Reassociate.cpp revision 4df2826166f1339eb7ddf5c5c84565fccb794de8
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Constants.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/IRBuilder.h"
30#include "llvm/Instructions.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/Pass.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Assembly/Writer.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ValueHandle.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44using namespace llvm;
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113}
114
115namespace {
116  class Reassociate : public FunctionPass {
117    DenseMap<BasicBlock*, unsigned> RankMap;
118    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119    SetVector<AssertingVH<Instruction> > RedoInsts;
120    bool MadeChange;
121  public:
122    static char ID; // Pass identification, replacement for typeid
123    Reassociate() : FunctionPass(ID) {
124      initializeReassociatePass(*PassRegistry::getPassRegistry());
125    }
126
127    bool runOnFunction(Function &F);
128
129    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130      AU.setPreservesCFG();
131    }
132  private:
133    void BuildRankMap(Function &F);
134    unsigned getRank(Value *V);
135    void ReassociateExpression(BinaryOperator *I);
136    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137    Value *OptimizeExpression(BinaryOperator *I,
138                              SmallVectorImpl<ValueEntry> &Ops);
139    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141                                SmallVectorImpl<Factor> &Factors);
142    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143                                   SmallVectorImpl<Factor> &Factors);
144    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146    void EraseInst(Instruction *I);
147    void OptimizeInst(Instruction *I);
148  };
149}
150
151char Reassociate::ID = 0;
152INITIALIZE_PASS(Reassociate, "reassociate",
153                "Reassociate expressions", false, false)
154
155// Public interface to the Reassociate pass
156FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157
158/// isReassociableOp - Return true if V is an instruction of the specified
159/// opcode and if it only has one use.
160static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161  if (V->hasOneUse() && isa<Instruction>(V) &&
162      cast<Instruction>(V)->getOpcode() == Opcode)
163    return cast<BinaryOperator>(V);
164  return 0;
165}
166
167static bool isUnmovableInstruction(Instruction *I) {
168  if (I->getOpcode() == Instruction::PHI ||
169      I->getOpcode() == Instruction::LandingPad ||
170      I->getOpcode() == Instruction::Alloca ||
171      I->getOpcode() == Instruction::Load ||
172      I->getOpcode() == Instruction::Invoke ||
173      (I->getOpcode() == Instruction::Call &&
174       !isa<DbgInfoIntrinsic>(I)) ||
175      I->getOpcode() == Instruction::UDiv ||
176      I->getOpcode() == Instruction::SDiv ||
177      I->getOpcode() == Instruction::FDiv ||
178      I->getOpcode() == Instruction::URem ||
179      I->getOpcode() == Instruction::SRem ||
180      I->getOpcode() == Instruction::FRem)
181    return true;
182  return false;
183}
184
185void Reassociate::BuildRankMap(Function &F) {
186  unsigned i = 2;
187
188  // Assign distinct ranks to function arguments
189  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190    ValueRankMap[&*I] = ++i;
191
192  ReversePostOrderTraversal<Function*> RPOT(&F);
193  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194         E = RPOT.end(); I != E; ++I) {
195    BasicBlock *BB = *I;
196    unsigned BBRank = RankMap[BB] = ++i << 16;
197
198    // Walk the basic block, adding precomputed ranks for any instructions that
199    // we cannot move.  This ensures that the ranks for these instructions are
200    // all different in the block.
201    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202      if (isUnmovableInstruction(I))
203        ValueRankMap[&*I] = ++BBRank;
204  }
205}
206
207unsigned Reassociate::getRank(Value *V) {
208  Instruction *I = dyn_cast<Instruction>(V);
209  if (I == 0) {
210    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
211    return 0;  // Otherwise it's a global or constant, rank 0.
212  }
213
214  if (unsigned Rank = ValueRankMap[I])
215    return Rank;    // Rank already known?
216
217  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218  // we can reassociate expressions for code motion!  Since we do not recurse
219  // for PHI nodes, we cannot have infinite recursion here, because there
220  // cannot be loops in the value graph that do not go through PHI nodes.
221  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222  for (unsigned i = 0, e = I->getNumOperands();
223       i != e && Rank != MaxRank; ++i)
224    Rank = std::max(Rank, getRank(I->getOperand(i)));
225
226  // If this is a not or neg instruction, do not count it for rank.  This
227  // assures us that X and ~X will have the same rank.
228  if (!I->getType()->isIntegerTy() ||
229      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230    ++Rank;
231
232  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233  //     << Rank << "\n");
234
235  return ValueRankMap[I] = Rank;
236}
237
238/// LowerNegateToMultiply - Replace 0-X with X*-1.
239///
240static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242
243  BinaryOperator *Res =
244    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246  Res->takeName(Neg);
247  Neg->replaceAllUsesWith(Res);
248  Res->setDebugLoc(Neg->getDebugLoc());
249  return Res;
250}
251
252/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256/// even x in Bitwidth-bit arithmetic.
257static unsigned CarmichaelShift(unsigned Bitwidth) {
258  if (Bitwidth < 3)
259    return Bitwidth - 1;
260  return Bitwidth - 2;
261}
262
263/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264/// reducing the combined weight using any special properties of the operation.
265/// The existing weight LHS represents the computation X op X op ... op X where
266/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
267/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
268/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271  // If we were working with infinite precision arithmetic then the combined
272  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
273  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274  // for nilpotent operations and addition, but not for idempotent operations
275  // and multiplication), so it is important to correctly reduce the combined
276  // weight back into range if wrapping would be wrong.
277
278  // If RHS is zero then the weight didn't change.
279  if (RHS.isMinValue())
280    return;
281  // If LHS is zero then the combined weight is RHS.
282  if (LHS.isMinValue()) {
283    LHS = RHS;
284    return;
285  }
286  // From this point on we know that neither LHS nor RHS is zero.
287
288  if (Instruction::isIdempotent(Opcode)) {
289    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290    // weight of 1.  Keeping weights at zero or one also means that wrapping is
291    // not a problem.
292    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293    return; // Return a weight of 1.
294  }
295  if (Instruction::isNilpotent(Opcode)) {
296    // Nilpotent means X op X === 0, so reduce weights modulo 2.
297    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298    LHS = 0; // 1 + 1 === 0 modulo 2.
299    return;
300  }
301  if (Opcode == Instruction::Add) {
302    // TODO: Reduce the weight by exploiting nsw/nuw?
303    LHS += RHS;
304    return;
305  }
306
307  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308  unsigned Bitwidth = LHS.getBitWidth();
309  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
311  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
313  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314  // which by a happy accident means that they can always be represented using
315  // Bitwidth bits.
316  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
317  // the Carmichael number).
318  if (Bitwidth > 3) {
319    /// CM - The value of Carmichael's lambda function.
320    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321    // Any weight W >= Threshold can be replaced with W - CM.
322    APInt Threshold = CM + Bitwidth;
323    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324    // For Bitwidth 4 or more the following sum does not overflow.
325    LHS += RHS;
326    while (LHS.uge(Threshold))
327      LHS -= CM;
328  } else {
329    // To avoid problems with overflow do everything the same as above but using
330    // a larger type.
331    unsigned CM = 1U << CarmichaelShift(Bitwidth);
332    unsigned Threshold = CM + Bitwidth;
333    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334           "Weights not reduced!");
335    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336    while (Total >= Threshold)
337      Total -= CM;
338    LHS = Total;
339  }
340}
341
342/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343/// is repeated Weight times.
344static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345                                          APInt Weight) {
346  // For addition the result can be efficiently computed as the product of the
347  // constant and the weight.
348  if (Opcode == Instruction::Add)
349    return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351  // The weight might be huge, so compute by repeated squaring to ensure that
352  // compile time is proportional to the logarithm of the weight.
353  Constant *Result = 0;
354  Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355  // Visit the bits in Weight.
356  while (Weight != 0) {
357    // If the current bit in Weight is non-zero do Result = Result op Power.
358    if (Weight[0])
359      Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360    // Move on to the next bit if any more are non-zero.
361    Weight = Weight.lshr(1);
362    if (Weight.isMinValue())
363      break;
364    // Square the power.
365    Power = ConstantExpr::get(Opcode, Power, Power);
366  }
367
368  assert(Result && "Only positive weights supported!");
369  return Result;
370}
371
372typedef std::pair<Value*, APInt> RepeatedValue;
373
374/// LinearizeExprTree - Given an associative binary expression, return the leaf
375/// nodes in Ops along with their weights (how many times the leaf occurs).  The
376/// original expression is the same as
377///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378/// op
379///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380/// op
381///   ...
382/// op
383///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384///
385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386/// they are all non-constant except possibly for the last one, which if it is
387/// constant will have weight one (Ops[N].second === 1).
388///
389/// This routine may modify the function, in which case it returns 'true'.  The
390/// changes it makes may well be destructive, changing the value computed by 'I'
391/// to something completely different.  Thus if the routine returns 'true' then
392/// you MUST either replace I with a new expression computed from the Ops array,
393/// or use RewriteExprTree to put the values back in.
394///
395/// A leaf node is either not a binary operation of the same kind as the root
396/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397/// opcode), or is the same kind of binary operator but has a use which either
398/// does not belong to the expression, or does belong to the expression but is
399/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
400/// of the expression, while for non-leaf nodes (except for the root 'I') every
401/// use is a non-leaf node of the expression.
402///
403/// For example:
404///           expression graph        node names
405///
406///                     +        |        I
407///                    / \       |
408///                   +   +      |      A,  B
409///                  / \ / \     |
410///                 *   +   *    |    C,  D,  E
411///                / \ / \ / \   |
412///                   +   *      |      F,  G
413///
414/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
415/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
416///
417/// The expression is maximal: if some instruction is a binary operator of the
418/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419/// then the instruction also belongs to the expression, is not a leaf node of
420/// it, and its operands also belong to the expression (but may be leaf nodes).
421///
422/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423/// order to ensure that every non-root node in the expression has *exactly one*
424/// use by a non-leaf node of the expression.  This destruction means that the
425/// caller MUST either replace 'I' with a new expression or use something like
426/// RewriteExprTree to put the values back in if the routine indicates that it
427/// made a change by returning 'true'.
428///
429/// In the above example either the right operand of A or the left operand of B
430/// will be replaced by undef.  If it is B's operand then this gives:
431///
432///                     +        |        I
433///                    / \       |
434///                   +   +      |      A,  B - operand of B replaced with undef
435///                  / \   \     |
436///                 *   +   *    |    C,  D,  E
437///                / \ / \ / \   |
438///                   +   *      |      F,  G
439///
440/// Note that such undef operands can only be reached by passing through 'I'.
441/// For example, if you visit operands recursively starting from a leaf node
442/// then you will never see such an undef operand unless you get back to 'I',
443/// which requires passing through a phi node.
444///
445/// Note that this routine may also mutate binary operators of the wrong type
446/// that have all uses inside the expression (i.e. only used by non-leaf nodes
447/// of the expression) if it can turn them into binary operators of the right
448/// type and thus make the expression bigger.
449
450static bool LinearizeExprTree(BinaryOperator *I,
451                              SmallVectorImpl<RepeatedValue> &Ops) {
452  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
453  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454  unsigned Opcode = I->getOpcode();
455  assert(Instruction::isAssociative(Opcode) &&
456         Instruction::isCommutative(Opcode) &&
457         "Expected an associative and commutative operation!");
458  // If we see an absorbing element then the entire expression must be equal to
459  // it.  For example, if this is a multiplication expression and zero occurs as
460  // an operand somewhere in it then the result of the expression must be zero.
461  Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
462
463  // Visit all operands of the expression, keeping track of their weight (the
464  // number of paths from the expression root to the operand, or if you like
465  // the number of times that operand occurs in the linearized expression).
466  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467  // while A has weight two.
468
469  // Worklist of non-leaf nodes (their operands are in the expression too) along
470  // with their weights, representing a certain number of paths to the operator.
471  // If an operator occurs in the worklist multiple times then we found multiple
472  // ways to get to it.
473  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475  bool MadeChange = false;
476
477  // Leaves of the expression are values that either aren't the right kind of
478  // operation (eg: a constant, or a multiply in an add tree), or are, but have
479  // some uses that are not inside the expression.  For example, in I = X + X,
480  // X = A + B, the value X has two uses (by I) that are in the expression.  If
481  // X has any other uses, for example in a return instruction, then we consider
482  // X to be a leaf, and won't analyze it further.  When we first visit a value,
483  // if it has more than one use then at first we conservatively consider it to
484  // be a leaf.  Later, as the expression is explored, we may discover some more
485  // uses of the value from inside the expression.  If all uses turn out to be
486  // from within the expression (and the value is a binary operator of the right
487  // kind) then the value is no longer considered to be a leaf, and its operands
488  // are explored.
489
490  // Leaves - Keeps track of the set of putative leaves as well as the number of
491  // paths to each leaf seen so far.
492  typedef DenseMap<Value*, APInt> LeafMap;
493  LeafMap Leaves; // Leaf -> Total weight so far.
494  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496#ifndef NDEBUG
497  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498#endif
499  while (!Worklist.empty()) {
500    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
501    I = P.first; // We examine the operands of this binary operator.
502
503    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504      Value *Op = I->getOperand(OpIdx);
505      APInt Weight = P.second; // Number of paths to this operand.
506      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
509      // If the expression contains an absorbing element then there is no need
510      // to analyze it further: it must evaluate to the absorbing element.
511      if (Op == Absorber && !Weight.isMinValue()) {
512        Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513        return MadeChange;
514      }
515
516      // If this is a binary operation of the right kind with only one use then
517      // add its operands to the expression.
518      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519        assert(Visited.insert(Op) && "Not first visit!");
520        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521        Worklist.push_back(std::make_pair(BO, Weight));
522        continue;
523      }
524
525      // Appears to be a leaf.  Is the operand already in the set of leaves?
526      LeafMap::iterator It = Leaves.find(Op);
527      if (It == Leaves.end()) {
528        // Not in the leaf map.  Must be the first time we saw this operand.
529        assert(Visited.insert(Op) && "Not first visit!");
530        if (!Op->hasOneUse()) {
531          // This value has uses not accounted for by the expression, so it is
532          // not safe to modify.  Mark it as being a leaf.
533          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534          LeafOrder.push_back(Op);
535          Leaves[Op] = Weight;
536          continue;
537        }
538        // No uses outside the expression, try morphing it.
539      } else if (It != Leaves.end()) {
540        // Already in the leaf map.
541        assert(Visited.count(Op) && "In leaf map but not visited!");
542
543        // Update the number of paths to the leaf.
544        IncorporateWeight(It->second, Weight, Opcode);
545
546#if 0   // TODO: Re-enable once PR13021 is fixed.
547        // The leaf already has one use from inside the expression.  As we want
548        // exactly one such use, drop this new use of the leaf.
549        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
550        I->setOperand(OpIdx, UndefValue::get(I->getType()));
551        MadeChange = true;
552
553        // If the leaf is a binary operation of the right kind and we now see
554        // that its multiple original uses were in fact all by nodes belonging
555        // to the expression, then no longer consider it to be a leaf and add
556        // its operands to the expression.
557        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
558          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
559          Worklist.push_back(std::make_pair(BO, It->second));
560          Leaves.erase(It);
561          continue;
562        }
563#endif
564
565        // If we still have uses that are not accounted for by the expression
566        // then it is not safe to modify the value.
567        if (!Op->hasOneUse())
568          continue;
569
570        // No uses outside the expression, try morphing it.
571        Weight = It->second;
572        Leaves.erase(It); // Since the value may be morphed below.
573      }
574
575      // At this point we have a value which, first of all, is not a binary
576      // expression of the right kind, and secondly, is only used inside the
577      // expression.  This means that it can safely be modified.  See if we
578      // can usefully morph it into an expression of the right kind.
579      assert((!isa<Instruction>(Op) ||
580              cast<Instruction>(Op)->getOpcode() != Opcode) &&
581             "Should have been handled above!");
582      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
583
584      // If this is a multiply expression, turn any internal negations into
585      // multiplies by -1 so they can be reassociated.
586      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
587      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
588        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
589        BO = LowerNegateToMultiply(BO);
590        DEBUG(dbgs() << *BO << 'n');
591        Worklist.push_back(std::make_pair(BO, Weight));
592        MadeChange = true;
593        continue;
594      }
595
596      // Failed to morph into an expression of the right type.  This really is
597      // a leaf.
598      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
599      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
600      LeafOrder.push_back(Op);
601      Leaves[Op] = Weight;
602    }
603  }
604
605  // The leaves, repeated according to their weights, represent the linearized
606  // form of the expression.
607  Constant *Cst = 0; // Accumulate constants here.
608  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
609    Value *V = LeafOrder[i];
610    LeafMap::iterator It = Leaves.find(V);
611    if (It == Leaves.end())
612      // Node initially thought to be a leaf wasn't.
613      continue;
614    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
615    APInt Weight = It->second;
616    if (Weight.isMinValue())
617      // Leaf already output or weight reduction eliminated it.
618      continue;
619    // Ensure the leaf is only output once.
620    It->second = 0;
621    // Glob all constants together into Cst.
622    if (Constant *C = dyn_cast<Constant>(V)) {
623      C = EvaluateRepeatedConstant(Opcode, C, Weight);
624      Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
625      continue;
626    }
627    // Add non-constant
628    Ops.push_back(std::make_pair(V, Weight));
629  }
630
631  // Add any constants back into Ops, all globbed together and reduced to having
632  // weight 1 for the convenience of users.
633  Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
634  if (Cst && Cst != Identity) {
635    // If combining multiple constants resulted in the absorber then the entire
636    // expression must evaluate to the absorber.
637    if (Cst == Absorber)
638      Ops.clear();
639    Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
640  }
641
642  // For nilpotent operations or addition there may be no operands, for example
643  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
644  // in both cases the weight reduces to 0 causing the value to be skipped.
645  if (Ops.empty()) {
646    assert(Identity && "Associative operation without identity!");
647    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
648  }
649
650  return MadeChange;
651}
652
653// RewriteExprTree - Now that the operands for this expression tree are
654// linearized and optimized, emit them in-order.
655void Reassociate::RewriteExprTree(BinaryOperator *I,
656                                  SmallVectorImpl<ValueEntry> &Ops) {
657  assert(Ops.size() > 1 && "Single values should be used directly!");
658
659  // Since our optimizations never increase the number of operations, the new
660  // expression can always be written by reusing the existing binary operators
661  // from the original expression tree, without creating any new instructions,
662  // though the rewritten expression may have a completely different topology.
663  // We take care to not change anything if the new expression will be the same
664  // as the original.  If more than trivial changes (like commuting operands)
665  // were made then we are obliged to clear out any optional subclass data like
666  // nsw flags.
667
668  /// NodesToRewrite - Nodes from the original expression available for writing
669  /// the new expression into.
670  SmallVector<BinaryOperator*, 8> NodesToRewrite;
671  unsigned Opcode = I->getOpcode();
672  BinaryOperator *Op = I;
673
674  // ExpressionChanged - Non-null if the rewritten expression differs from the
675  // original in some non-trivial way, requiring the clearing of optional flags.
676  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
677  BinaryOperator *ExpressionChanged = 0;
678  for (unsigned i = 0; ; ++i) {
679    // The last operation (which comes earliest in the IR) is special as both
680    // operands will come from Ops, rather than just one with the other being
681    // a subexpression.
682    if (i+2 == Ops.size()) {
683      Value *NewLHS = Ops[i].Op;
684      Value *NewRHS = Ops[i+1].Op;
685      Value *OldLHS = Op->getOperand(0);
686      Value *OldRHS = Op->getOperand(1);
687
688      if (NewLHS == OldLHS && NewRHS == OldRHS)
689        // Nothing changed, leave it alone.
690        break;
691
692      if (NewLHS == OldRHS && NewRHS == OldLHS) {
693        // The order of the operands was reversed.  Swap them.
694        DEBUG(dbgs() << "RA: " << *Op << '\n');
695        Op->swapOperands();
696        DEBUG(dbgs() << "TO: " << *Op << '\n');
697        MadeChange = true;
698        ++NumChanged;
699        break;
700      }
701
702      // The new operation differs non-trivially from the original. Overwrite
703      // the old operands with the new ones.
704      DEBUG(dbgs() << "RA: " << *Op << '\n');
705      if (NewLHS != OldLHS) {
706        if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
707          NodesToRewrite.push_back(BO);
708        Op->setOperand(0, NewLHS);
709      }
710      if (NewRHS != OldRHS) {
711        if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
712          NodesToRewrite.push_back(BO);
713        Op->setOperand(1, NewRHS);
714      }
715      DEBUG(dbgs() << "TO: " << *Op << '\n');
716
717      ExpressionChanged = Op;
718      MadeChange = true;
719      ++NumChanged;
720
721      break;
722    }
723
724    // Not the last operation.  The left-hand side will be a sub-expression
725    // while the right-hand side will be the current element of Ops.
726    Value *NewRHS = Ops[i].Op;
727    if (NewRHS != Op->getOperand(1)) {
728      DEBUG(dbgs() << "RA: " << *Op << '\n');
729      if (NewRHS == Op->getOperand(0)) {
730        // The new right-hand side was already present as the left operand.  If
731        // we are lucky then swapping the operands will sort out both of them.
732        Op->swapOperands();
733      } else {
734        // Overwrite with the new right-hand side.
735        if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
736          NodesToRewrite.push_back(BO);
737        Op->setOperand(1, NewRHS);
738        ExpressionChanged = Op;
739      }
740      DEBUG(dbgs() << "TO: " << *Op << '\n');
741      MadeChange = true;
742      ++NumChanged;
743    }
744
745    // Now deal with the left-hand side.  If this is already an operation node
746    // from the original expression then just rewrite the rest of the expression
747    // into it.
748    if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
749      Op = BO;
750      continue;
751    }
752
753    // Otherwise, grab a spare node from the original expression and use that as
754    // the left-hand side.  If there are no nodes left then the optimizers made
755    // an expression with more nodes than the original!  This usually means that
756    // they did something stupid but it might mean that the problem was just too
757    // hard (finding the mimimal number of multiplications needed to realize a
758    // multiplication expression is NP-complete).  Whatever the reason, smart or
759    // stupid, create a new node if there are none left.
760    BinaryOperator *NewOp;
761    if (NodesToRewrite.empty()) {
762      Constant *Undef = UndefValue::get(I->getType());
763      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
764                                     Undef, Undef, "", I);
765    } else {
766      NewOp = NodesToRewrite.pop_back_val();
767    }
768
769    DEBUG(dbgs() << "RA: " << *Op << '\n');
770    Op->setOperand(0, NewOp);
771    DEBUG(dbgs() << "TO: " << *Op << '\n');
772    ExpressionChanged = Op;
773    MadeChange = true;
774    ++NumChanged;
775    Op = NewOp;
776  }
777
778  // If the expression changed non-trivially then clear out all subclass data
779  // starting from the operator specified in ExpressionChanged, and compactify
780  // the operators to just before the expression root to guarantee that the
781  // expression tree is dominated by all of Ops.
782  if (ExpressionChanged)
783    do {
784      ExpressionChanged->clearSubclassOptionalData();
785      if (ExpressionChanged == I)
786        break;
787      ExpressionChanged->moveBefore(I);
788      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
789    } while (1);
790
791  // Throw away any left over nodes from the original expression.
792  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
793    RedoInsts.insert(NodesToRewrite[i]);
794}
795
796/// NegateValue - Insert instructions before the instruction pointed to by BI,
797/// that computes the negative version of the value specified.  The negative
798/// version of the value is returned, and BI is left pointing at the instruction
799/// that should be processed next by the reassociation pass.
800static Value *NegateValue(Value *V, Instruction *BI) {
801  if (Constant *C = dyn_cast<Constant>(V))
802    return ConstantExpr::getNeg(C);
803
804  // We are trying to expose opportunity for reassociation.  One of the things
805  // that we want to do to achieve this is to push a negation as deep into an
806  // expression chain as possible, to expose the add instructions.  In practice,
807  // this means that we turn this:
808  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
809  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
810  // the constants.  We assume that instcombine will clean up the mess later if
811  // we introduce tons of unnecessary negation instructions.
812  //
813  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
814    // Push the negates through the add.
815    I->setOperand(0, NegateValue(I->getOperand(0), BI));
816    I->setOperand(1, NegateValue(I->getOperand(1), BI));
817
818    // We must move the add instruction here, because the neg instructions do
819    // not dominate the old add instruction in general.  By moving it, we are
820    // assured that the neg instructions we just inserted dominate the
821    // instruction we are about to insert after them.
822    //
823    I->moveBefore(BI);
824    I->setName(I->getName()+".neg");
825    return I;
826  }
827
828  // Okay, we need to materialize a negated version of V with an instruction.
829  // Scan the use lists of V to see if we have one already.
830  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
831    User *U = *UI;
832    if (!BinaryOperator::isNeg(U)) continue;
833
834    // We found one!  Now we have to make sure that the definition dominates
835    // this use.  We do this by moving it to the entry block (if it is a
836    // non-instruction value) or right after the definition.  These negates will
837    // be zapped by reassociate later, so we don't need much finesse here.
838    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
839
840    // Verify that the negate is in this function, V might be a constant expr.
841    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
842      continue;
843
844    BasicBlock::iterator InsertPt;
845    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
846      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
847        InsertPt = II->getNormalDest()->begin();
848      } else {
849        InsertPt = InstInput;
850        ++InsertPt;
851      }
852      while (isa<PHINode>(InsertPt)) ++InsertPt;
853    } else {
854      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855    }
856    TheNeg->moveBefore(InsertPt);
857    return TheNeg;
858  }
859
860  // Insert a 'neg' instruction that subtracts the value from zero to get the
861  // negation.
862  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
863}
864
865/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
866/// X-Y into (X + -Y).
867static bool ShouldBreakUpSubtract(Instruction *Sub) {
868  // If this is a negation, we can't split it up!
869  if (BinaryOperator::isNeg(Sub))
870    return false;
871
872  // Don't bother to break this up unless either the LHS is an associable add or
873  // subtract or if this is only used by one.
874  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
875      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
876    return true;
877  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
878      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
879    return true;
880  if (Sub->hasOneUse() &&
881      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
882       isReassociableOp(Sub->use_back(), Instruction::Sub)))
883    return true;
884
885  return false;
886}
887
888/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
889/// only used by an add, transform this into (X+(0-Y)) to promote better
890/// reassociation.
891static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
892  // Convert a subtract into an add and a neg instruction. This allows sub
893  // instructions to be commuted with other add instructions.
894  //
895  // Calculate the negative value of Operand 1 of the sub instruction,
896  // and set it as the RHS of the add instruction we just made.
897  //
898  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
899  BinaryOperator *New =
900    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
901  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
902  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
903  New->takeName(Sub);
904
905  // Everyone now refers to the add instruction.
906  Sub->replaceAllUsesWith(New);
907  New->setDebugLoc(Sub->getDebugLoc());
908
909  DEBUG(dbgs() << "Negated: " << *New << '\n');
910  return New;
911}
912
913/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
914/// by one, change this into a multiply by a constant to assist with further
915/// reassociation.
916static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
917  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
918  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
919
920  BinaryOperator *Mul =
921    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
922  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
923  Mul->takeName(Shl);
924  Shl->replaceAllUsesWith(Mul);
925  Mul->setDebugLoc(Shl->getDebugLoc());
926  return Mul;
927}
928
929/// FindInOperandList - Scan backwards and forwards among values with the same
930/// rank as element i to see if X exists.  If X does not exist, return i.  This
931/// is useful when scanning for 'x' when we see '-x' because they both get the
932/// same rank.
933static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
934                                  Value *X) {
935  unsigned XRank = Ops[i].Rank;
936  unsigned e = Ops.size();
937  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
938    if (Ops[j].Op == X)
939      return j;
940  // Scan backwards.
941  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
942    if (Ops[j].Op == X)
943      return j;
944  return i;
945}
946
947/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
948/// and returning the result.  Insert the tree before I.
949static Value *EmitAddTreeOfValues(Instruction *I,
950                                  SmallVectorImpl<WeakVH> &Ops){
951  if (Ops.size() == 1) return Ops.back();
952
953  Value *V1 = Ops.back();
954  Ops.pop_back();
955  Value *V2 = EmitAddTreeOfValues(I, Ops);
956  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
957}
958
959/// RemoveFactorFromExpression - If V is an expression tree that is a
960/// multiplication sequence, and if this sequence contains a multiply by Factor,
961/// remove Factor from the tree and return the new tree.
962Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
963  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
964  if (!BO) return 0;
965
966  SmallVector<RepeatedValue, 8> Tree;
967  MadeChange |= LinearizeExprTree(BO, Tree);
968  SmallVector<ValueEntry, 8> Factors;
969  Factors.reserve(Tree.size());
970  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
971    RepeatedValue E = Tree[i];
972    Factors.append(E.second.getZExtValue(),
973                   ValueEntry(getRank(E.first), E.first));
974  }
975
976  bool FoundFactor = false;
977  bool NeedsNegate = false;
978  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
979    if (Factors[i].Op == Factor) {
980      FoundFactor = true;
981      Factors.erase(Factors.begin()+i);
982      break;
983    }
984
985    // If this is a negative version of this factor, remove it.
986    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
987      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
988        if (FC1->getValue() == -FC2->getValue()) {
989          FoundFactor = NeedsNegate = true;
990          Factors.erase(Factors.begin()+i);
991          break;
992        }
993  }
994
995  if (!FoundFactor) {
996    // Make sure to restore the operands to the expression tree.
997    RewriteExprTree(BO, Factors);
998    return 0;
999  }
1000
1001  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1002
1003  // If this was just a single multiply, remove the multiply and return the only
1004  // remaining operand.
1005  if (Factors.size() == 1) {
1006    RedoInsts.insert(BO);
1007    V = Factors[0].Op;
1008  } else {
1009    RewriteExprTree(BO, Factors);
1010    V = BO;
1011  }
1012
1013  if (NeedsNegate)
1014    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1015
1016  return V;
1017}
1018
1019/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1020/// add its operands as factors, otherwise add V to the list of factors.
1021///
1022/// Ops is the top-level list of add operands we're trying to factor.
1023static void FindSingleUseMultiplyFactors(Value *V,
1024                                         SmallVectorImpl<Value*> &Factors,
1025                                       const SmallVectorImpl<ValueEntry> &Ops) {
1026  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1027  if (!BO) {
1028    Factors.push_back(V);
1029    return;
1030  }
1031
1032  // Otherwise, add the LHS and RHS to the list of factors.
1033  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1034  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1035}
1036
1037/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1038/// instruction.  This optimizes based on identities.  If it can be reduced to
1039/// a single Value, it is returned, otherwise the Ops list is mutated as
1040/// necessary.
1041static Value *OptimizeAndOrXor(unsigned Opcode,
1042                               SmallVectorImpl<ValueEntry> &Ops) {
1043  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1044  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1045  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1046    // First, check for X and ~X in the operand list.
1047    assert(i < Ops.size());
1048    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1049      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1050      unsigned FoundX = FindInOperandList(Ops, i, X);
1051      if (FoundX != i) {
1052        if (Opcode == Instruction::And)   // ...&X&~X = 0
1053          return Constant::getNullValue(X->getType());
1054
1055        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1056          return Constant::getAllOnesValue(X->getType());
1057      }
1058    }
1059
1060    // Next, check for duplicate pairs of values, which we assume are next to
1061    // each other, due to our sorting criteria.
1062    assert(i < Ops.size());
1063    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1064      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1065        // Drop duplicate values for And and Or.
1066        Ops.erase(Ops.begin()+i);
1067        --i; --e;
1068        ++NumAnnihil;
1069        continue;
1070      }
1071
1072      // Drop pairs of values for Xor.
1073      assert(Opcode == Instruction::Xor);
1074      if (e == 2)
1075        return Constant::getNullValue(Ops[0].Op->getType());
1076
1077      // Y ^ X^X -> Y
1078      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1079      i -= 1; e -= 2;
1080      ++NumAnnihil;
1081    }
1082  }
1083  return 0;
1084}
1085
1086/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1087/// optimizes based on identities.  If it can be reduced to a single Value, it
1088/// is returned, otherwise the Ops list is mutated as necessary.
1089Value *Reassociate::OptimizeAdd(Instruction *I,
1090                                SmallVectorImpl<ValueEntry> &Ops) {
1091  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1092  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1093  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1094  //
1095  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1096  //
1097  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1098    Value *TheOp = Ops[i].Op;
1099    // Check to see if we've seen this operand before.  If so, we factor all
1100    // instances of the operand together.  Due to our sorting criteria, we know
1101    // that these need to be next to each other in the vector.
1102    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1103      // Rescan the list, remove all instances of this operand from the expr.
1104      unsigned NumFound = 0;
1105      do {
1106        Ops.erase(Ops.begin()+i);
1107        ++NumFound;
1108      } while (i != Ops.size() && Ops[i].Op == TheOp);
1109
1110      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1111      ++NumFactor;
1112
1113      // Insert a new multiply.
1114      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1115      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1116
1117      // Now that we have inserted a multiply, optimize it. This allows us to
1118      // handle cases that require multiple factoring steps, such as this:
1119      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1120      RedoInsts.insert(cast<Instruction>(Mul));
1121
1122      // If every add operand was a duplicate, return the multiply.
1123      if (Ops.empty())
1124        return Mul;
1125
1126      // Otherwise, we had some input that didn't have the dupe, such as
1127      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1128      // things being added by this operation.
1129      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1130
1131      --i;
1132      e = Ops.size();
1133      continue;
1134    }
1135
1136    // Check for X and -X in the operand list.
1137    if (!BinaryOperator::isNeg(TheOp))
1138      continue;
1139
1140    Value *X = BinaryOperator::getNegArgument(TheOp);
1141    unsigned FoundX = FindInOperandList(Ops, i, X);
1142    if (FoundX == i)
1143      continue;
1144
1145    // Remove X and -X from the operand list.
1146    if (Ops.size() == 2)
1147      return Constant::getNullValue(X->getType());
1148
1149    Ops.erase(Ops.begin()+i);
1150    if (i < FoundX)
1151      --FoundX;
1152    else
1153      --i;   // Need to back up an extra one.
1154    Ops.erase(Ops.begin()+FoundX);
1155    ++NumAnnihil;
1156    --i;     // Revisit element.
1157    e -= 2;  // Removed two elements.
1158  }
1159
1160  // Scan the operand list, checking to see if there are any common factors
1161  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1162  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1163  // To efficiently find this, we count the number of times a factor occurs
1164  // for any ADD operands that are MULs.
1165  DenseMap<Value*, unsigned> FactorOccurrences;
1166
1167  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1168  // where they are actually the same multiply.
1169  unsigned MaxOcc = 0;
1170  Value *MaxOccVal = 0;
1171  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1172    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1173    if (!BOp)
1174      continue;
1175
1176    // Compute all of the factors of this added value.
1177    SmallVector<Value*, 8> Factors;
1178    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1179    assert(Factors.size() > 1 && "Bad linearize!");
1180
1181    // Add one to FactorOccurrences for each unique factor in this op.
1182    SmallPtrSet<Value*, 8> Duplicates;
1183    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1184      Value *Factor = Factors[i];
1185      if (!Duplicates.insert(Factor)) continue;
1186
1187      unsigned Occ = ++FactorOccurrences[Factor];
1188      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1189
1190      // If Factor is a negative constant, add the negated value as a factor
1191      // because we can percolate the negate out.  Watch for minint, which
1192      // cannot be positivified.
1193      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1194        if (CI->isNegative() && !CI->isMinValue(true)) {
1195          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1196          assert(!Duplicates.count(Factor) &&
1197                 "Shouldn't have two constant factors, missed a canonicalize");
1198
1199          unsigned Occ = ++FactorOccurrences[Factor];
1200          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1201        }
1202    }
1203  }
1204
1205  // If any factor occurred more than one time, we can pull it out.
1206  if (MaxOcc > 1) {
1207    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1208    ++NumFactor;
1209
1210    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1211    // this, we could otherwise run into situations where removing a factor
1212    // from an expression will drop a use of maxocc, and this can cause
1213    // RemoveFactorFromExpression on successive values to behave differently.
1214    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1215    SmallVector<WeakVH, 4> NewMulOps;
1216    for (unsigned i = 0; i != Ops.size(); ++i) {
1217      // Only try to remove factors from expressions we're allowed to.
1218      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1219      if (!BOp)
1220        continue;
1221
1222      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1223        // The factorized operand may occur several times.  Convert them all in
1224        // one fell swoop.
1225        for (unsigned j = Ops.size(); j != i;) {
1226          --j;
1227          if (Ops[j].Op == Ops[i].Op) {
1228            NewMulOps.push_back(V);
1229            Ops.erase(Ops.begin()+j);
1230          }
1231        }
1232        --i;
1233      }
1234    }
1235
1236    // No need for extra uses anymore.
1237    delete DummyInst;
1238
1239    unsigned NumAddedValues = NewMulOps.size();
1240    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1241
1242    // Now that we have inserted the add tree, optimize it. This allows us to
1243    // handle cases that require multiple factoring steps, such as this:
1244    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1245    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1246    (void)NumAddedValues;
1247    if (Instruction *VI = dyn_cast<Instruction>(V))
1248      RedoInsts.insert(VI);
1249
1250    // Create the multiply.
1251    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1252
1253    // Rerun associate on the multiply in case the inner expression turned into
1254    // a multiply.  We want to make sure that we keep things in canonical form.
1255    RedoInsts.insert(V2);
1256
1257    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1258    // entire result expression is just the multiply "A*(B+C)".
1259    if (Ops.empty())
1260      return V2;
1261
1262    // Otherwise, we had some input that didn't have the factor, such as
1263    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1264    // things being added by this operation.
1265    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1266  }
1267
1268  return 0;
1269}
1270
1271namespace {
1272  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1273  struct IsValueInMap {
1274    const DenseMap<Value *, unsigned> &Map;
1275
1276    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1277
1278    bool operator()(const ValueEntry &Entry) {
1279      return Map.find(Entry.Op) != Map.end();
1280    }
1281  };
1282}
1283
1284/// \brief Build up a vector of value/power pairs factoring a product.
1285///
1286/// Given a series of multiplication operands, build a vector of factors and
1287/// the powers each is raised to when forming the final product. Sort them in
1288/// the order of descending power.
1289///
1290///      (x*x)          -> [(x, 2)]
1291///     ((x*x)*x)       -> [(x, 3)]
1292///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1293///
1294/// \returns Whether any factors have a power greater than one.
1295bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1296                                         SmallVectorImpl<Factor> &Factors) {
1297  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1298  // Compute the sum of powers of simplifiable factors.
1299  unsigned FactorPowerSum = 0;
1300  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1301    Value *Op = Ops[Idx-1].Op;
1302
1303    // Count the number of occurrences of this value.
1304    unsigned Count = 1;
1305    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1306      ++Count;
1307    // Track for simplification all factors which occur 2 or more times.
1308    if (Count > 1)
1309      FactorPowerSum += Count;
1310  }
1311
1312  // We can only simplify factors if the sum of the powers of our simplifiable
1313  // factors is 4 or higher. When that is the case, we will *always* have
1314  // a simplification. This is an important invariant to prevent cyclicly
1315  // trying to simplify already minimal formations.
1316  if (FactorPowerSum < 4)
1317    return false;
1318
1319  // Now gather the simplifiable factors, removing them from Ops.
1320  FactorPowerSum = 0;
1321  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1322    Value *Op = Ops[Idx-1].Op;
1323
1324    // Count the number of occurrences of this value.
1325    unsigned Count = 1;
1326    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1327      ++Count;
1328    if (Count == 1)
1329      continue;
1330    // Move an even number of occurrences to Factors.
1331    Count &= ~1U;
1332    Idx -= Count;
1333    FactorPowerSum += Count;
1334    Factors.push_back(Factor(Op, Count));
1335    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1336  }
1337
1338  // None of the adjustments above should have reduced the sum of factor powers
1339  // below our mininum of '4'.
1340  assert(FactorPowerSum >= 4);
1341
1342  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1343  return true;
1344}
1345
1346/// \brief Build a tree of multiplies, computing the product of Ops.
1347static Value *buildMultiplyTree(IRBuilder<> &Builder,
1348                                SmallVectorImpl<Value*> &Ops) {
1349  if (Ops.size() == 1)
1350    return Ops.back();
1351
1352  Value *LHS = Ops.pop_back_val();
1353  do {
1354    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1355  } while (!Ops.empty());
1356
1357  return LHS;
1358}
1359
1360/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1361///
1362/// Given a vector of values raised to various powers, where no two values are
1363/// equal and the powers are sorted in decreasing order, compute the minimal
1364/// DAG of multiplies to compute the final product, and return that product
1365/// value.
1366Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1367                                            SmallVectorImpl<Factor> &Factors) {
1368  assert(Factors[0].Power);
1369  SmallVector<Value *, 4> OuterProduct;
1370  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1371       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1372    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1373      LastIdx = Idx;
1374      continue;
1375    }
1376
1377    // We want to multiply across all the factors with the same power so that
1378    // we can raise them to that power as a single entity. Build a mini tree
1379    // for that.
1380    SmallVector<Value *, 4> InnerProduct;
1381    InnerProduct.push_back(Factors[LastIdx].Base);
1382    do {
1383      InnerProduct.push_back(Factors[Idx].Base);
1384      ++Idx;
1385    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1386
1387    // Reset the base value of the first factor to the new expression tree.
1388    // We'll remove all the factors with the same power in a second pass.
1389    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1390    if (Instruction *MI = dyn_cast<Instruction>(M))
1391      RedoInsts.insert(MI);
1392
1393    LastIdx = Idx;
1394  }
1395  // Unique factors with equal powers -- we've folded them into the first one's
1396  // base.
1397  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1398                            Factor::PowerEqual()),
1399                Factors.end());
1400
1401  // Iteratively collect the base of each factor with an add power into the
1402  // outer product, and halve each power in preparation for squaring the
1403  // expression.
1404  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1405    if (Factors[Idx].Power & 1)
1406      OuterProduct.push_back(Factors[Idx].Base);
1407    Factors[Idx].Power >>= 1;
1408  }
1409  if (Factors[0].Power) {
1410    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1411    OuterProduct.push_back(SquareRoot);
1412    OuterProduct.push_back(SquareRoot);
1413  }
1414  if (OuterProduct.size() == 1)
1415    return OuterProduct.front();
1416
1417  Value *V = buildMultiplyTree(Builder, OuterProduct);
1418  return V;
1419}
1420
1421Value *Reassociate::OptimizeMul(BinaryOperator *I,
1422                                SmallVectorImpl<ValueEntry> &Ops) {
1423  // We can only optimize the multiplies when there is a chain of more than
1424  // three, such that a balanced tree might require fewer total multiplies.
1425  if (Ops.size() < 4)
1426    return 0;
1427
1428  // Try to turn linear trees of multiplies without other uses of the
1429  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1430  // re-use.
1431  SmallVector<Factor, 4> Factors;
1432  if (!collectMultiplyFactors(Ops, Factors))
1433    return 0; // All distinct factors, so nothing left for us to do.
1434
1435  IRBuilder<> Builder(I);
1436  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1437  if (Ops.empty())
1438    return V;
1439
1440  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1441  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1442  return 0;
1443}
1444
1445Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1446                                       SmallVectorImpl<ValueEntry> &Ops) {
1447  // Now that we have the linearized expression tree, try to optimize it.
1448  // Start by folding any constants that we found.
1449  if (Ops.size() == 1) return Ops[0].Op;
1450
1451  unsigned Opcode = I->getOpcode();
1452
1453  // Handle destructive annihilation due to identities between elements in the
1454  // argument list here.
1455  unsigned NumOps = Ops.size();
1456  switch (Opcode) {
1457  default: break;
1458  case Instruction::And:
1459  case Instruction::Or:
1460  case Instruction::Xor:
1461    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1462      return Result;
1463    break;
1464
1465  case Instruction::Add:
1466    if (Value *Result = OptimizeAdd(I, Ops))
1467      return Result;
1468    break;
1469
1470  case Instruction::Mul:
1471    if (Value *Result = OptimizeMul(I, Ops))
1472      return Result;
1473    break;
1474  }
1475
1476  if (Ops.size() != NumOps)
1477    return OptimizeExpression(I, Ops);
1478  return 0;
1479}
1480
1481/// EraseInst - Zap the given instruction, adding interesting operands to the
1482/// work list.
1483void Reassociate::EraseInst(Instruction *I) {
1484  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1485  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1486  // Erase the dead instruction.
1487  ValueRankMap.erase(I);
1488  RedoInsts.remove(I);
1489  I->eraseFromParent();
1490  // Optimize its operands.
1491  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1492  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1493    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1494      // If this is a node in an expression tree, climb to the expression root
1495      // and add that since that's where optimization actually happens.
1496      unsigned Opcode = Op->getOpcode();
1497      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1498             Visited.insert(Op))
1499        Op = Op->use_back();
1500      RedoInsts.insert(Op);
1501    }
1502}
1503
1504/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1505/// instructions is not allowed.
1506void Reassociate::OptimizeInst(Instruction *I) {
1507  // Only consider operations that we understand.
1508  if (!isa<BinaryOperator>(I))
1509    return;
1510
1511  if (I->getOpcode() == Instruction::Shl &&
1512      isa<ConstantInt>(I->getOperand(1)))
1513    // If an operand of this shift is a reassociable multiply, or if the shift
1514    // is used by a reassociable multiply or add, turn into a multiply.
1515    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1516        (I->hasOneUse() &&
1517         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1518          isReassociableOp(I->use_back(), Instruction::Add)))) {
1519      Instruction *NI = ConvertShiftToMul(I);
1520      RedoInsts.insert(I);
1521      MadeChange = true;
1522      I = NI;
1523    }
1524
1525  // Floating point binary operators are not associative, but we can still
1526  // commute (some) of them, to canonicalize the order of their operands.
1527  // This can potentially expose more CSE opportunities, and makes writing
1528  // other transformations simpler.
1529  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1530    // FAdd and FMul can be commuted.
1531    if (I->getOpcode() != Instruction::FMul &&
1532        I->getOpcode() != Instruction::FAdd)
1533      return;
1534
1535    Value *LHS = I->getOperand(0);
1536    Value *RHS = I->getOperand(1);
1537    unsigned LHSRank = getRank(LHS);
1538    unsigned RHSRank = getRank(RHS);
1539
1540    // Sort the operands by rank.
1541    if (RHSRank < LHSRank) {
1542      I->setOperand(0, RHS);
1543      I->setOperand(1, LHS);
1544    }
1545
1546    return;
1547  }
1548
1549  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1550  // original order of evaluation for short-circuited comparisons that
1551  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1552  // is not further optimized, it is likely to be transformed back to a
1553  // short-circuited form for code gen, and the source order may have been
1554  // optimized for the most likely conditions.
1555  if (I->getType()->isIntegerTy(1))
1556    return;
1557
1558  // If this is a subtract instruction which is not already in negate form,
1559  // see if we can convert it to X+-Y.
1560  if (I->getOpcode() == Instruction::Sub) {
1561    if (ShouldBreakUpSubtract(I)) {
1562      Instruction *NI = BreakUpSubtract(I);
1563      RedoInsts.insert(I);
1564      MadeChange = true;
1565      I = NI;
1566    } else if (BinaryOperator::isNeg(I)) {
1567      // Otherwise, this is a negation.  See if the operand is a multiply tree
1568      // and if this is not an inner node of a multiply tree.
1569      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1570          (!I->hasOneUse() ||
1571           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1572        Instruction *NI = LowerNegateToMultiply(I);
1573        RedoInsts.insert(I);
1574        MadeChange = true;
1575        I = NI;
1576      }
1577    }
1578  }
1579
1580  // If this instruction is an associative binary operator, process it.
1581  if (!I->isAssociative()) return;
1582  BinaryOperator *BO = cast<BinaryOperator>(I);
1583
1584  // If this is an interior node of a reassociable tree, ignore it until we
1585  // get to the root of the tree, to avoid N^2 analysis.
1586  unsigned Opcode = BO->getOpcode();
1587  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1588    return;
1589
1590  // If this is an add tree that is used by a sub instruction, ignore it
1591  // until we process the subtract.
1592  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1593      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1594    return;
1595
1596  ReassociateExpression(BO);
1597}
1598
1599void Reassociate::ReassociateExpression(BinaryOperator *I) {
1600
1601  // First, walk the expression tree, linearizing the tree, collecting the
1602  // operand information.
1603  SmallVector<RepeatedValue, 8> Tree;
1604  MadeChange |= LinearizeExprTree(I, Tree);
1605  SmallVector<ValueEntry, 8> Ops;
1606  Ops.reserve(Tree.size());
1607  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1608    RepeatedValue E = Tree[i];
1609    Ops.append(E.second.getZExtValue(),
1610               ValueEntry(getRank(E.first), E.first));
1611  }
1612
1613  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1614
1615  // Now that we have linearized the tree to a list and have gathered all of
1616  // the operands and their ranks, sort the operands by their rank.  Use a
1617  // stable_sort so that values with equal ranks will have their relative
1618  // positions maintained (and so the compiler is deterministic).  Note that
1619  // this sorts so that the highest ranking values end up at the beginning of
1620  // the vector.
1621  std::stable_sort(Ops.begin(), Ops.end());
1622
1623  // OptimizeExpression - Now that we have the expression tree in a convenient
1624  // sorted form, optimize it globally if possible.
1625  if (Value *V = OptimizeExpression(I, Ops)) {
1626    if (V == I)
1627      // Self-referential expression in unreachable code.
1628      return;
1629    // This expression tree simplified to something that isn't a tree,
1630    // eliminate it.
1631    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1632    I->replaceAllUsesWith(V);
1633    if (Instruction *VI = dyn_cast<Instruction>(V))
1634      VI->setDebugLoc(I->getDebugLoc());
1635    RedoInsts.insert(I);
1636    ++NumAnnihil;
1637    return;
1638  }
1639
1640  // We want to sink immediates as deeply as possible except in the case where
1641  // this is a multiply tree used only by an add, and the immediate is a -1.
1642  // In this case we reassociate to put the negation on the outside so that we
1643  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1644  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1645      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1646      isa<ConstantInt>(Ops.back().Op) &&
1647      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1648    ValueEntry Tmp = Ops.pop_back_val();
1649    Ops.insert(Ops.begin(), Tmp);
1650  }
1651
1652  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1653
1654  if (Ops.size() == 1) {
1655    if (Ops[0].Op == I)
1656      // Self-referential expression in unreachable code.
1657      return;
1658
1659    // This expression tree simplified to something that isn't a tree,
1660    // eliminate it.
1661    I->replaceAllUsesWith(Ops[0].Op);
1662    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1663      OI->setDebugLoc(I->getDebugLoc());
1664    RedoInsts.insert(I);
1665    return;
1666  }
1667
1668  // Now that we ordered and optimized the expressions, splat them back into
1669  // the expression tree, removing any unneeded nodes.
1670  RewriteExprTree(I, Ops);
1671}
1672
1673bool Reassociate::runOnFunction(Function &F) {
1674  // Calculate the rank map for F
1675  BuildRankMap(F);
1676
1677  MadeChange = false;
1678  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1679    // Optimize every instruction in the basic block.
1680    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1681      if (isInstructionTriviallyDead(II)) {
1682        EraseInst(II++);
1683      } else {
1684        OptimizeInst(II);
1685        assert(II->getParent() == BI && "Moved to a different block!");
1686        ++II;
1687      }
1688
1689    // If this produced extra instructions to optimize, handle them now.
1690    while (!RedoInsts.empty()) {
1691      Instruction *I = RedoInsts.pop_back_val();
1692      if (isInstructionTriviallyDead(I))
1693        EraseInst(I);
1694      else
1695        OptimizeInst(I);
1696    }
1697  }
1698
1699  // We are done with the rank map.
1700  RankMap.clear();
1701  ValueRankMap.clear();
1702
1703  return MadeChange;
1704}
1705