction::Mul))) {
1858        Instruction *NI = LowerNegateToMultiply(I);
1859        RedoInsts.insert(I);
1860        MadeChange = true;
1861        I = NI;
1862      }
1863    }
1864  }
1865
1866  // If this instruction is an associative binary operator, process it.
1867  if (!I->isAssociative()) return;
1868  BinaryOperator *BO = cast<BinaryOperator>(I);
1869
1870  // If this is an interior node of a reassociable tree, ignore it until we
1871  // get to the root of the tree, to avoid N^2 analysis.
1872  unsigned Opcode = BO->getOpcode();
1873  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
1874    return;
1875
1876  // If this is an add tree that is used by a sub instruction, ignore it
1877  // until we process the subtract.
1878  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1879      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
1880    return;
1881
1882  ReassociateExpression(BO);
1883}
1884
1885void Reassociate::ReassociateExpression(BinaryOperator *I) {
1886
1887  // First, walk the expression tree, linearizing the tree, collecting the
1888  // operand information.
1889  SmallVector<RepeatedValue, 8> Tree;
1890  MadeChange |= LinearizeExprTree(I, Tree);
1891  SmallVector<ValueEntry, 8> Ops;
1892  Ops.reserve(Tree.size());
1893  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1894    RepeatedValue E = Tree[i];
1895    Ops.append(E.second.getZExtValue(),
1896               ValueEntry(getRank(E.first), E.first));
1897  }
1898
1899  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1900
1901  // Now that we have linearized the tree to a list and have gathered all of
1902  // the operands and their ranks, sort the operands by their rank.  Use a
1903  // stable_sort so that values with equal ranks will have their relative
1904  // positions maintained (and so the compiler is deterministic).  Note that
1905  // this sorts so that the highest ranking values end up at the beginning of
1906  // the vector.
1907  std::stable_sort(Ops.begin(), Ops.end());
1908
1909  // OptimizeExpression - Now that we have the expression tree in a convenient
1910  // sorted form, optimize it globally if possible.
1911  if (Value *V = OptimizeExpression(I, Ops)) {
1912    if (V == I)
1913      // Self-referential expression in unreachable code.
1914      return;
1915    // This expression tree simplified to something that isn't a tree,
1916    // eliminate it.
1917    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1918    I->replaceAllUsesWith(V);
1919    if (Instruction *VI = dyn_cast<Instruction>(V))
1920      VI->setDebugLoc(I->getDebugLoc());
1921    RedoInsts.insert(I);
1922    ++NumAnnihil;
1923    return;
1924  }
1925
1926  // We want to sink immediates as deeply as possible except in the case where
1927  // this is a multiply tree used only by an add, and the immediate is a -1.
1928  // In this case we reassociate to put the negation on the outside so that we
1929  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1930  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1931      cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
1932      isa<ConstantInt>(Ops.back().Op) &&
1933      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1934    ValueEntry Tmp = Ops.pop_back_val();
1935    Ops.insert(Ops.begin(), Tmp);
1936  }
1937
1938  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1939
1940  if (Ops.size() == 1) {
1941    if (Ops[0].Op == I)
1942      // Self-referential expression in unreachable code.
1943      return;
1944
1945    // This expression tree simplified to something that isn't a tree,
1946    // eliminate it.
1947    I->replaceAllUsesWith(Ops[0].Op);
1948    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1949      OI->setDebugLoc(I->getDebugLoc());
1950    RedoInsts.insert(I);
1951    return;
1952  }
1953
1954  // Now that we ordered and optimized the expressions, splat them back into
1955  // the expression tree, removing any unneeded nodes.
1956  RewriteExprTree(I, Ops);
1957}
1958
1959bool Reassociate::runOnFunction(Function &F) {
1960  if (skipOptnoneFunction(F))
1961    return false;
1962
1963  // Calculate the rank map for F
1964  BuildRankMap(F);
1965
1966  MadeChange = false;
1967  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1968    // Optimize every instruction in the basic block.
1969    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1970      if (isInstructionTriviallyDead(II)) {
1971        EraseInst(II++);
1972      } else {
1973        OptimizeInst(II);
1974        assert(II->getParent() == BI && "Moved to a different block!");
1975        ++II;
1976      }
1977
1978    // If this produced extra instructions to optimize, handle them now.
1979    while (!RedoInsts.empty()) {
1980      Instruction *I = RedoInsts.pop_back_val();
1981      if (isInstructionTriviallyDead(I))
1982        EraseInst(I);
1983      else
1984        OptimizeInst(I);
1985    }
1986  }
1987
1988  // We are done with the rank map.
1989  RankMap.clear();
1990  ValueRankMap.clear();
1991
1992  return MadeChange;
1993}
1994