Reassociate.cpp revision 5329bb22e9b6374d62919981c1ef8775b42945eb
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumLinear , "Number of insts linearized");
40STATISTIC(NumChanged, "Number of insts reassociated");
41STATISTIC(NumAnnihil, "Number of expr tree annihilated");
42STATISTIC(NumFactor , "Number of multiplies factored");
43
44namespace {
45  struct VISIBILITY_HIDDEN ValueEntry {
46    unsigned Rank;
47    Value *Op;
48    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
49  };
50  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
51    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
52  }
53}
54
55/// PrintOps - Print out the expression identified in the Ops list.
56///
57static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
58  Module *M = I->getParent()->getParent()->getParent();
59  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
60  << *Ops[0].Op->getType();
61  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
62    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
63      << "," << Ops[i].Rank;
64}
65
66namespace {
67  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
68    std::map<BasicBlock*, unsigned> RankMap;
69    std::map<Value*, unsigned> ValueRankMap;
70    bool MadeChange;
71  public:
72    static char ID; // Pass identification, replacement for typeid
73    Reassociate() : FunctionPass((intptr_t)&ID) {}
74
75    bool runOnFunction(Function &F);
76
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      AU.setPreservesCFG();
79    }
80  private:
81    void BuildRankMap(Function &F);
82    unsigned getRank(Value *V);
83    void ReassociateExpression(BinaryOperator *I);
84    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
85                         unsigned Idx = 0);
86    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
87    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
88    void LinearizeExpr(BinaryOperator *I);
89    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
90    void ReassociateBB(BasicBlock *BB);
91
92    void RemoveDeadBinaryOp(Value *V);
93  };
94
95  char Reassociate::ID = 0;
96  RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
97}
98
99// Public interface to the Reassociate pass
100FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
101
102void Reassociate::RemoveDeadBinaryOp(Value *V) {
103  Instruction *Op = dyn_cast<Instruction>(V);
104  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
105    return;
106
107  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
108  RemoveDeadBinaryOp(LHS);
109  RemoveDeadBinaryOp(RHS);
110}
111
112
113static bool isUnmovableInstruction(Instruction *I) {
114  if (I->getOpcode() == Instruction::PHI ||
115      I->getOpcode() == Instruction::Alloca ||
116      I->getOpcode() == Instruction::Load ||
117      I->getOpcode() == Instruction::Malloc ||
118      I->getOpcode() == Instruction::Invoke ||
119      I->getOpcode() == Instruction::Call ||
120      I->getOpcode() == Instruction::UDiv ||
121      I->getOpcode() == Instruction::SDiv ||
122      I->getOpcode() == Instruction::FDiv ||
123      I->getOpcode() == Instruction::URem ||
124      I->getOpcode() == Instruction::SRem ||
125      I->getOpcode() == Instruction::FRem)
126    return true;
127  return false;
128}
129
130void Reassociate::BuildRankMap(Function &F) {
131  unsigned i = 2;
132
133  // Assign distinct ranks to function arguments
134  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
135    ValueRankMap[I] = ++i;
136
137  ReversePostOrderTraversal<Function*> RPOT(&F);
138  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
139         E = RPOT.end(); I != E; ++I) {
140    BasicBlock *BB = *I;
141    unsigned BBRank = RankMap[BB] = ++i << 16;
142
143    // Walk the basic block, adding precomputed ranks for any instructions that
144    // we cannot move.  This ensures that the ranks for these instructions are
145    // all different in the block.
146    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
147      if (isUnmovableInstruction(I))
148        ValueRankMap[I] = ++BBRank;
149  }
150}
151
152unsigned Reassociate::getRank(Value *V) {
153  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
154
155  Instruction *I = dyn_cast<Instruction>(V);
156  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
157
158  unsigned &CachedRank = ValueRankMap[I];
159  if (CachedRank) return CachedRank;    // Rank already known?
160
161  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
162  // we can reassociate expressions for code motion!  Since we do not recurse
163  // for PHI nodes, we cannot have infinite recursion here, because there
164  // cannot be loops in the value graph that do not go through PHI nodes.
165  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
166  for (unsigned i = 0, e = I->getNumOperands();
167       i != e && Rank != MaxRank; ++i)
168    Rank = std::max(Rank, getRank(I->getOperand(i)));
169
170  // If this is a not or neg instruction, do not count it for rank.  This
171  // assures us that X and ~X will have the same rank.
172  if (!I->getType()->isInteger() ||
173      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
174    ++Rank;
175
176  //DOUT << "Calculated Rank[" << V->getName() << "] = "
177  //     << Rank << "\n";
178
179  return CachedRank = Rank;
180}
181
182/// isReassociableOp - Return true if V is an instruction of the specified
183/// opcode and if it only has one use.
184static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
185  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
186      cast<Instruction>(V)->getOpcode() == Opcode)
187    return cast<BinaryOperator>(V);
188  return 0;
189}
190
191/// LowerNegateToMultiply - Replace 0-X with X*-1.
192///
193static Instruction *LowerNegateToMultiply(Instruction *Neg) {
194  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
197  Res->takeName(Neg);
198  Neg->replaceAllUsesWith(Res);
199  Neg->eraseFromParent();
200  return Res;
201}
202
203// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
204// Note that if D is also part of the expression tree that we recurse to
205// linearize it as well.  Besides that case, this does not recurse into A,B, or
206// C.
207void Reassociate::LinearizeExpr(BinaryOperator *I) {
208  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
209  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
210  assert(isReassociableOp(LHS, I->getOpcode()) &&
211         isReassociableOp(RHS, I->getOpcode()) &&
212         "Not an expression that needs linearization?");
213
214  DOUT << "Linear" << *LHS << *RHS << *I;
215
216  // Move the RHS instruction to live immediately before I, avoiding breaking
217  // dominator properties.
218  RHS->moveBefore(I);
219
220  // Move operands around to do the linearization.
221  I->setOperand(1, RHS->getOperand(0));
222  RHS->setOperand(0, LHS);
223  I->setOperand(0, RHS);
224
225  ++NumLinear;
226  MadeChange = true;
227  DOUT << "Linearized: " << *I;
228
229  // If D is part of this expression tree, tail recurse.
230  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
231    LinearizeExpr(I);
232}
233
234
235/// LinearizeExprTree - Given an associative binary expression tree, traverse
236/// all of the uses putting it into canonical form.  This forces a left-linear
237/// form of the the expression (((a+b)+c)+d), and collects information about the
238/// rank of the non-tree operands.
239///
240/// NOTE: These intentionally destroys the expression tree operands (turning
241/// them into undef values) to reduce #uses of the values.  This means that the
242/// caller MUST use something like RewriteExprTree to put the values back in.
243///
244void Reassociate::LinearizeExprTree(BinaryOperator *I,
245                                    std::vector<ValueEntry> &Ops) {
246  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
247  unsigned Opcode = I->getOpcode();
248
249  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
250  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
251  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
252
253  // If this is a multiply expression tree and it contains internal negations,
254  // transform them into multiplies by -1 so they can be reassociated.
255  if (I->getOpcode() == Instruction::Mul) {
256    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
257      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
258      LHSBO = isReassociableOp(LHS, Opcode);
259    }
260    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
261      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
262      RHSBO = isReassociableOp(RHS, Opcode);
263    }
264  }
265
266  if (!LHSBO) {
267    if (!RHSBO) {
268      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
269      // such, just remember these operands and their rank.
270      Ops.push_back(ValueEntry(getRank(LHS), LHS));
271      Ops.push_back(ValueEntry(getRank(RHS), RHS));
272
273      // Clear the leaves out.
274      I->setOperand(0, UndefValue::get(I->getType()));
275      I->setOperand(1, UndefValue::get(I->getType()));
276      return;
277    } else {
278      // Turn X+(Y+Z) -> (Y+Z)+X
279      std::swap(LHSBO, RHSBO);
280      std::swap(LHS, RHS);
281      bool Success = !I->swapOperands();
282      assert(Success && "swapOperands failed");
283      MadeChange = true;
284    }
285  } else if (RHSBO) {
286    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
287    // part of the expression tree.
288    LinearizeExpr(I);
289    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
290    RHS = I->getOperand(1);
291    RHSBO = 0;
292  }
293
294  // Okay, now we know that the LHS is a nested expression and that the RHS is
295  // not.  Perform reassociation.
296  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
297
298  // Move LHS right before I to make sure that the tree expression dominates all
299  // values.
300  LHSBO->moveBefore(I);
301
302  // Linearize the expression tree on the LHS.
303  LinearizeExprTree(LHSBO, Ops);
304
305  // Remember the RHS operand and its rank.
306  Ops.push_back(ValueEntry(getRank(RHS), RHS));
307
308  // Clear the RHS leaf out.
309  I->setOperand(1, UndefValue::get(I->getType()));
310}
311
312// RewriteExprTree - Now that the operands for this expression tree are
313// linearized and optimized, emit them in-order.  This function is written to be
314// tail recursive.
315void Reassociate::RewriteExprTree(BinaryOperator *I,
316                                  std::vector<ValueEntry> &Ops,
317                                  unsigned i) {
318  if (i+2 == Ops.size()) {
319    if (I->getOperand(0) != Ops[i].Op ||
320        I->getOperand(1) != Ops[i+1].Op) {
321      Value *OldLHS = I->getOperand(0);
322      DOUT << "RA: " << *I;
323      I->setOperand(0, Ops[i].Op);
324      I->setOperand(1, Ops[i+1].Op);
325      DOUT << "TO: " << *I;
326      MadeChange = true;
327      ++NumChanged;
328
329      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
330      // delete the extra, now dead, nodes.
331      RemoveDeadBinaryOp(OldLHS);
332    }
333    return;
334  }
335  assert(i+2 < Ops.size() && "Ops index out of range!");
336
337  if (I->getOperand(1) != Ops[i].Op) {
338    DOUT << "RA: " << *I;
339    I->setOperand(1, Ops[i].Op);
340    DOUT << "TO: " << *I;
341    MadeChange = true;
342    ++NumChanged;
343  }
344
345  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
346  assert(LHS->getOpcode() == I->getOpcode() &&
347         "Improper expression tree!");
348
349  // Compactify the tree instructions together with each other to guarantee
350  // that the expression tree is dominated by all of Ops.
351  LHS->moveBefore(I);
352  RewriteExprTree(LHS, Ops, i+1);
353}
354
355
356
357// NegateValue - Insert instructions before the instruction pointed to by BI,
358// that computes the negative version of the value specified.  The negative
359// version of the value is returned, and BI is left pointing at the instruction
360// that should be processed next by the reassociation pass.
361//
362static Value *NegateValue(Value *V, Instruction *BI) {
363  // We are trying to expose opportunity for reassociation.  One of the things
364  // that we want to do to achieve this is to push a negation as deep into an
365  // expression chain as possible, to expose the add instructions.  In practice,
366  // this means that we turn this:
367  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
368  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
369  // the constants.  We assume that instcombine will clean up the mess later if
370  // we introduce tons of unnecessary negation instructions...
371  //
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
374      // Push the negates through the add.
375      I->setOperand(0, NegateValue(I->getOperand(0), BI));
376      I->setOperand(1, NegateValue(I->getOperand(1), BI));
377
378      // We must move the add instruction here, because the neg instructions do
379      // not dominate the old add instruction in general.  By moving it, we are
380      // assured that the neg instructions we just inserted dominate the
381      // instruction we are about to insert after them.
382      //
383      I->moveBefore(BI);
384      I->setName(I->getName()+".neg");
385      return I;
386    }
387
388  // Insert a 'neg' instruction that subtracts the value from zero to get the
389  // negation.
390  //
391  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
392}
393
394/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
395/// X-Y into (X + -Y).
396static bool ShouldBreakUpSubtract(Instruction *Sub) {
397  // If this is a negation, we can't split it up!
398  if (BinaryOperator::isNeg(Sub))
399    return false;
400
401  // Don't bother to break this up unless either the LHS is an associable add or
402  // subtract or if this is only used by one.
403  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
404      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
405    return true;
406  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
407      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
408    return true;
409  if (Sub->hasOneUse() &&
410      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
411       isReassociableOp(Sub->use_back(), Instruction::Sub)))
412    return true;
413
414  return false;
415}
416
417/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
418/// only used by an add, transform this into (X+(0-Y)) to promote better
419/// reassociation.
420static Instruction *BreakUpSubtract(Instruction *Sub) {
421  // Convert a subtract into an add and a neg instruction... so that sub
422  // instructions can be commuted with other add instructions...
423  //
424  // Calculate the negative value of Operand 1 of the sub instruction...
425  // and set it as the RHS of the add instruction we just made...
426  //
427  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
428  Instruction *New =
429    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
430  New->takeName(Sub);
431
432  // Everyone now refers to the add instruction.
433  Sub->replaceAllUsesWith(New);
434  Sub->eraseFromParent();
435
436  DOUT << "Negated: " << *New;
437  return New;
438}
439
440/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
441/// by one, change this into a multiply by a constant to assist with further
442/// reassociation.
443static Instruction *ConvertShiftToMul(Instruction *Shl) {
444  // If an operand of this shift is a reassociable multiply, or if the shift
445  // is used by a reassociable multiply or add, turn into a multiply.
446  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
447      (Shl->hasOneUse() &&
448       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
449        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
450    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
451    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
452
453    Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
454                                                 "", Shl);
455    Mul->takeName(Shl);
456    Shl->replaceAllUsesWith(Mul);
457    Shl->eraseFromParent();
458    return Mul;
459  }
460  return 0;
461}
462
463// Scan backwards and forwards among values with the same rank as element i to
464// see if X exists.  If X does not exist, return i.
465static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
466                                  Value *X) {
467  unsigned XRank = Ops[i].Rank;
468  unsigned e = Ops.size();
469  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
470    if (Ops[j].Op == X)
471      return j;
472  // Scan backwards
473  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
474    if (Ops[j].Op == X)
475      return j;
476  return i;
477}
478
479/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
480/// and returning the result.  Insert the tree before I.
481static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
482  if (Ops.size() == 1) return Ops.back();
483
484  Value *V1 = Ops.back();
485  Ops.pop_back();
486  Value *V2 = EmitAddTreeOfValues(I, Ops);
487  return BinaryOperator::createAdd(V2, V1, "tmp", I);
488}
489
490/// RemoveFactorFromExpression - If V is an expression tree that is a
491/// multiplication sequence, and if this sequence contains a multiply by Factor,
492/// remove Factor from the tree and return the new tree.
493Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
494  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
495  if (!BO) return 0;
496
497  std::vector<ValueEntry> Factors;
498  LinearizeExprTree(BO, Factors);
499
500  bool FoundFactor = false;
501  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
502    if (Factors[i].Op == Factor) {
503      FoundFactor = true;
504      Factors.erase(Factors.begin()+i);
505      break;
506    }
507  if (!FoundFactor) {
508    // Make sure to restore the operands to the expression tree.
509    RewriteExprTree(BO, Factors);
510    return 0;
511  }
512
513  if (Factors.size() == 1) return Factors[0].Op;
514
515  RewriteExprTree(BO, Factors);
516  return BO;
517}
518
519/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
520/// add its operands as factors, otherwise add V to the list of factors.
521static void FindSingleUseMultiplyFactors(Value *V,
522                                         std::vector<Value*> &Factors) {
523  BinaryOperator *BO;
524  if ((!V->hasOneUse() && !V->use_empty()) ||
525      !(BO = dyn_cast<BinaryOperator>(V)) ||
526      BO->getOpcode() != Instruction::Mul) {
527    Factors.push_back(V);
528    return;
529  }
530
531  // Otherwise, add the LHS and RHS to the list of factors.
532  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
533  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
534}
535
536
537
538Value *Reassociate::OptimizeExpression(BinaryOperator *I,
539                                       std::vector<ValueEntry> &Ops) {
540  // Now that we have the linearized expression tree, try to optimize it.
541  // Start by folding any constants that we found.
542  bool IterateOptimization = false;
543  if (Ops.size() == 1) return Ops[0].Op;
544
545  unsigned Opcode = I->getOpcode();
546
547  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
548    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
549      Ops.pop_back();
550      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
551      return OptimizeExpression(I, Ops);
552    }
553
554  // Check for destructive annihilation due to a constant being used.
555  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
556    switch (Opcode) {
557    default: break;
558    case Instruction::And:
559      if (CstVal->isZero()) {                // ... & 0 -> 0
560        ++NumAnnihil;
561        return CstVal;
562      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
563        Ops.pop_back();
564      }
565      break;
566    case Instruction::Mul:
567      if (CstVal->isZero()) {                // ... * 0 -> 0
568        ++NumAnnihil;
569        return CstVal;
570      } else if (cast<ConstantInt>(CstVal)->isOne()) {
571        Ops.pop_back();                      // ... * 1 -> ...
572      }
573      break;
574    case Instruction::Or:
575      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
576        ++NumAnnihil;
577        return CstVal;
578      }
579      // FALLTHROUGH!
580    case Instruction::Add:
581    case Instruction::Xor:
582      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
583        Ops.pop_back();
584      break;
585    }
586  if (Ops.size() == 1) return Ops[0].Op;
587
588  // Handle destructive annihilation do to identities between elements in the
589  // argument list here.
590  switch (Opcode) {
591  default: break;
592  case Instruction::And:
593  case Instruction::Or:
594  case Instruction::Xor:
595    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
596    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
597    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
598      // First, check for X and ~X in the operand list.
599      assert(i < Ops.size());
600      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
601        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
602        unsigned FoundX = FindInOperandList(Ops, i, X);
603        if (FoundX != i) {
604          if (Opcode == Instruction::And) {   // ...&X&~X = 0
605            ++NumAnnihil;
606            return Constant::getNullValue(X->getType());
607          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
608            ++NumAnnihil;
609            return ConstantInt::getAllOnesValue(X->getType());
610          }
611        }
612      }
613
614      // Next, check for duplicate pairs of values, which we assume are next to
615      // each other, due to our sorting criteria.
616      assert(i < Ops.size());
617      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
618        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
619          // Drop duplicate values.
620          Ops.erase(Ops.begin()+i);
621          --i; --e;
622          IterateOptimization = true;
623          ++NumAnnihil;
624        } else {
625          assert(Opcode == Instruction::Xor);
626          if (e == 2) {
627            ++NumAnnihil;
628            return Constant::getNullValue(Ops[0].Op->getType());
629          }
630          // ... X^X -> ...
631          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
632          i -= 1; e -= 2;
633          IterateOptimization = true;
634          ++NumAnnihil;
635        }
636      }
637    }
638    break;
639
640  case Instruction::Add:
641    // Scan the operand lists looking for X and -X pairs.  If we find any, we
642    // can simplify the expression. X+-X == 0.
643    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
644      assert(i < Ops.size());
645      // Check for X and -X in the operand list.
646      if (BinaryOperator::isNeg(Ops[i].Op)) {
647        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
648        unsigned FoundX = FindInOperandList(Ops, i, X);
649        if (FoundX != i) {
650          // Remove X and -X from the operand list.
651          if (Ops.size() == 2) {
652            ++NumAnnihil;
653            return Constant::getNullValue(X->getType());
654          } else {
655            Ops.erase(Ops.begin()+i);
656            if (i < FoundX)
657              --FoundX;
658            else
659              --i;   // Need to back up an extra one.
660            Ops.erase(Ops.begin()+FoundX);
661            IterateOptimization = true;
662            ++NumAnnihil;
663            --i;     // Revisit element.
664            e -= 2;  // Removed two elements.
665          }
666        }
667      }
668    }
669
670
671    // Scan the operand list, checking to see if there are any common factors
672    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
673    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
674    // To efficiently find this, we count the number of times a factor occurs
675    // for any ADD operands that are MULs.
676    std::map<Value*, unsigned> FactorOccurrences;
677    unsigned MaxOcc = 0;
678    Value *MaxOccVal = 0;
679    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
680      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
681        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
682          // Compute all of the factors of this added value.
683          std::vector<Value*> Factors;
684          FindSingleUseMultiplyFactors(BOp, Factors);
685          assert(Factors.size() > 1 && "Bad linearize!");
686
687          // Add one to FactorOccurrences for each unique factor in this op.
688          if (Factors.size() == 2) {
689            unsigned Occ = ++FactorOccurrences[Factors[0]];
690            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
691            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
692              Occ = ++FactorOccurrences[Factors[1]];
693              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
694            }
695          } else {
696            std::set<Value*> Duplicates;
697            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
698              if (Duplicates.insert(Factors[i]).second) {
699                unsigned Occ = ++FactorOccurrences[Factors[i]];
700                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
701              }
702            }
703          }
704        }
705      }
706    }
707
708    // If any factor occurred more than one time, we can pull it out.
709    if (MaxOcc > 1) {
710      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
711
712      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
713      // this, we could otherwise run into situations where removing a factor
714      // from an expression will drop a use of maxocc, and this can cause
715      // RemoveFactorFromExpression on successive values to behave differently.
716      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
717      std::vector<Value*> NewMulOps;
718      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
719        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
720          NewMulOps.push_back(V);
721          Ops.erase(Ops.begin()+i);
722          --i; --e;
723        }
724      }
725
726      // No need for extra uses anymore.
727      delete DummyInst;
728
729      unsigned NumAddedValues = NewMulOps.size();
730      Value *V = EmitAddTreeOfValues(I, NewMulOps);
731      Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
732
733      // Now that we have inserted V and its sole use, optimize it. This allows
734      // us to handle cases that require multiple factoring steps, such as this:
735      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
736      if (NumAddedValues > 1)
737        ReassociateExpression(cast<BinaryOperator>(V));
738
739      ++NumFactor;
740
741      if (Ops.empty())
742        return V2;
743
744      // Add the new value to the list of things being added.
745      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
746
747      // Rewrite the tree so that there is now a use of V.
748      RewriteExprTree(I, Ops);
749      return OptimizeExpression(I, Ops);
750    }
751    break;
752  //case Instruction::Mul:
753  }
754
755  if (IterateOptimization)
756    return OptimizeExpression(I, Ops);
757  return 0;
758}
759
760
761/// ReassociateBB - Inspect all of the instructions in this basic block,
762/// reassociating them as we go.
763void Reassociate::ReassociateBB(BasicBlock *BB) {
764  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
765    Instruction *BI = BBI++;
766    if (BI->getOpcode() == Instruction::Shl &&
767        isa<ConstantInt>(BI->getOperand(1)))
768      if (Instruction *NI = ConvertShiftToMul(BI)) {
769        MadeChange = true;
770        BI = NI;
771      }
772
773    // Reject cases where it is pointless to do this.
774    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
775        isa<VectorType>(BI->getType()))
776      continue;  // Floating point ops are not associative.
777
778    // If this is a subtract instruction which is not already in negate form,
779    // see if we can convert it to X+-Y.
780    if (BI->getOpcode() == Instruction::Sub) {
781      if (ShouldBreakUpSubtract(BI)) {
782        if (Instruction *NI = BreakUpSubtract(BI)) {
783          MadeChange = true;
784          BI = NI;
785        }
786      } else if (BinaryOperator::isNeg(BI)) {
787        // Otherwise, this is a negation.  See if the operand is a multiply tree
788        // and if this is not an inner node of a multiply tree.
789        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
790            (!BI->hasOneUse() ||
791             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
792          BI = LowerNegateToMultiply(BI);
793          MadeChange = true;
794        }
795      }
796    }
797
798    // If this instruction is a commutative binary operator, process it.
799    if (!BI->isAssociative()) continue;
800    BinaryOperator *I = cast<BinaryOperator>(BI);
801
802    // If this is an interior node of a reassociable tree, ignore it until we
803    // get to the root of the tree, to avoid N^2 analysis.
804    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
805      continue;
806
807    // If this is an add tree that is used by a sub instruction, ignore it
808    // until we process the subtract.
809    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
810        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
811      continue;
812
813    ReassociateExpression(I);
814  }
815}
816
817void Reassociate::ReassociateExpression(BinaryOperator *I) {
818
819  // First, walk the expression tree, linearizing the tree, collecting
820  std::vector<ValueEntry> Ops;
821  LinearizeExprTree(I, Ops);
822
823  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
824
825  // Now that we have linearized the tree to a list and have gathered all of
826  // the operands and their ranks, sort the operands by their rank.  Use a
827  // stable_sort so that values with equal ranks will have their relative
828  // positions maintained (and so the compiler is deterministic).  Note that
829  // this sorts so that the highest ranking values end up at the beginning of
830  // the vector.
831  std::stable_sort(Ops.begin(), Ops.end());
832
833  // OptimizeExpression - Now that we have the expression tree in a convenient
834  // sorted form, optimize it globally if possible.
835  if (Value *V = OptimizeExpression(I, Ops)) {
836    // This expression tree simplified to something that isn't a tree,
837    // eliminate it.
838    DOUT << "Reassoc to scalar: " << *V << "\n";
839    I->replaceAllUsesWith(V);
840    RemoveDeadBinaryOp(I);
841    return;
842  }
843
844  // We want to sink immediates as deeply as possible except in the case where
845  // this is a multiply tree used only by an add, and the immediate is a -1.
846  // In this case we reassociate to put the negation on the outside so that we
847  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
848  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
849      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
850      isa<ConstantInt>(Ops.back().Op) &&
851      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
852    Ops.insert(Ops.begin(), Ops.back());
853    Ops.pop_back();
854  }
855
856  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
857
858  if (Ops.size() == 1) {
859    // This expression tree simplified to something that isn't a tree,
860    // eliminate it.
861    I->replaceAllUsesWith(Ops[0].Op);
862    RemoveDeadBinaryOp(I);
863  } else {
864    // Now that we ordered and optimized the expressions, splat them back into
865    // the expression tree, removing any unneeded nodes.
866    RewriteExprTree(I, Ops);
867  }
868}
869
870
871bool Reassociate::runOnFunction(Function &F) {
872  // Recalculate the rank map for F
873  BuildRankMap(F);
874
875  MadeChange = false;
876  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
877    ReassociateBB(FI);
878
879  // We are done with the rank map...
880  RankMap.clear();
881  ValueRankMap.clear();
882  return MadeChange;
883}
884
885