Reassociate.cpp revision 7cbd8a3e92221437048b484d5ef9c0a22d0f8c58
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
44
45namespace {
46  struct VISIBILITY_HIDDEN ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59  Module *M = I->getParent()->getParent()->getParent();
60  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61  << *Ops[0].Op->getType();
62  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
64      << "," << Ops[i].Rank;
65}
66
67namespace {
68  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
69    std::map<BasicBlock*, unsigned> RankMap;
70    std::map<Value*, unsigned> ValueRankMap;
71    bool MadeChange;
72  public:
73    static char ID; // Pass identification, replacement for typeid
74    Reassociate() : FunctionPass((intptr_t)&ID) {}
75
76    bool runOnFunction(Function &F);
77
78    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79      AU.setPreservesCFG();
80    }
81  private:
82    void BuildRankMap(Function &F);
83    unsigned getRank(Value *V);
84    void ReassociateExpression(BinaryOperator *I);
85    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
86                         unsigned Idx = 0);
87    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
88    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
89    void LinearizeExpr(BinaryOperator *I);
90    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
91    void ReassociateBB(BasicBlock *BB);
92
93    void RemoveDeadBinaryOp(Value *V);
94  };
95}
96
97char Reassociate::ID = 0;
98static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
99
100// Public interface to the Reassociate pass
101FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
102
103void Reassociate::RemoveDeadBinaryOp(Value *V) {
104  Instruction *Op = dyn_cast<Instruction>(V);
105  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
106    return;
107
108  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
109  RemoveDeadBinaryOp(LHS);
110  RemoveDeadBinaryOp(RHS);
111}
112
113
114static bool isUnmovableInstruction(Instruction *I) {
115  if (I->getOpcode() == Instruction::PHI ||
116      I->getOpcode() == Instruction::Alloca ||
117      I->getOpcode() == Instruction::Load ||
118      I->getOpcode() == Instruction::Malloc ||
119      I->getOpcode() == Instruction::Invoke ||
120      I->getOpcode() == Instruction::Call ||
121      I->getOpcode() == Instruction::UDiv ||
122      I->getOpcode() == Instruction::SDiv ||
123      I->getOpcode() == Instruction::FDiv ||
124      I->getOpcode() == Instruction::URem ||
125      I->getOpcode() == Instruction::SRem ||
126      I->getOpcode() == Instruction::FRem)
127    return true;
128  return false;
129}
130
131void Reassociate::BuildRankMap(Function &F) {
132  unsigned i = 2;
133
134  // Assign distinct ranks to function arguments
135  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
136    ValueRankMap[I] = ++i;
137
138  ReversePostOrderTraversal<Function*> RPOT(&F);
139  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
140         E = RPOT.end(); I != E; ++I) {
141    BasicBlock *BB = *I;
142    unsigned BBRank = RankMap[BB] = ++i << 16;
143
144    // Walk the basic block, adding precomputed ranks for any instructions that
145    // we cannot move.  This ensures that the ranks for these instructions are
146    // all different in the block.
147    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
148      if (isUnmovableInstruction(I))
149        ValueRankMap[I] = ++BBRank;
150  }
151}
152
153unsigned Reassociate::getRank(Value *V) {
154  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
155
156  Instruction *I = dyn_cast<Instruction>(V);
157  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
158
159  unsigned &CachedRank = ValueRankMap[I];
160  if (CachedRank) return CachedRank;    // Rank already known?
161
162  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
163  // we can reassociate expressions for code motion!  Since we do not recurse
164  // for PHI nodes, we cannot have infinite recursion here, because there
165  // cannot be loops in the value graph that do not go through PHI nodes.
166  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
167  for (unsigned i = 0, e = I->getNumOperands();
168       i != e && Rank != MaxRank; ++i)
169    Rank = std::max(Rank, getRank(I->getOperand(i)));
170
171  // If this is a not or neg instruction, do not count it for rank.  This
172  // assures us that X and ~X will have the same rank.
173  if (!I->getType()->isInteger() ||
174      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
175    ++Rank;
176
177  //DOUT << "Calculated Rank[" << V->getName() << "] = "
178  //     << Rank << "\n";
179
180  return CachedRank = Rank;
181}
182
183/// isReassociableOp - Return true if V is an instruction of the specified
184/// opcode and if it only has one use.
185static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
186  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
187      cast<Instruction>(V)->getOpcode() == Opcode)
188    return cast<BinaryOperator>(V);
189  return 0;
190}
191
192/// LowerNegateToMultiply - Replace 0-X with X*-1.
193///
194static Instruction *LowerNegateToMultiply(Instruction *Neg) {
195  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
196
197  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
198  Res->takeName(Neg);
199  Neg->replaceAllUsesWith(Res);
200  Neg->eraseFromParent();
201  return Res;
202}
203
204// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
205// Note that if D is also part of the expression tree that we recurse to
206// linearize it as well.  Besides that case, this does not recurse into A,B, or
207// C.
208void Reassociate::LinearizeExpr(BinaryOperator *I) {
209  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
210  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
211  assert(isReassociableOp(LHS, I->getOpcode()) &&
212         isReassociableOp(RHS, I->getOpcode()) &&
213         "Not an expression that needs linearization?");
214
215  DOUT << "Linear" << *LHS << *RHS << *I;
216
217  // Move the RHS instruction to live immediately before I, avoiding breaking
218  // dominator properties.
219  RHS->moveBefore(I);
220
221  // Move operands around to do the linearization.
222  I->setOperand(1, RHS->getOperand(0));
223  RHS->setOperand(0, LHS);
224  I->setOperand(0, RHS);
225
226  ++NumLinear;
227  MadeChange = true;
228  DOUT << "Linearized: " << *I;
229
230  // If D is part of this expression tree, tail recurse.
231  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
232    LinearizeExpr(I);
233}
234
235
236/// LinearizeExprTree - Given an associative binary expression tree, traverse
237/// all of the uses putting it into canonical form.  This forces a left-linear
238/// form of the the expression (((a+b)+c)+d), and collects information about the
239/// rank of the non-tree operands.
240///
241/// NOTE: These intentionally destroys the expression tree operands (turning
242/// them into undef values) to reduce #uses of the values.  This means that the
243/// caller MUST use something like RewriteExprTree to put the values back in.
244///
245void Reassociate::LinearizeExprTree(BinaryOperator *I,
246                                    std::vector<ValueEntry> &Ops) {
247  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
248  unsigned Opcode = I->getOpcode();
249
250  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
251  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
252  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
253
254  // If this is a multiply expression tree and it contains internal negations,
255  // transform them into multiplies by -1 so they can be reassociated.
256  if (I->getOpcode() == Instruction::Mul) {
257    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
258      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
259      LHSBO = isReassociableOp(LHS, Opcode);
260    }
261    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
262      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
263      RHSBO = isReassociableOp(RHS, Opcode);
264    }
265  }
266
267  if (!LHSBO) {
268    if (!RHSBO) {
269      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
270      // such, just remember these operands and their rank.
271      Ops.push_back(ValueEntry(getRank(LHS), LHS));
272      Ops.push_back(ValueEntry(getRank(RHS), RHS));
273
274      // Clear the leaves out.
275      I->setOperand(0, UndefValue::get(I->getType()));
276      I->setOperand(1, UndefValue::get(I->getType()));
277      return;
278    } else {
279      // Turn X+(Y+Z) -> (Y+Z)+X
280      std::swap(LHSBO, RHSBO);
281      std::swap(LHS, RHS);
282      bool Success = !I->swapOperands();
283      assert(Success && "swapOperands failed");
284      MadeChange = true;
285    }
286  } else if (RHSBO) {
287    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
288    // part of the expression tree.
289    LinearizeExpr(I);
290    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
291    RHS = I->getOperand(1);
292    RHSBO = 0;
293  }
294
295  // Okay, now we know that the LHS is a nested expression and that the RHS is
296  // not.  Perform reassociation.
297  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
298
299  // Move LHS right before I to make sure that the tree expression dominates all
300  // values.
301  LHSBO->moveBefore(I);
302
303  // Linearize the expression tree on the LHS.
304  LinearizeExprTree(LHSBO, Ops);
305
306  // Remember the RHS operand and its rank.
307  Ops.push_back(ValueEntry(getRank(RHS), RHS));
308
309  // Clear the RHS leaf out.
310  I->setOperand(1, UndefValue::get(I->getType()));
311}
312
313// RewriteExprTree - Now that the operands for this expression tree are
314// linearized and optimized, emit them in-order.  This function is written to be
315// tail recursive.
316void Reassociate::RewriteExprTree(BinaryOperator *I,
317                                  std::vector<ValueEntry> &Ops,
318                                  unsigned i) {
319  if (i+2 == Ops.size()) {
320    if (I->getOperand(0) != Ops[i].Op ||
321        I->getOperand(1) != Ops[i+1].Op) {
322      Value *OldLHS = I->getOperand(0);
323      DOUT << "RA: " << *I;
324      I->setOperand(0, Ops[i].Op);
325      I->setOperand(1, Ops[i+1].Op);
326      DOUT << "TO: " << *I;
327      MadeChange = true;
328      ++NumChanged;
329
330      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
331      // delete the extra, now dead, nodes.
332      RemoveDeadBinaryOp(OldLHS);
333    }
334    return;
335  }
336  assert(i+2 < Ops.size() && "Ops index out of range!");
337
338  if (I->getOperand(1) != Ops[i].Op) {
339    DOUT << "RA: " << *I;
340    I->setOperand(1, Ops[i].Op);
341    DOUT << "TO: " << *I;
342    MadeChange = true;
343    ++NumChanged;
344  }
345
346  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
347  assert(LHS->getOpcode() == I->getOpcode() &&
348         "Improper expression tree!");
349
350  // Compactify the tree instructions together with each other to guarantee
351  // that the expression tree is dominated by all of Ops.
352  LHS->moveBefore(I);
353  RewriteExprTree(LHS, Ops, i+1);
354}
355
356
357
358// NegateValue - Insert instructions before the instruction pointed to by BI,
359// that computes the negative version of the value specified.  The negative
360// version of the value is returned, and BI is left pointing at the instruction
361// that should be processed next by the reassociation pass.
362//
363static Value *NegateValue(Value *V, Instruction *BI) {
364  // We are trying to expose opportunity for reassociation.  One of the things
365  // that we want to do to achieve this is to push a negation as deep into an
366  // expression chain as possible, to expose the add instructions.  In practice,
367  // this means that we turn this:
368  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
369  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
370  // the constants.  We assume that instcombine will clean up the mess later if
371  // we introduce tons of unnecessary negation instructions...
372  //
373  if (Instruction *I = dyn_cast<Instruction>(V))
374    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
375      // Push the negates through the add.
376      I->setOperand(0, NegateValue(I->getOperand(0), BI));
377      I->setOperand(1, NegateValue(I->getOperand(1), BI));
378
379      // We must move the add instruction here, because the neg instructions do
380      // not dominate the old add instruction in general.  By moving it, we are
381      // assured that the neg instructions we just inserted dominate the
382      // instruction we are about to insert after them.
383      //
384      I->moveBefore(BI);
385      I->setName(I->getName()+".neg");
386      return I;
387    }
388
389  // Insert a 'neg' instruction that subtracts the value from zero to get the
390  // negation.
391  //
392  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
393}
394
395/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
396/// X-Y into (X + -Y).
397static bool ShouldBreakUpSubtract(Instruction *Sub) {
398  // If this is a negation, we can't split it up!
399  if (BinaryOperator::isNeg(Sub))
400    return false;
401
402  // Don't bother to break this up unless either the LHS is an associable add or
403  // subtract or if this is only used by one.
404  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
405      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
406    return true;
407  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
408      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
409    return true;
410  if (Sub->hasOneUse() &&
411      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
412       isReassociableOp(Sub->use_back(), Instruction::Sub)))
413    return true;
414
415  return false;
416}
417
418/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
419/// only used by an add, transform this into (X+(0-Y)) to promote better
420/// reassociation.
421static Instruction *BreakUpSubtract(Instruction *Sub) {
422  // Convert a subtract into an add and a neg instruction... so that sub
423  // instructions can be commuted with other add instructions...
424  //
425  // Calculate the negative value of Operand 1 of the sub instruction...
426  // and set it as the RHS of the add instruction we just made...
427  //
428  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
429  Instruction *New =
430    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
431  New->takeName(Sub);
432
433  // Everyone now refers to the add instruction.
434  Sub->replaceAllUsesWith(New);
435  Sub->eraseFromParent();
436
437  DOUT << "Negated: " << *New;
438  return New;
439}
440
441/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
442/// by one, change this into a multiply by a constant to assist with further
443/// reassociation.
444static Instruction *ConvertShiftToMul(Instruction *Shl) {
445  // If an operand of this shift is a reassociable multiply, or if the shift
446  // is used by a reassociable multiply or add, turn into a multiply.
447  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
448      (Shl->hasOneUse() &&
449       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
450        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
451    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
452    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
453
454    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
455                                                 "", Shl);
456    Mul->takeName(Shl);
457    Shl->replaceAllUsesWith(Mul);
458    Shl->eraseFromParent();
459    return Mul;
460  }
461  return 0;
462}
463
464// Scan backwards and forwards among values with the same rank as element i to
465// see if X exists.  If X does not exist, return i.
466static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
467                                  Value *X) {
468  unsigned XRank = Ops[i].Rank;
469  unsigned e = Ops.size();
470  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
471    if (Ops[j].Op == X)
472      return j;
473  // Scan backwards
474  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
475    if (Ops[j].Op == X)
476      return j;
477  return i;
478}
479
480/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
481/// and returning the result.  Insert the tree before I.
482static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
483  if (Ops.size() == 1) return Ops.back();
484
485  Value *V1 = Ops.back();
486  Ops.pop_back();
487  Value *V2 = EmitAddTreeOfValues(I, Ops);
488  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
489}
490
491/// RemoveFactorFromExpression - If V is an expression tree that is a
492/// multiplication sequence, and if this sequence contains a multiply by Factor,
493/// remove Factor from the tree and return the new tree.
494Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
495  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
496  if (!BO) return 0;
497
498  std::vector<ValueEntry> Factors;
499  LinearizeExprTree(BO, Factors);
500
501  bool FoundFactor = false;
502  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
503    if (Factors[i].Op == Factor) {
504      FoundFactor = true;
505      Factors.erase(Factors.begin()+i);
506      break;
507    }
508  if (!FoundFactor) {
509    // Make sure to restore the operands to the expression tree.
510    RewriteExprTree(BO, Factors);
511    return 0;
512  }
513
514  if (Factors.size() == 1) return Factors[0].Op;
515
516  RewriteExprTree(BO, Factors);
517  return BO;
518}
519
520/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
521/// add its operands as factors, otherwise add V to the list of factors.
522static void FindSingleUseMultiplyFactors(Value *V,
523                                         std::vector<Value*> &Factors) {
524  BinaryOperator *BO;
525  if ((!V->hasOneUse() && !V->use_empty()) ||
526      !(BO = dyn_cast<BinaryOperator>(V)) ||
527      BO->getOpcode() != Instruction::Mul) {
528    Factors.push_back(V);
529    return;
530  }
531
532  // Otherwise, add the LHS and RHS to the list of factors.
533  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
534  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
535}
536
537
538
539Value *Reassociate::OptimizeExpression(BinaryOperator *I,
540                                       std::vector<ValueEntry> &Ops) {
541  // Now that we have the linearized expression tree, try to optimize it.
542  // Start by folding any constants that we found.
543  bool IterateOptimization = false;
544  if (Ops.size() == 1) return Ops[0].Op;
545
546  unsigned Opcode = I->getOpcode();
547
548  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
549    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
550      Ops.pop_back();
551      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
552      return OptimizeExpression(I, Ops);
553    }
554
555  // Check for destructive annihilation due to a constant being used.
556  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
557    switch (Opcode) {
558    default: break;
559    case Instruction::And:
560      if (CstVal->isZero()) {                // ... & 0 -> 0
561        ++NumAnnihil;
562        return CstVal;
563      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
564        Ops.pop_back();
565      }
566      break;
567    case Instruction::Mul:
568      if (CstVal->isZero()) {                // ... * 0 -> 0
569        ++NumAnnihil;
570        return CstVal;
571      } else if (cast<ConstantInt>(CstVal)->isOne()) {
572        Ops.pop_back();                      // ... * 1 -> ...
573      }
574      break;
575    case Instruction::Or:
576      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
577        ++NumAnnihil;
578        return CstVal;
579      }
580      // FALLTHROUGH!
581    case Instruction::Add:
582    case Instruction::Xor:
583      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
584        Ops.pop_back();
585      break;
586    }
587  if (Ops.size() == 1) return Ops[0].Op;
588
589  // Handle destructive annihilation do to identities between elements in the
590  // argument list here.
591  switch (Opcode) {
592  default: break;
593  case Instruction::And:
594  case Instruction::Or:
595  case Instruction::Xor:
596    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
597    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
598    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
599      // First, check for X and ~X in the operand list.
600      assert(i < Ops.size());
601      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
602        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
603        unsigned FoundX = FindInOperandList(Ops, i, X);
604        if (FoundX != i) {
605          if (Opcode == Instruction::And) {   // ...&X&~X = 0
606            ++NumAnnihil;
607            return Constant::getNullValue(X->getType());
608          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
609            ++NumAnnihil;
610            return ConstantInt::getAllOnesValue(X->getType());
611          }
612        }
613      }
614
615      // Next, check for duplicate pairs of values, which we assume are next to
616      // each other, due to our sorting criteria.
617      assert(i < Ops.size());
618      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
619        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
620          // Drop duplicate values.
621          Ops.erase(Ops.begin()+i);
622          --i; --e;
623          IterateOptimization = true;
624          ++NumAnnihil;
625        } else {
626          assert(Opcode == Instruction::Xor);
627          if (e == 2) {
628            ++NumAnnihil;
629            return Constant::getNullValue(Ops[0].Op->getType());
630          }
631          // ... X^X -> ...
632          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
633          i -= 1; e -= 2;
634          IterateOptimization = true;
635          ++NumAnnihil;
636        }
637      }
638    }
639    break;
640
641  case Instruction::Add:
642    // Scan the operand lists looking for X and -X pairs.  If we find any, we
643    // can simplify the expression. X+-X == 0.
644    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
645      assert(i < Ops.size());
646      // Check for X and -X in the operand list.
647      if (BinaryOperator::isNeg(Ops[i].Op)) {
648        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
649        unsigned FoundX = FindInOperandList(Ops, i, X);
650        if (FoundX != i) {
651          // Remove X and -X from the operand list.
652          if (Ops.size() == 2) {
653            ++NumAnnihil;
654            return Constant::getNullValue(X->getType());
655          } else {
656            Ops.erase(Ops.begin()+i);
657            if (i < FoundX)
658              --FoundX;
659            else
660              --i;   // Need to back up an extra one.
661            Ops.erase(Ops.begin()+FoundX);
662            IterateOptimization = true;
663            ++NumAnnihil;
664            --i;     // Revisit element.
665            e -= 2;  // Removed two elements.
666          }
667        }
668      }
669    }
670
671
672    // Scan the operand list, checking to see if there are any common factors
673    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
674    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
675    // To efficiently find this, we count the number of times a factor occurs
676    // for any ADD operands that are MULs.
677    std::map<Value*, unsigned> FactorOccurrences;
678    unsigned MaxOcc = 0;
679    Value *MaxOccVal = 0;
680    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
681      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
682        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
683          // Compute all of the factors of this added value.
684          std::vector<Value*> Factors;
685          FindSingleUseMultiplyFactors(BOp, Factors);
686          assert(Factors.size() > 1 && "Bad linearize!");
687
688          // Add one to FactorOccurrences for each unique factor in this op.
689          if (Factors.size() == 2) {
690            unsigned Occ = ++FactorOccurrences[Factors[0]];
691            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
692            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
693              Occ = ++FactorOccurrences[Factors[1]];
694              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
695            }
696          } else {
697            std::set<Value*> Duplicates;
698            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
699              if (Duplicates.insert(Factors[i]).second) {
700                unsigned Occ = ++FactorOccurrences[Factors[i]];
701                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
702              }
703            }
704          }
705        }
706      }
707    }
708
709    // If any factor occurred more than one time, we can pull it out.
710    if (MaxOcc > 1) {
711      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
712
713      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
714      // this, we could otherwise run into situations where removing a factor
715      // from an expression will drop a use of maxocc, and this can cause
716      // RemoveFactorFromExpression on successive values to behave differently.
717      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
718      std::vector<Value*> NewMulOps;
719      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
720        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
721          NewMulOps.push_back(V);
722          Ops.erase(Ops.begin()+i);
723          --i; --e;
724        }
725      }
726
727      // No need for extra uses anymore.
728      delete DummyInst;
729
730      unsigned NumAddedValues = NewMulOps.size();
731      Value *V = EmitAddTreeOfValues(I, NewMulOps);
732      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
733
734      // Now that we have inserted V and its sole use, optimize it. This allows
735      // us to handle cases that require multiple factoring steps, such as this:
736      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
737      if (NumAddedValues > 1)
738        ReassociateExpression(cast<BinaryOperator>(V));
739
740      ++NumFactor;
741
742      if (Ops.empty())
743        return V2;
744
745      // Add the new value to the list of things being added.
746      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
747
748      // Rewrite the tree so that there is now a use of V.
749      RewriteExprTree(I, Ops);
750      return OptimizeExpression(I, Ops);
751    }
752    break;
753  //case Instruction::Mul:
754  }
755
756  if (IterateOptimization)
757    return OptimizeExpression(I, Ops);
758  return 0;
759}
760
761
762/// ReassociateBB - Inspect all of the instructions in this basic block,
763/// reassociating them as we go.
764void Reassociate::ReassociateBB(BasicBlock *BB) {
765  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
766    Instruction *BI = BBI++;
767    if (BI->getOpcode() == Instruction::Shl &&
768        isa<ConstantInt>(BI->getOperand(1)))
769      if (Instruction *NI = ConvertShiftToMul(BI)) {
770        MadeChange = true;
771        BI = NI;
772      }
773
774    // Reject cases where it is pointless to do this.
775    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
776        isa<VectorType>(BI->getType()))
777      continue;  // Floating point ops are not associative.
778
779    // If this is a subtract instruction which is not already in negate form,
780    // see if we can convert it to X+-Y.
781    if (BI->getOpcode() == Instruction::Sub) {
782      if (ShouldBreakUpSubtract(BI)) {
783        BI = BreakUpSubtract(BI);
784        MadeChange = true;
785      } else if (BinaryOperator::isNeg(BI)) {
786        // Otherwise, this is a negation.  See if the operand is a multiply tree
787        // and if this is not an inner node of a multiply tree.
788        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
789            (!BI->hasOneUse() ||
790             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
791          BI = LowerNegateToMultiply(BI);
792          MadeChange = true;
793        }
794      }
795    }
796
797    // If this instruction is a commutative binary operator, process it.
798    if (!BI->isAssociative()) continue;
799    BinaryOperator *I = cast<BinaryOperator>(BI);
800
801    // If this is an interior node of a reassociable tree, ignore it until we
802    // get to the root of the tree, to avoid N^2 analysis.
803    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
804      continue;
805
806    // If this is an add tree that is used by a sub instruction, ignore it
807    // until we process the subtract.
808    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
809        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
810      continue;
811
812    ReassociateExpression(I);
813  }
814}
815
816void Reassociate::ReassociateExpression(BinaryOperator *I) {
817
818  // First, walk the expression tree, linearizing the tree, collecting
819  std::vector<ValueEntry> Ops;
820  LinearizeExprTree(I, Ops);
821
822  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
823
824  // Now that we have linearized the tree to a list and have gathered all of
825  // the operands and their ranks, sort the operands by their rank.  Use a
826  // stable_sort so that values with equal ranks will have their relative
827  // positions maintained (and so the compiler is deterministic).  Note that
828  // this sorts so that the highest ranking values end up at the beginning of
829  // the vector.
830  std::stable_sort(Ops.begin(), Ops.end());
831
832  // OptimizeExpression - Now that we have the expression tree in a convenient
833  // sorted form, optimize it globally if possible.
834  if (Value *V = OptimizeExpression(I, Ops)) {
835    // This expression tree simplified to something that isn't a tree,
836    // eliminate it.
837    DOUT << "Reassoc to scalar: " << *V << "\n";
838    I->replaceAllUsesWith(V);
839    RemoveDeadBinaryOp(I);
840    return;
841  }
842
843  // We want to sink immediates as deeply as possible except in the case where
844  // this is a multiply tree used only by an add, and the immediate is a -1.
845  // In this case we reassociate to put the negation on the outside so that we
846  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
847  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
848      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
849      isa<ConstantInt>(Ops.back().Op) &&
850      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
851    Ops.insert(Ops.begin(), Ops.back());
852    Ops.pop_back();
853  }
854
855  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
856
857  if (Ops.size() == 1) {
858    // This expression tree simplified to something that isn't a tree,
859    // eliminate it.
860    I->replaceAllUsesWith(Ops[0].Op);
861    RemoveDeadBinaryOp(I);
862  } else {
863    // Now that we ordered and optimized the expressions, splat them back into
864    // the expression tree, removing any unneeded nodes.
865    RewriteExprTree(I, Ops);
866  }
867}
868
869
870bool Reassociate::runOnFunction(Function &F) {
871  // Recalculate the rank map for F
872  BuildRankMap(F);
873
874  MadeChange = false;
875  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
876    ReassociateBB(FI);
877
878  // We are done with the rank map...
879  RankMap.clear();
880  ValueRankMap.clear();
881  return MadeChange;
882}
883
884