Reassociate.cpp revision 59500c8f9a76b3386329b6f837255c16f4e8b61b
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
44
45namespace {
46  struct VISIBILITY_HIDDEN ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56#ifndef DEBUG
57/// PrintOps - Print out the expression identified in the Ops list.
58///
59static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
60  Module *M = I->getParent()->getParent()->getParent();
61  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
62       << *Ops[0].Op->getType();
63  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
64    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
65    cerr << "," << Ops[i].Rank;
66  }
67}
68#endif
69
70namespace {
71  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
72    std::map<BasicBlock*, unsigned> RankMap;
73    std::map<Value*, unsigned> ValueRankMap;
74    bool MadeChange;
75  public:
76    static char ID; // Pass identification, replacement for typeid
77    Reassociate() : FunctionPass(&ID) {}
78
79    bool runOnFunction(Function &F);
80
81    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82      AU.setPreservesCFG();
83    }
84  private:
85    void BuildRankMap(Function &F);
86    unsigned getRank(Value *V);
87    void ReassociateExpression(BinaryOperator *I);
88    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
89                         unsigned Idx = 0);
90    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
91    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92    void LinearizeExpr(BinaryOperator *I);
93    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
94    void ReassociateBB(BasicBlock *BB);
95
96    void RemoveDeadBinaryOp(Value *V);
97  };
98}
99
100char Reassociate::ID = 0;
101static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
102
103// Public interface to the Reassociate pass
104FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
105
106void Reassociate::RemoveDeadBinaryOp(Value *V) {
107  Instruction *Op = dyn_cast<Instruction>(V);
108  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
109    return;
110
111  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
112  RemoveDeadBinaryOp(LHS);
113  RemoveDeadBinaryOp(RHS);
114}
115
116
117static bool isUnmovableInstruction(Instruction *I) {
118  if (I->getOpcode() == Instruction::PHI ||
119      I->getOpcode() == Instruction::Alloca ||
120      I->getOpcode() == Instruction::Load ||
121      I->getOpcode() == Instruction::Malloc ||
122      I->getOpcode() == Instruction::Invoke ||
123      I->getOpcode() == Instruction::Call ||
124      I->getOpcode() == Instruction::UDiv ||
125      I->getOpcode() == Instruction::SDiv ||
126      I->getOpcode() == Instruction::FDiv ||
127      I->getOpcode() == Instruction::URem ||
128      I->getOpcode() == Instruction::SRem ||
129      I->getOpcode() == Instruction::FRem)
130    return true;
131  return false;
132}
133
134void Reassociate::BuildRankMap(Function &F) {
135  unsigned i = 2;
136
137  // Assign distinct ranks to function arguments
138  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
139    ValueRankMap[I] = ++i;
140
141  ReversePostOrderTraversal<Function*> RPOT(&F);
142  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
143         E = RPOT.end(); I != E; ++I) {
144    BasicBlock *BB = *I;
145    unsigned BBRank = RankMap[BB] = ++i << 16;
146
147    // Walk the basic block, adding precomputed ranks for any instructions that
148    // we cannot move.  This ensures that the ranks for these instructions are
149    // all different in the block.
150    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
151      if (isUnmovableInstruction(I))
152        ValueRankMap[I] = ++BBRank;
153  }
154}
155
156unsigned Reassociate::getRank(Value *V) {
157  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
158
159  Instruction *I = dyn_cast<Instruction>(V);
160  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
161
162  unsigned &CachedRank = ValueRankMap[I];
163  if (CachedRank) return CachedRank;    // Rank already known?
164
165  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
166  // we can reassociate expressions for code motion!  Since we do not recurse
167  // for PHI nodes, we cannot have infinite recursion here, because there
168  // cannot be loops in the value graph that do not go through PHI nodes.
169  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
170  for (unsigned i = 0, e = I->getNumOperands();
171       i != e && Rank != MaxRank; ++i)
172    Rank = std::max(Rank, getRank(I->getOperand(i)));
173
174  // If this is a not or neg instruction, do not count it for rank.  This
175  // assures us that X and ~X will have the same rank.
176  if (!I->getType()->isInteger() ||
177      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
178    ++Rank;
179
180  //DOUT << "Calculated Rank[" << V->getName() << "] = "
181  //     << Rank << "\n";
182
183  return CachedRank = Rank;
184}
185
186/// isReassociableOp - Return true if V is an instruction of the specified
187/// opcode and if it only has one use.
188static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
189  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
190      cast<Instruction>(V)->getOpcode() == Opcode)
191    return cast<BinaryOperator>(V);
192  return 0;
193}
194
195/// LowerNegateToMultiply - Replace 0-X with X*-1.
196///
197static Instruction *LowerNegateToMultiply(Instruction *Neg) {
198  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
199
200  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
201  Res->takeName(Neg);
202  Neg->replaceAllUsesWith(Res);
203  Neg->eraseFromParent();
204  return Res;
205}
206
207// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
208// Note that if D is also part of the expression tree that we recurse to
209// linearize it as well.  Besides that case, this does not recurse into A,B, or
210// C.
211void Reassociate::LinearizeExpr(BinaryOperator *I) {
212  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
213  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
214  assert(isReassociableOp(LHS, I->getOpcode()) &&
215         isReassociableOp(RHS, I->getOpcode()) &&
216         "Not an expression that needs linearization?");
217
218  DOUT << "Linear" << *LHS << *RHS << *I;
219
220  // Move the RHS instruction to live immediately before I, avoiding breaking
221  // dominator properties.
222  RHS->moveBefore(I);
223
224  // Move operands around to do the linearization.
225  I->setOperand(1, RHS->getOperand(0));
226  RHS->setOperand(0, LHS);
227  I->setOperand(0, RHS);
228
229  ++NumLinear;
230  MadeChange = true;
231  DOUT << "Linearized: " << *I;
232
233  // If D is part of this expression tree, tail recurse.
234  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
235    LinearizeExpr(I);
236}
237
238
239/// LinearizeExprTree - Given an associative binary expression tree, traverse
240/// all of the uses putting it into canonical form.  This forces a left-linear
241/// form of the the expression (((a+b)+c)+d), and collects information about the
242/// rank of the non-tree operands.
243///
244/// NOTE: These intentionally destroys the expression tree operands (turning
245/// them into undef values) to reduce #uses of the values.  This means that the
246/// caller MUST use something like RewriteExprTree to put the values back in.
247///
248void Reassociate::LinearizeExprTree(BinaryOperator *I,
249                                    std::vector<ValueEntry> &Ops) {
250  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
251  unsigned Opcode = I->getOpcode();
252
253  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
254  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
255  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
256
257  // If this is a multiply expression tree and it contains internal negations,
258  // transform them into multiplies by -1 so they can be reassociated.
259  if (I->getOpcode() == Instruction::Mul) {
260    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
261      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
262      LHSBO = isReassociableOp(LHS, Opcode);
263    }
264    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
265      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
266      RHSBO = isReassociableOp(RHS, Opcode);
267    }
268  }
269
270  if (!LHSBO) {
271    if (!RHSBO) {
272      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
273      // such, just remember these operands and their rank.
274      Ops.push_back(ValueEntry(getRank(LHS), LHS));
275      Ops.push_back(ValueEntry(getRank(RHS), RHS));
276
277      // Clear the leaves out.
278      I->setOperand(0, UndefValue::get(I->getType()));
279      I->setOperand(1, UndefValue::get(I->getType()));
280      return;
281    } else {
282      // Turn X+(Y+Z) -> (Y+Z)+X
283      std::swap(LHSBO, RHSBO);
284      std::swap(LHS, RHS);
285      bool Success = !I->swapOperands();
286      assert(Success && "swapOperands failed");
287      Success = false;
288      MadeChange = true;
289    }
290  } else if (RHSBO) {
291    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
292    // part of the expression tree.
293    LinearizeExpr(I);
294    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
295    RHS = I->getOperand(1);
296    RHSBO = 0;
297  }
298
299  // Okay, now we know that the LHS is a nested expression and that the RHS is
300  // not.  Perform reassociation.
301  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
302
303  // Move LHS right before I to make sure that the tree expression dominates all
304  // values.
305  LHSBO->moveBefore(I);
306
307  // Linearize the expression tree on the LHS.
308  LinearizeExprTree(LHSBO, Ops);
309
310  // Remember the RHS operand and its rank.
311  Ops.push_back(ValueEntry(getRank(RHS), RHS));
312
313  // Clear the RHS leaf out.
314  I->setOperand(1, UndefValue::get(I->getType()));
315}
316
317// RewriteExprTree - Now that the operands for this expression tree are
318// linearized and optimized, emit them in-order.  This function is written to be
319// tail recursive.
320void Reassociate::RewriteExprTree(BinaryOperator *I,
321                                  std::vector<ValueEntry> &Ops,
322                                  unsigned i) {
323  if (i+2 == Ops.size()) {
324    if (I->getOperand(0) != Ops[i].Op ||
325        I->getOperand(1) != Ops[i+1].Op) {
326      Value *OldLHS = I->getOperand(0);
327      DOUT << "RA: " << *I;
328      I->setOperand(0, Ops[i].Op);
329      I->setOperand(1, Ops[i+1].Op);
330      DOUT << "TO: " << *I;
331      MadeChange = true;
332      ++NumChanged;
333
334      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
335      // delete the extra, now dead, nodes.
336      RemoveDeadBinaryOp(OldLHS);
337    }
338    return;
339  }
340  assert(i+2 < Ops.size() && "Ops index out of range!");
341
342  if (I->getOperand(1) != Ops[i].Op) {
343    DOUT << "RA: " << *I;
344    I->setOperand(1, Ops[i].Op);
345    DOUT << "TO: " << *I;
346    MadeChange = true;
347    ++NumChanged;
348  }
349
350  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
351  assert(LHS->getOpcode() == I->getOpcode() &&
352         "Improper expression tree!");
353
354  // Compactify the tree instructions together with each other to guarantee
355  // that the expression tree is dominated by all of Ops.
356  LHS->moveBefore(I);
357  RewriteExprTree(LHS, Ops, i+1);
358}
359
360
361
362// NegateValue - Insert instructions before the instruction pointed to by BI,
363// that computes the negative version of the value specified.  The negative
364// version of the value is returned, and BI is left pointing at the instruction
365// that should be processed next by the reassociation pass.
366//
367static Value *NegateValue(Value *V, Instruction *BI) {
368  // We are trying to expose opportunity for reassociation.  One of the things
369  // that we want to do to achieve this is to push a negation as deep into an
370  // expression chain as possible, to expose the add instructions.  In practice,
371  // this means that we turn this:
372  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
373  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
374  // the constants.  We assume that instcombine will clean up the mess later if
375  // we introduce tons of unnecessary negation instructions...
376  //
377  if (Instruction *I = dyn_cast<Instruction>(V))
378    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
379      // Push the negates through the add.
380      I->setOperand(0, NegateValue(I->getOperand(0), BI));
381      I->setOperand(1, NegateValue(I->getOperand(1), BI));
382
383      // We must move the add instruction here, because the neg instructions do
384      // not dominate the old add instruction in general.  By moving it, we are
385      // assured that the neg instructions we just inserted dominate the
386      // instruction we are about to insert after them.
387      //
388      I->moveBefore(BI);
389      I->setName(I->getName()+".neg");
390      return I;
391    }
392
393  // Insert a 'neg' instruction that subtracts the value from zero to get the
394  // negation.
395  //
396  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
397}
398
399/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
400/// X-Y into (X + -Y).
401static bool ShouldBreakUpSubtract(Instruction *Sub) {
402  // If this is a negation, we can't split it up!
403  if (BinaryOperator::isNeg(Sub))
404    return false;
405
406  // Don't bother to break this up unless either the LHS is an associable add or
407  // subtract or if this is only used by one.
408  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
409      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
410    return true;
411  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
412      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
413    return true;
414  if (Sub->hasOneUse() &&
415      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
416       isReassociableOp(Sub->use_back(), Instruction::Sub)))
417    return true;
418
419  return false;
420}
421
422/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
423/// only used by an add, transform this into (X+(0-Y)) to promote better
424/// reassociation.
425static Instruction *BreakUpSubtract(Instruction *Sub) {
426  // Convert a subtract into an add and a neg instruction... so that sub
427  // instructions can be commuted with other add instructions...
428  //
429  // Calculate the negative value of Operand 1 of the sub instruction...
430  // and set it as the RHS of the add instruction we just made...
431  //
432  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
433  Instruction *New =
434    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
435  New->takeName(Sub);
436
437  // Everyone now refers to the add instruction.
438  Sub->replaceAllUsesWith(New);
439  Sub->eraseFromParent();
440
441  DOUT << "Negated: " << *New;
442  return New;
443}
444
445/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
446/// by one, change this into a multiply by a constant to assist with further
447/// reassociation.
448static Instruction *ConvertShiftToMul(Instruction *Shl) {
449  // If an operand of this shift is a reassociable multiply, or if the shift
450  // is used by a reassociable multiply or add, turn into a multiply.
451  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
452      (Shl->hasOneUse() &&
453       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
454        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
455    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
456    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
457
458    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
459                                                 "", Shl);
460    Mul->takeName(Shl);
461    Shl->replaceAllUsesWith(Mul);
462    Shl->eraseFromParent();
463    return Mul;
464  }
465  return 0;
466}
467
468// Scan backwards and forwards among values with the same rank as element i to
469// see if X exists.  If X does not exist, return i.
470static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
471                                  Value *X) {
472  unsigned XRank = Ops[i].Rank;
473  unsigned e = Ops.size();
474  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
475    if (Ops[j].Op == X)
476      return j;
477  // Scan backwards
478  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
479    if (Ops[j].Op == X)
480      return j;
481  return i;
482}
483
484/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
485/// and returning the result.  Insert the tree before I.
486static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
487  if (Ops.size() == 1) return Ops.back();
488
489  Value *V1 = Ops.back();
490  Ops.pop_back();
491  Value *V2 = EmitAddTreeOfValues(I, Ops);
492  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
493}
494
495/// RemoveFactorFromExpression - If V is an expression tree that is a
496/// multiplication sequence, and if this sequence contains a multiply by Factor,
497/// remove Factor from the tree and return the new tree.
498Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
499  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
500  if (!BO) return 0;
501
502  std::vector<ValueEntry> Factors;
503  LinearizeExprTree(BO, Factors);
504
505  bool FoundFactor = false;
506  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
507    if (Factors[i].Op == Factor) {
508      FoundFactor = true;
509      Factors.erase(Factors.begin()+i);
510      break;
511    }
512  if (!FoundFactor) {
513    // Make sure to restore the operands to the expression tree.
514    RewriteExprTree(BO, Factors);
515    return 0;
516  }
517
518  if (Factors.size() == 1) return Factors[0].Op;
519
520  RewriteExprTree(BO, Factors);
521  return BO;
522}
523
524/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
525/// add its operands as factors, otherwise add V to the list of factors.
526static void FindSingleUseMultiplyFactors(Value *V,
527                                         std::vector<Value*> &Factors) {
528  BinaryOperator *BO;
529  if ((!V->hasOneUse() && !V->use_empty()) ||
530      !(BO = dyn_cast<BinaryOperator>(V)) ||
531      BO->getOpcode() != Instruction::Mul) {
532    Factors.push_back(V);
533    return;
534  }
535
536  // Otherwise, add the LHS and RHS to the list of factors.
537  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
538  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
539}
540
541
542
543Value *Reassociate::OptimizeExpression(BinaryOperator *I,
544                                       std::vector<ValueEntry> &Ops) {
545  // Now that we have the linearized expression tree, try to optimize it.
546  // Start by folding any constants that we found.
547  bool IterateOptimization = false;
548  if (Ops.size() == 1) return Ops[0].Op;
549
550  unsigned Opcode = I->getOpcode();
551
552  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
553    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
554      Ops.pop_back();
555      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
556      return OptimizeExpression(I, Ops);
557    }
558
559  // Check for destructive annihilation due to a constant being used.
560  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
561    switch (Opcode) {
562    default: break;
563    case Instruction::And:
564      if (CstVal->isZero()) {                // ... & 0 -> 0
565        ++NumAnnihil;
566        return CstVal;
567      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
568        Ops.pop_back();
569      }
570      break;
571    case Instruction::Mul:
572      if (CstVal->isZero()) {                // ... * 0 -> 0
573        ++NumAnnihil;
574        return CstVal;
575      } else if (cast<ConstantInt>(CstVal)->isOne()) {
576        Ops.pop_back();                      // ... * 1 -> ...
577      }
578      break;
579    case Instruction::Or:
580      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
581        ++NumAnnihil;
582        return CstVal;
583      }
584      // FALLTHROUGH!
585    case Instruction::Add:
586    case Instruction::Xor:
587      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
588        Ops.pop_back();
589      break;
590    }
591  if (Ops.size() == 1) return Ops[0].Op;
592
593  // Handle destructive annihilation do to identities between elements in the
594  // argument list here.
595  switch (Opcode) {
596  default: break;
597  case Instruction::And:
598  case Instruction::Or:
599  case Instruction::Xor:
600    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
601    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
602    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
603      // First, check for X and ~X in the operand list.
604      assert(i < Ops.size());
605      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
606        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
607        unsigned FoundX = FindInOperandList(Ops, i, X);
608        if (FoundX != i) {
609          if (Opcode == Instruction::And) {   // ...&X&~X = 0
610            ++NumAnnihil;
611            return Constant::getNullValue(X->getType());
612          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
613            ++NumAnnihil;
614            return ConstantInt::getAllOnesValue(X->getType());
615          }
616        }
617      }
618
619      // Next, check for duplicate pairs of values, which we assume are next to
620      // each other, due to our sorting criteria.
621      assert(i < Ops.size());
622      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
623        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
624          // Drop duplicate values.
625          Ops.erase(Ops.begin()+i);
626          --i; --e;
627          IterateOptimization = true;
628          ++NumAnnihil;
629        } else {
630          assert(Opcode == Instruction::Xor);
631          if (e == 2) {
632            ++NumAnnihil;
633            return Constant::getNullValue(Ops[0].Op->getType());
634          }
635          // ... X^X -> ...
636          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
637          i -= 1; e -= 2;
638          IterateOptimization = true;
639          ++NumAnnihil;
640        }
641      }
642    }
643    break;
644
645  case Instruction::Add:
646    // Scan the operand lists looking for X and -X pairs.  If we find any, we
647    // can simplify the expression. X+-X == 0.
648    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
649      assert(i < Ops.size());
650      // Check for X and -X in the operand list.
651      if (BinaryOperator::isNeg(Ops[i].Op)) {
652        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
653        unsigned FoundX = FindInOperandList(Ops, i, X);
654        if (FoundX != i) {
655          // Remove X and -X from the operand list.
656          if (Ops.size() == 2) {
657            ++NumAnnihil;
658            return Constant::getNullValue(X->getType());
659          } else {
660            Ops.erase(Ops.begin()+i);
661            if (i < FoundX)
662              --FoundX;
663            else
664              --i;   // Need to back up an extra one.
665            Ops.erase(Ops.begin()+FoundX);
666            IterateOptimization = true;
667            ++NumAnnihil;
668            --i;     // Revisit element.
669            e -= 2;  // Removed two elements.
670          }
671        }
672      }
673    }
674
675
676    // Scan the operand list, checking to see if there are any common factors
677    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
678    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
679    // To efficiently find this, we count the number of times a factor occurs
680    // for any ADD operands that are MULs.
681    std::map<Value*, unsigned> FactorOccurrences;
682    unsigned MaxOcc = 0;
683    Value *MaxOccVal = 0;
684    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
685      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
686        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
687          // Compute all of the factors of this added value.
688          std::vector<Value*> Factors;
689          FindSingleUseMultiplyFactors(BOp, Factors);
690          assert(Factors.size() > 1 && "Bad linearize!");
691
692          // Add one to FactorOccurrences for each unique factor in this op.
693          if (Factors.size() == 2) {
694            unsigned Occ = ++FactorOccurrences[Factors[0]];
695            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
696            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
697              Occ = ++FactorOccurrences[Factors[1]];
698              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
699            }
700          } else {
701            std::set<Value*> Duplicates;
702            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
703              if (Duplicates.insert(Factors[i]).second) {
704                unsigned Occ = ++FactorOccurrences[Factors[i]];
705                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
706              }
707            }
708          }
709        }
710      }
711    }
712
713    // If any factor occurred more than one time, we can pull it out.
714    if (MaxOcc > 1) {
715      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
716
717      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
718      // this, we could otherwise run into situations where removing a factor
719      // from an expression will drop a use of maxocc, and this can cause
720      // RemoveFactorFromExpression on successive values to behave differently.
721      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
722      std::vector<Value*> NewMulOps;
723      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
724        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
725          NewMulOps.push_back(V);
726          Ops.erase(Ops.begin()+i);
727          --i; --e;
728        }
729      }
730
731      // No need for extra uses anymore.
732      delete DummyInst;
733
734      unsigned NumAddedValues = NewMulOps.size();
735      Value *V = EmitAddTreeOfValues(I, NewMulOps);
736      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
737
738      // Now that we have inserted V and its sole use, optimize it. This allows
739      // us to handle cases that require multiple factoring steps, such as this:
740      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
741      if (NumAddedValues > 1)
742        ReassociateExpression(cast<BinaryOperator>(V));
743
744      ++NumFactor;
745
746      if (Ops.empty())
747        return V2;
748
749      // Add the new value to the list of things being added.
750      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
751
752      // Rewrite the tree so that there is now a use of V.
753      RewriteExprTree(I, Ops);
754      return OptimizeExpression(I, Ops);
755    }
756    break;
757  //case Instruction::Mul:
758  }
759
760  if (IterateOptimization)
761    return OptimizeExpression(I, Ops);
762  return 0;
763}
764
765
766/// ReassociateBB - Inspect all of the instructions in this basic block,
767/// reassociating them as we go.
768void Reassociate::ReassociateBB(BasicBlock *BB) {
769  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
770    Instruction *BI = BBI++;
771    if (BI->getOpcode() == Instruction::Shl &&
772        isa<ConstantInt>(BI->getOperand(1)))
773      if (Instruction *NI = ConvertShiftToMul(BI)) {
774        MadeChange = true;
775        BI = NI;
776      }
777
778    // Reject cases where it is pointless to do this.
779    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
780        isa<VectorType>(BI->getType()))
781      continue;  // Floating point ops are not associative.
782
783    // If this is a subtract instruction which is not already in negate form,
784    // see if we can convert it to X+-Y.
785    if (BI->getOpcode() == Instruction::Sub) {
786      if (ShouldBreakUpSubtract(BI)) {
787        BI = BreakUpSubtract(BI);
788        MadeChange = true;
789      } else if (BinaryOperator::isNeg(BI)) {
790        // Otherwise, this is a negation.  See if the operand is a multiply tree
791        // and if this is not an inner node of a multiply tree.
792        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
793            (!BI->hasOneUse() ||
794             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
795          BI = LowerNegateToMultiply(BI);
796          MadeChange = true;
797        }
798      }
799    }
800
801    // If this instruction is a commutative binary operator, process it.
802    if (!BI->isAssociative()) continue;
803    BinaryOperator *I = cast<BinaryOperator>(BI);
804
805    // If this is an interior node of a reassociable tree, ignore it until we
806    // get to the root of the tree, to avoid N^2 analysis.
807    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
808      continue;
809
810    // If this is an add tree that is used by a sub instruction, ignore it
811    // until we process the subtract.
812    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
813        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
814      continue;
815
816    ReassociateExpression(I);
817  }
818}
819
820void Reassociate::ReassociateExpression(BinaryOperator *I) {
821
822  // First, walk the expression tree, linearizing the tree, collecting
823  std::vector<ValueEntry> Ops;
824  LinearizeExprTree(I, Ops);
825
826  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
827
828  // Now that we have linearized the tree to a list and have gathered all of
829  // the operands and their ranks, sort the operands by their rank.  Use a
830  // stable_sort so that values with equal ranks will have their relative
831  // positions maintained (and so the compiler is deterministic).  Note that
832  // this sorts so that the highest ranking values end up at the beginning of
833  // the vector.
834  std::stable_sort(Ops.begin(), Ops.end());
835
836  // OptimizeExpression - Now that we have the expression tree in a convenient
837  // sorted form, optimize it globally if possible.
838  if (Value *V = OptimizeExpression(I, Ops)) {
839    // This expression tree simplified to something that isn't a tree,
840    // eliminate it.
841    DOUT << "Reassoc to scalar: " << *V << "\n";
842    I->replaceAllUsesWith(V);
843    RemoveDeadBinaryOp(I);
844    return;
845  }
846
847  // We want to sink immediates as deeply as possible except in the case where
848  // this is a multiply tree used only by an add, and the immediate is a -1.
849  // In this case we reassociate to put the negation on the outside so that we
850  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
851  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
852      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
853      isa<ConstantInt>(Ops.back().Op) &&
854      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
855    Ops.insert(Ops.begin(), Ops.back());
856    Ops.pop_back();
857  }
858
859  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
860
861  if (Ops.size() == 1) {
862    // This expression tree simplified to something that isn't a tree,
863    // eliminate it.
864    I->replaceAllUsesWith(Ops[0].Op);
865    RemoveDeadBinaryOp(I);
866  } else {
867    // Now that we ordered and optimized the expressions, splat them back into
868    // the expression tree, removing any unneeded nodes.
869    RewriteExprTree(I, Ops);
870  }
871}
872
873
874bool Reassociate::runOnFunction(Function &F) {
875  // Recalculate the rank map for F
876  BuildRankMap(F);
877
878  MadeChange = false;
879  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
880    ReassociateBB(FI);
881
882  // We are done with the rank map...
883  RankMap.clear();
884  ValueRankMap.clear();
885  return MadeChange;
886}
887
888