Reassociate.cpp revision 68afa54033eccda0f55e920cb548588e71a45418
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ValueHandle.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
39#include <algorithm>
40#include <map>
41using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
49  struct ValueEntry {
50    unsigned Rank;
51    Value *Op;
52    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53  };
54  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
56  }
57}
58
59#ifndef NDEBUG
60/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63  Module *M = I->getParent()->getParent()->getParent();
64  errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65       << *Ops[0].Op->getType();
66  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67    WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
68    errs() << "," << Ops[i].Rank;
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    std::map<BasicBlock*, unsigned> RankMap;
76    std::map<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(&ID) {}
81
82    bool runOnFunction(Function &F);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.setPreservesCFG();
86    }
87  private:
88    void BuildRankMap(Function &F);
89    unsigned getRank(Value *V);
90    void ReassociateExpression(BinaryOperator *I);
91    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
92                         unsigned Idx = 0);
93    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
94    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95    void LinearizeExpr(BinaryOperator *I);
96    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
97    void ReassociateBB(BasicBlock *BB);
98
99    void RemoveDeadBinaryOp(Value *V);
100  };
101}
102
103char Reassociate::ID = 0;
104static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
105
106// Public interface to the Reassociate pass
107FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
108
109void Reassociate::RemoveDeadBinaryOp(Value *V) {
110  Instruction *Op = dyn_cast<Instruction>(V);
111  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
112    return;
113
114  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
115  RemoveDeadBinaryOp(LHS);
116  RemoveDeadBinaryOp(RHS);
117}
118
119
120static bool isUnmovableInstruction(Instruction *I) {
121  if (I->getOpcode() == Instruction::PHI ||
122      I->getOpcode() == Instruction::Alloca ||
123      I->getOpcode() == Instruction::Load ||
124      I->getOpcode() == Instruction::Invoke ||
125      (I->getOpcode() == Instruction::Call &&
126       !isa<DbgInfoIntrinsic>(I)) ||
127      I->getOpcode() == Instruction::UDiv ||
128      I->getOpcode() == Instruction::SDiv ||
129      I->getOpcode() == Instruction::FDiv ||
130      I->getOpcode() == Instruction::URem ||
131      I->getOpcode() == Instruction::SRem ||
132      I->getOpcode() == Instruction::FRem)
133    return true;
134  return false;
135}
136
137void Reassociate::BuildRankMap(Function &F) {
138  unsigned i = 2;
139
140  // Assign distinct ranks to function arguments
141  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
142    ValueRankMap[&*I] = ++i;
143
144  ReversePostOrderTraversal<Function*> RPOT(&F);
145  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
146         E = RPOT.end(); I != E; ++I) {
147    BasicBlock *BB = *I;
148    unsigned BBRank = RankMap[BB] = ++i << 16;
149
150    // Walk the basic block, adding precomputed ranks for any instructions that
151    // we cannot move.  This ensures that the ranks for these instructions are
152    // all different in the block.
153    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
154      if (isUnmovableInstruction(I))
155        ValueRankMap[&*I] = ++BBRank;
156  }
157}
158
159unsigned Reassociate::getRank(Value *V) {
160  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
161
162  Instruction *I = dyn_cast<Instruction>(V);
163  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
164
165  unsigned &CachedRank = ValueRankMap[I];
166  if (CachedRank) return CachedRank;    // Rank already known?
167
168  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
169  // we can reassociate expressions for code motion!  Since we do not recurse
170  // for PHI nodes, we cannot have infinite recursion here, because there
171  // cannot be loops in the value graph that do not go through PHI nodes.
172  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
173  for (unsigned i = 0, e = I->getNumOperands();
174       i != e && Rank != MaxRank; ++i)
175    Rank = std::max(Rank, getRank(I->getOperand(i)));
176
177  // If this is a not or neg instruction, do not count it for rank.  This
178  // assures us that X and ~X will have the same rank.
179  if (!I->getType()->isInteger() ||
180      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
181    ++Rank;
182
183  //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
184  //     << Rank << "\n");
185
186  return CachedRank = Rank;
187}
188
189/// isReassociableOp - Return true if V is an instruction of the specified
190/// opcode and if it only has one use.
191static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
192  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
193      cast<Instruction>(V)->getOpcode() == Opcode)
194    return cast<BinaryOperator>(V);
195  return 0;
196}
197
198/// LowerNegateToMultiply - Replace 0-X with X*-1.
199///
200static Instruction *LowerNegateToMultiply(Instruction *Neg,
201                              std::map<AssertingVH<>, unsigned> &ValueRankMap,
202                              LLVMContext &Context) {
203  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
204
205  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
206  ValueRankMap.erase(Neg);
207  Res->takeName(Neg);
208  Neg->replaceAllUsesWith(Res);
209  Neg->eraseFromParent();
210  return Res;
211}
212
213// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
214// Note that if D is also part of the expression tree that we recurse to
215// linearize it as well.  Besides that case, this does not recurse into A,B, or
216// C.
217void Reassociate::LinearizeExpr(BinaryOperator *I) {
218  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
219  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
220  assert(isReassociableOp(LHS, I->getOpcode()) &&
221         isReassociableOp(RHS, I->getOpcode()) &&
222         "Not an expression that needs linearization?");
223
224  DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
225
226  // Move the RHS instruction to live immediately before I, avoiding breaking
227  // dominator properties.
228  RHS->moveBefore(I);
229
230  // Move operands around to do the linearization.
231  I->setOperand(1, RHS->getOperand(0));
232  RHS->setOperand(0, LHS);
233  I->setOperand(0, RHS);
234
235  ++NumLinear;
236  MadeChange = true;
237  DEBUG(errs() << "Linearized: " << *I << '\n');
238
239  // If D is part of this expression tree, tail recurse.
240  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
241    LinearizeExpr(I);
242}
243
244
245/// LinearizeExprTree - Given an associative binary expression tree, traverse
246/// all of the uses putting it into canonical form.  This forces a left-linear
247/// form of the the expression (((a+b)+c)+d), and collects information about the
248/// rank of the non-tree operands.
249///
250/// NOTE: These intentionally destroys the expression tree operands (turning
251/// them into undef values) to reduce #uses of the values.  This means that the
252/// caller MUST use something like RewriteExprTree to put the values back in.
253///
254void Reassociate::LinearizeExprTree(BinaryOperator *I,
255                                    std::vector<ValueEntry> &Ops) {
256  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
257  unsigned Opcode = I->getOpcode();
258  LLVMContext &Context = I->getContext();
259
260  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
261  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
262  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
263
264  // If this is a multiply expression tree and it contains internal negations,
265  // transform them into multiplies by -1 so they can be reassociated.
266  if (I->getOpcode() == Instruction::Mul) {
267    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
268      LHS = LowerNegateToMultiply(cast<Instruction>(LHS),
269                                  ValueRankMap, Context);
270      LHSBO = isReassociableOp(LHS, Opcode);
271    }
272    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
273      RHS = LowerNegateToMultiply(cast<Instruction>(RHS),
274                                  ValueRankMap, Context);
275      RHSBO = isReassociableOp(RHS, Opcode);
276    }
277  }
278
279  if (!LHSBO) {
280    if (!RHSBO) {
281      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
282      // such, just remember these operands and their rank.
283      Ops.push_back(ValueEntry(getRank(LHS), LHS));
284      Ops.push_back(ValueEntry(getRank(RHS), RHS));
285
286      // Clear the leaves out.
287      I->setOperand(0, UndefValue::get(I->getType()));
288      I->setOperand(1, UndefValue::get(I->getType()));
289      return;
290    } else {
291      // Turn X+(Y+Z) -> (Y+Z)+X
292      std::swap(LHSBO, RHSBO);
293      std::swap(LHS, RHS);
294      bool Success = !I->swapOperands();
295      assert(Success && "swapOperands failed");
296      Success = false;
297      MadeChange = true;
298    }
299  } else if (RHSBO) {
300    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
301    // part of the expression tree.
302    LinearizeExpr(I);
303    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
304    RHS = I->getOperand(1);
305    RHSBO = 0;
306  }
307
308  // Okay, now we know that the LHS is a nested expression and that the RHS is
309  // not.  Perform reassociation.
310  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
311
312  // Move LHS right before I to make sure that the tree expression dominates all
313  // values.
314  LHSBO->moveBefore(I);
315
316  // Linearize the expression tree on the LHS.
317  LinearizeExprTree(LHSBO, Ops);
318
319  // Remember the RHS operand and its rank.
320  Ops.push_back(ValueEntry(getRank(RHS), RHS));
321
322  // Clear the RHS leaf out.
323  I->setOperand(1, UndefValue::get(I->getType()));
324}
325
326// RewriteExprTree - Now that the operands for this expression tree are
327// linearized and optimized, emit them in-order.  This function is written to be
328// tail recursive.
329void Reassociate::RewriteExprTree(BinaryOperator *I,
330                                  std::vector<ValueEntry> &Ops,
331                                  unsigned i) {
332  if (i+2 == Ops.size()) {
333    if (I->getOperand(0) != Ops[i].Op ||
334        I->getOperand(1) != Ops[i+1].Op) {
335      Value *OldLHS = I->getOperand(0);
336      DEBUG(errs() << "RA: " << *I << '\n');
337      I->setOperand(0, Ops[i].Op);
338      I->setOperand(1, Ops[i+1].Op);
339      DEBUG(errs() << "TO: " << *I << '\n');
340      MadeChange = true;
341      ++NumChanged;
342
343      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
344      // delete the extra, now dead, nodes.
345      RemoveDeadBinaryOp(OldLHS);
346    }
347    return;
348  }
349  assert(i+2 < Ops.size() && "Ops index out of range!");
350
351  if (I->getOperand(1) != Ops[i].Op) {
352    DEBUG(errs() << "RA: " << *I << '\n');
353    I->setOperand(1, Ops[i].Op);
354    DEBUG(errs() << "TO: " << *I << '\n');
355    MadeChange = true;
356    ++NumChanged;
357  }
358
359  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
360  assert(LHS->getOpcode() == I->getOpcode() &&
361         "Improper expression tree!");
362
363  // Compactify the tree instructions together with each other to guarantee
364  // that the expression tree is dominated by all of Ops.
365  LHS->moveBefore(I);
366  RewriteExprTree(LHS, Ops, i+1);
367}
368
369
370
371// NegateValue - Insert instructions before the instruction pointed to by BI,
372// that computes the negative version of the value specified.  The negative
373// version of the value is returned, and BI is left pointing at the instruction
374// that should be processed next by the reassociation pass.
375//
376static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
377  // We are trying to expose opportunity for reassociation.  One of the things
378  // that we want to do to achieve this is to push a negation as deep into an
379  // expression chain as possible, to expose the add instructions.  In practice,
380  // this means that we turn this:
381  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
382  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
383  // the constants.  We assume that instcombine will clean up the mess later if
384  // we introduce tons of unnecessary negation instructions...
385  //
386  if (Instruction *I = dyn_cast<Instruction>(V))
387    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
388      // Push the negates through the add.
389      I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
390      I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
391
392      // We must move the add instruction here, because the neg instructions do
393      // not dominate the old add instruction in general.  By moving it, we are
394      // assured that the neg instructions we just inserted dominate the
395      // instruction we are about to insert after them.
396      //
397      I->moveBefore(BI);
398      I->setName(I->getName()+".neg");
399      return I;
400    }
401
402  // Insert a 'neg' instruction that subtracts the value from zero to get the
403  // negation.
404  //
405  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
406}
407
408/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
409/// X-Y into (X + -Y).
410static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
411  // If this is a negation, we can't split it up!
412  if (BinaryOperator::isNeg(Sub))
413    return false;
414
415  // Don't bother to break this up unless either the LHS is an associable add or
416  // subtract or if this is only used by one.
417  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
418      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
419    return true;
420  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
421      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
422    return true;
423  if (Sub->hasOneUse() &&
424      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
425       isReassociableOp(Sub->use_back(), Instruction::Sub)))
426    return true;
427
428  return false;
429}
430
431/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
432/// only used by an add, transform this into (X+(0-Y)) to promote better
433/// reassociation.
434static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
435                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
436  // Convert a subtract into an add and a neg instruction... so that sub
437  // instructions can be commuted with other add instructions...
438  //
439  // Calculate the negative value of Operand 1 of the sub instruction...
440  // and set it as the RHS of the add instruction we just made...
441  //
442  Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
443  Instruction *New =
444    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
445  New->takeName(Sub);
446
447  // Everyone now refers to the add instruction.
448  ValueRankMap.erase(Sub);
449  Sub->replaceAllUsesWith(New);
450  Sub->eraseFromParent();
451
452  DEBUG(errs() << "Negated: " << *New << '\n');
453  return New;
454}
455
456/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
457/// by one, change this into a multiply by a constant to assist with further
458/// reassociation.
459static Instruction *ConvertShiftToMul(Instruction *Shl,
460                              std::map<AssertingVH<>, unsigned> &ValueRankMap,
461                              LLVMContext &Context) {
462  // If an operand of this shift is a reassociable multiply, or if the shift
463  // is used by a reassociable multiply or add, turn into a multiply.
464  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
465      (Shl->hasOneUse() &&
466       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
467        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
468    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
469    MulCst =
470        ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
471
472    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
473                                                 "", Shl);
474    ValueRankMap.erase(Shl);
475    Mul->takeName(Shl);
476    Shl->replaceAllUsesWith(Mul);
477    Shl->eraseFromParent();
478    return Mul;
479  }
480  return 0;
481}
482
483// Scan backwards and forwards among values with the same rank as element i to
484// see if X exists.  If X does not exist, return i.
485static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
486                                  Value *X) {
487  unsigned XRank = Ops[i].Rank;
488  unsigned e = Ops.size();
489  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
490    if (Ops[j].Op == X)
491      return j;
492  // Scan backwards
493  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
494    if (Ops[j].Op == X)
495      return j;
496  return i;
497}
498
499/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
500/// and returning the result.  Insert the tree before I.
501static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
502  if (Ops.size() == 1) return Ops.back();
503
504  Value *V1 = Ops.back();
505  Ops.pop_back();
506  Value *V2 = EmitAddTreeOfValues(I, Ops);
507  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
508}
509
510/// RemoveFactorFromExpression - If V is an expression tree that is a
511/// multiplication sequence, and if this sequence contains a multiply by Factor,
512/// remove Factor from the tree and return the new tree.
513Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
514  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
515  if (!BO) return 0;
516
517  std::vector<ValueEntry> Factors;
518  LinearizeExprTree(BO, Factors);
519
520  bool FoundFactor = false;
521  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
522    if (Factors[i].Op == Factor) {
523      FoundFactor = true;
524      Factors.erase(Factors.begin()+i);
525      break;
526    }
527  if (!FoundFactor) {
528    // Make sure to restore the operands to the expression tree.
529    RewriteExprTree(BO, Factors);
530    return 0;
531  }
532
533  if (Factors.size() == 1) return Factors[0].Op;
534
535  RewriteExprTree(BO, Factors);
536  return BO;
537}
538
539/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
540/// add its operands as factors, otherwise add V to the list of factors.
541static void FindSingleUseMultiplyFactors(Value *V,
542                                         std::vector<Value*> &Factors) {
543  BinaryOperator *BO;
544  if ((!V->hasOneUse() && !V->use_empty()) ||
545      !(BO = dyn_cast<BinaryOperator>(V)) ||
546      BO->getOpcode() != Instruction::Mul) {
547    Factors.push_back(V);
548    return;
549  }
550
551  // Otherwise, add the LHS and RHS to the list of factors.
552  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
553  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
554}
555
556
557
558Value *Reassociate::OptimizeExpression(BinaryOperator *I,
559                                       std::vector<ValueEntry> &Ops) {
560  // Now that we have the linearized expression tree, try to optimize it.
561  // Start by folding any constants that we found.
562  bool IterateOptimization = false;
563  if (Ops.size() == 1) return Ops[0].Op;
564
565  unsigned Opcode = I->getOpcode();
566
567  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
568    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
569      Ops.pop_back();
570      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
571      return OptimizeExpression(I, Ops);
572    }
573
574  // Check for destructive annihilation due to a constant being used.
575  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
576    switch (Opcode) {
577    default: break;
578    case Instruction::And:
579      if (CstVal->isZero()) {                // ... & 0 -> 0
580        ++NumAnnihil;
581        return CstVal;
582      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
583        Ops.pop_back();
584      }
585      break;
586    case Instruction::Mul:
587      if (CstVal->isZero()) {                // ... * 0 -> 0
588        ++NumAnnihil;
589        return CstVal;
590      } else if (cast<ConstantInt>(CstVal)->isOne()) {
591        Ops.pop_back();                      // ... * 1 -> ...
592      }
593      break;
594    case Instruction::Or:
595      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
596        ++NumAnnihil;
597        return CstVal;
598      }
599      // FALLTHROUGH!
600    case Instruction::Add:
601    case Instruction::Xor:
602      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
603        Ops.pop_back();
604      break;
605    }
606  if (Ops.size() == 1) return Ops[0].Op;
607
608  // Handle destructive annihilation do to identities between elements in the
609  // argument list here.
610  switch (Opcode) {
611  default: break;
612  case Instruction::And:
613  case Instruction::Or:
614  case Instruction::Xor:
615    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
616    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
617    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
618      // First, check for X and ~X in the operand list.
619      assert(i < Ops.size());
620      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
621        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
622        unsigned FoundX = FindInOperandList(Ops, i, X);
623        if (FoundX != i) {
624          if (Opcode == Instruction::And) {   // ...&X&~X = 0
625            ++NumAnnihil;
626            return Constant::getNullValue(X->getType());
627          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
628            ++NumAnnihil;
629            return Constant::getAllOnesValue(X->getType());
630          }
631        }
632      }
633
634      // Next, check for duplicate pairs of values, which we assume are next to
635      // each other, due to our sorting criteria.
636      assert(i < Ops.size());
637      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
638        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
639          // Drop duplicate values.
640          Ops.erase(Ops.begin()+i);
641          --i; --e;
642          IterateOptimization = true;
643          ++NumAnnihil;
644        } else {
645          assert(Opcode == Instruction::Xor);
646          if (e == 2) {
647            ++NumAnnihil;
648            return Constant::getNullValue(Ops[0].Op->getType());
649          }
650          // ... X^X -> ...
651          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
652          i -= 1; e -= 2;
653          IterateOptimization = true;
654          ++NumAnnihil;
655        }
656      }
657    }
658    break;
659
660  case Instruction::Add:
661    // Scan the operand lists looking for X and -X pairs.  If we find any, we
662    // can simplify the expression. X+-X == 0.
663    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
664      assert(i < Ops.size());
665      // Check for X and -X in the operand list.
666      if (BinaryOperator::isNeg(Ops[i].Op)) {
667        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
668        unsigned FoundX = FindInOperandList(Ops, i, X);
669        if (FoundX != i) {
670          // Remove X and -X from the operand list.
671          if (Ops.size() == 2) {
672            ++NumAnnihil;
673            return Constant::getNullValue(X->getType());
674          } else {
675            Ops.erase(Ops.begin()+i);
676            if (i < FoundX)
677              --FoundX;
678            else
679              --i;   // Need to back up an extra one.
680            Ops.erase(Ops.begin()+FoundX);
681            IterateOptimization = true;
682            ++NumAnnihil;
683            --i;     // Revisit element.
684            e -= 2;  // Removed two elements.
685          }
686        }
687      }
688    }
689
690
691    // Scan the operand list, checking to see if there are any common factors
692    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
693    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
694    // To efficiently find this, we count the number of times a factor occurs
695    // for any ADD operands that are MULs.
696    std::map<Value*, unsigned> FactorOccurrences;
697    unsigned MaxOcc = 0;
698    Value *MaxOccVal = 0;
699    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
700      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
701        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
702          // Compute all of the factors of this added value.
703          std::vector<Value*> Factors;
704          FindSingleUseMultiplyFactors(BOp, Factors);
705          assert(Factors.size() > 1 && "Bad linearize!");
706
707          // Add one to FactorOccurrences for each unique factor in this op.
708          if (Factors.size() == 2) {
709            unsigned Occ = ++FactorOccurrences[Factors[0]];
710            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
711            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
712              Occ = ++FactorOccurrences[Factors[1]];
713              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
714            }
715          } else {
716            std::set<Value*> Duplicates;
717            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
718              if (Duplicates.insert(Factors[i]).second) {
719                unsigned Occ = ++FactorOccurrences[Factors[i]];
720                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
721              }
722            }
723          }
724        }
725      }
726    }
727
728    // If any factor occurred more than one time, we can pull it out.
729    if (MaxOcc > 1) {
730      DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
731
732      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
733      // this, we could otherwise run into situations where removing a factor
734      // from an expression will drop a use of maxocc, and this can cause
735      // RemoveFactorFromExpression on successive values to behave differently.
736      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
737      std::vector<Value*> NewMulOps;
738      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
739        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
740          NewMulOps.push_back(V);
741          Ops.erase(Ops.begin()+i);
742          --i; --e;
743        }
744      }
745
746      // No need for extra uses anymore.
747      delete DummyInst;
748
749      unsigned NumAddedValues = NewMulOps.size();
750      Value *V = EmitAddTreeOfValues(I, NewMulOps);
751      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
752
753      // Now that we have inserted V and its sole use, optimize it. This allows
754      // us to handle cases that require multiple factoring steps, such as this:
755      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
756      if (NumAddedValues > 1)
757        ReassociateExpression(cast<BinaryOperator>(V));
758
759      ++NumFactor;
760
761      if (Ops.empty())
762        return V2;
763
764      // Add the new value to the list of things being added.
765      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
766
767      // Rewrite the tree so that there is now a use of V.
768      RewriteExprTree(I, Ops);
769      return OptimizeExpression(I, Ops);
770    }
771    break;
772  //case Instruction::Mul:
773  }
774
775  if (IterateOptimization)
776    return OptimizeExpression(I, Ops);
777  return 0;
778}
779
780
781/// ReassociateBB - Inspect all of the instructions in this basic block,
782/// reassociating them as we go.
783void Reassociate::ReassociateBB(BasicBlock *BB) {
784  LLVMContext &Context = BB->getContext();
785
786  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
787    Instruction *BI = BBI++;
788    if (BI->getOpcode() == Instruction::Shl &&
789        isa<ConstantInt>(BI->getOperand(1)))
790      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) {
791        MadeChange = true;
792        BI = NI;
793      }
794
795    // Reject cases where it is pointless to do this.
796    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
797        isa<VectorType>(BI->getType()))
798      continue;  // Floating point ops are not associative.
799
800    // If this is a subtract instruction which is not already in negate form,
801    // see if we can convert it to X+-Y.
802    if (BI->getOpcode() == Instruction::Sub) {
803      if (ShouldBreakUpSubtract(Context, BI)) {
804        BI = BreakUpSubtract(Context, BI, ValueRankMap);
805        MadeChange = true;
806      } else if (BinaryOperator::isNeg(BI)) {
807        // Otherwise, this is a negation.  See if the operand is a multiply tree
808        // and if this is not an inner node of a multiply tree.
809        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
810            (!BI->hasOneUse() ||
811             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
812          BI = LowerNegateToMultiply(BI, ValueRankMap, Context);
813          MadeChange = true;
814        }
815      }
816    }
817
818    // If this instruction is a commutative binary operator, process it.
819    if (!BI->isAssociative()) continue;
820    BinaryOperator *I = cast<BinaryOperator>(BI);
821
822    // If this is an interior node of a reassociable tree, ignore it until we
823    // get to the root of the tree, to avoid N^2 analysis.
824    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
825      continue;
826
827    // If this is an add tree that is used by a sub instruction, ignore it
828    // until we process the subtract.
829    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
830        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
831      continue;
832
833    ReassociateExpression(I);
834  }
835}
836
837void Reassociate::ReassociateExpression(BinaryOperator *I) {
838
839  // First, walk the expression tree, linearizing the tree, collecting
840  std::vector<ValueEntry> Ops;
841  LinearizeExprTree(I, Ops);
842
843  DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
844
845  // Now that we have linearized the tree to a list and have gathered all of
846  // the operands and their ranks, sort the operands by their rank.  Use a
847  // stable_sort so that values with equal ranks will have their relative
848  // positions maintained (and so the compiler is deterministic).  Note that
849  // this sorts so that the highest ranking values end up at the beginning of
850  // the vector.
851  std::stable_sort(Ops.begin(), Ops.end());
852
853  // OptimizeExpression - Now that we have the expression tree in a convenient
854  // sorted form, optimize it globally if possible.
855  if (Value *V = OptimizeExpression(I, Ops)) {
856    // This expression tree simplified to something that isn't a tree,
857    // eliminate it.
858    DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
859    I->replaceAllUsesWith(V);
860    RemoveDeadBinaryOp(I);
861    return;
862  }
863
864  // We want to sink immediates as deeply as possible except in the case where
865  // this is a multiply tree used only by an add, and the immediate is a -1.
866  // In this case we reassociate to put the negation on the outside so that we
867  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
868  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
869      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
870      isa<ConstantInt>(Ops.back().Op) &&
871      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
872    Ops.insert(Ops.begin(), Ops.back());
873    Ops.pop_back();
874  }
875
876  DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
877
878  if (Ops.size() == 1) {
879    // This expression tree simplified to something that isn't a tree,
880    // eliminate it.
881    I->replaceAllUsesWith(Ops[0].Op);
882    RemoveDeadBinaryOp(I);
883  } else {
884    // Now that we ordered and optimized the expressions, splat them back into
885    // the expression tree, removing any unneeded nodes.
886    RewriteExprTree(I, Ops);
887  }
888}
889
890
891bool Reassociate::runOnFunction(Function &F) {
892  // Recalculate the rank map for F
893  BuildRankMap(F);
894
895  MadeChange = false;
896  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
897    ReassociateBB(FI);
898
899  // We are done with the rank map...
900  RankMap.clear();
901  ValueRankMap.clear();
902  return MadeChange;
903}
904
905