Reassociate.cpp revision a276c603b82a11b0bf0b59f0517a69e4b63adeab
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/MallocHelper.h"
33#include "llvm/Assembly/Writer.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ValueHandle.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/PostOrderIterator.h"
39#include "llvm/ADT/Statistic.h"
40#include <algorithm>
41#include <map>
42using namespace llvm;
43
44STATISTIC(NumLinear , "Number of insts linearized");
45STATISTIC(NumChanged, "Number of insts reassociated");
46STATISTIC(NumAnnihil, "Number of expr tree annihilated");
47STATISTIC(NumFactor , "Number of multiplies factored");
48
49namespace {
50  struct ValueEntry {
51    unsigned Rank;
52    Value *Op;
53    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54  };
55  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
56    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
57  }
58}
59
60#ifndef NDEBUG
61/// PrintOps - Print out the expression identified in the Ops list.
62///
63static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
64  Module *M = I->getParent()->getParent()->getParent();
65  errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
66       << *Ops[0].Op->getType();
67  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
68    WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
69    errs() << "," << Ops[i].Rank;
70  }
71}
72#endif
73
74namespace {
75  class Reassociate : public FunctionPass {
76    std::map<BasicBlock*, unsigned> RankMap;
77    std::map<AssertingVH<>, unsigned> ValueRankMap;
78    bool MadeChange;
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    Reassociate() : FunctionPass(&ID) {}
82
83    bool runOnFunction(Function &F);
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87    }
88  private:
89    void BuildRankMap(Function &F);
90    unsigned getRank(Value *V);
91    void ReassociateExpression(BinaryOperator *I);
92    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
93                         unsigned Idx = 0);
94    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
96    void LinearizeExpr(BinaryOperator *I);
97    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
98    void ReassociateBB(BasicBlock *BB);
99
100    void RemoveDeadBinaryOp(Value *V);
101  };
102}
103
104char Reassociate::ID = 0;
105static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
106
107// Public interface to the Reassociate pass
108FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
109
110void Reassociate::RemoveDeadBinaryOp(Value *V) {
111  Instruction *Op = dyn_cast<Instruction>(V);
112  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
113    return;
114
115  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
116  RemoveDeadBinaryOp(LHS);
117  RemoveDeadBinaryOp(RHS);
118}
119
120
121static bool isUnmovableInstruction(Instruction *I) {
122  if (I->getOpcode() == Instruction::PHI ||
123      I->getOpcode() == Instruction::Alloca ||
124      I->getOpcode() == Instruction::Load ||
125      isMalloc(I) ||
126      I->getOpcode() == Instruction::Invoke ||
127      (I->getOpcode() == Instruction::Call &&
128       !isa<DbgInfoIntrinsic>(I)) ||
129      I->getOpcode() == Instruction::UDiv ||
130      I->getOpcode() == Instruction::SDiv ||
131      I->getOpcode() == Instruction::FDiv ||
132      I->getOpcode() == Instruction::URem ||
133      I->getOpcode() == Instruction::SRem ||
134      I->getOpcode() == Instruction::FRem)
135    return true;
136  return false;
137}
138
139void Reassociate::BuildRankMap(Function &F) {
140  unsigned i = 2;
141
142  // Assign distinct ranks to function arguments
143  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
144    ValueRankMap[&*I] = ++i;
145
146  ReversePostOrderTraversal<Function*> RPOT(&F);
147  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
148         E = RPOT.end(); I != E; ++I) {
149    BasicBlock *BB = *I;
150    unsigned BBRank = RankMap[BB] = ++i << 16;
151
152    // Walk the basic block, adding precomputed ranks for any instructions that
153    // we cannot move.  This ensures that the ranks for these instructions are
154    // all different in the block.
155    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
156      if (isUnmovableInstruction(I))
157        ValueRankMap[&*I] = ++BBRank;
158  }
159}
160
161unsigned Reassociate::getRank(Value *V) {
162  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
163
164  Instruction *I = dyn_cast<Instruction>(V);
165  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
166
167  unsigned &CachedRank = ValueRankMap[I];
168  if (CachedRank) return CachedRank;    // Rank already known?
169
170  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
171  // we can reassociate expressions for code motion!  Since we do not recurse
172  // for PHI nodes, we cannot have infinite recursion here, because there
173  // cannot be loops in the value graph that do not go through PHI nodes.
174  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
175  for (unsigned i = 0, e = I->getNumOperands();
176       i != e && Rank != MaxRank; ++i)
177    Rank = std::max(Rank, getRank(I->getOperand(i)));
178
179  // If this is a not or neg instruction, do not count it for rank.  This
180  // assures us that X and ~X will have the same rank.
181  if (!I->getType()->isInteger() ||
182      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
183    ++Rank;
184
185  //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
186  //     << Rank << "\n");
187
188  return CachedRank = Rank;
189}
190
191/// isReassociableOp - Return true if V is an instruction of the specified
192/// opcode and if it only has one use.
193static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
194  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
195      cast<Instruction>(V)->getOpcode() == Opcode)
196    return cast<BinaryOperator>(V);
197  return 0;
198}
199
200/// LowerNegateToMultiply - Replace 0-X with X*-1.
201///
202static Instruction *LowerNegateToMultiply(Instruction *Neg,
203                              std::map<AssertingVH<>, unsigned> &ValueRankMap,
204                              LLVMContext &Context) {
205  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
206
207  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
208  ValueRankMap.erase(Neg);
209  Res->takeName(Neg);
210  Neg->replaceAllUsesWith(Res);
211  Neg->eraseFromParent();
212  return Res;
213}
214
215// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
216// Note that if D is also part of the expression tree that we recurse to
217// linearize it as well.  Besides that case, this does not recurse into A,B, or
218// C.
219void Reassociate::LinearizeExpr(BinaryOperator *I) {
220  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
221  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
222  assert(isReassociableOp(LHS, I->getOpcode()) &&
223         isReassociableOp(RHS, I->getOpcode()) &&
224         "Not an expression that needs linearization?");
225
226  DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
227
228  // Move the RHS instruction to live immediately before I, avoiding breaking
229  // dominator properties.
230  RHS->moveBefore(I);
231
232  // Move operands around to do the linearization.
233  I->setOperand(1, RHS->getOperand(0));
234  RHS->setOperand(0, LHS);
235  I->setOperand(0, RHS);
236
237  ++NumLinear;
238  MadeChange = true;
239  DEBUG(errs() << "Linearized: " << *I << '\n');
240
241  // If D is part of this expression tree, tail recurse.
242  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
243    LinearizeExpr(I);
244}
245
246
247/// LinearizeExprTree - Given an associative binary expression tree, traverse
248/// all of the uses putting it into canonical form.  This forces a left-linear
249/// form of the the expression (((a+b)+c)+d), and collects information about the
250/// rank of the non-tree operands.
251///
252/// NOTE: These intentionally destroys the expression tree operands (turning
253/// them into undef values) to reduce #uses of the values.  This means that the
254/// caller MUST use something like RewriteExprTree to put the values back in.
255///
256void Reassociate::LinearizeExprTree(BinaryOperator *I,
257                                    std::vector<ValueEntry> &Ops) {
258  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
259  unsigned Opcode = I->getOpcode();
260  LLVMContext &Context = I->getContext();
261
262  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
263  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
264  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
265
266  // If this is a multiply expression tree and it contains internal negations,
267  // transform them into multiplies by -1 so they can be reassociated.
268  if (I->getOpcode() == Instruction::Mul) {
269    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
270      LHS = LowerNegateToMultiply(cast<Instruction>(LHS),
271                                  ValueRankMap, Context);
272      LHSBO = isReassociableOp(LHS, Opcode);
273    }
274    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
275      RHS = LowerNegateToMultiply(cast<Instruction>(RHS),
276                                  ValueRankMap, Context);
277      RHSBO = isReassociableOp(RHS, Opcode);
278    }
279  }
280
281  if (!LHSBO) {
282    if (!RHSBO) {
283      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
284      // such, just remember these operands and their rank.
285      Ops.push_back(ValueEntry(getRank(LHS), LHS));
286      Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288      // Clear the leaves out.
289      I->setOperand(0, UndefValue::get(I->getType()));
290      I->setOperand(1, UndefValue::get(I->getType()));
291      return;
292    } else {
293      // Turn X+(Y+Z) -> (Y+Z)+X
294      std::swap(LHSBO, RHSBO);
295      std::swap(LHS, RHS);
296      bool Success = !I->swapOperands();
297      assert(Success && "swapOperands failed");
298      Success = false;
299      MadeChange = true;
300    }
301  } else if (RHSBO) {
302    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
303    // part of the expression tree.
304    LinearizeExpr(I);
305    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306    RHS = I->getOperand(1);
307    RHSBO = 0;
308  }
309
310  // Okay, now we know that the LHS is a nested expression and that the RHS is
311  // not.  Perform reassociation.
312  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314  // Move LHS right before I to make sure that the tree expression dominates all
315  // values.
316  LHSBO->moveBefore(I);
317
318  // Linearize the expression tree on the LHS.
319  LinearizeExprTree(LHSBO, Ops);
320
321  // Remember the RHS operand and its rank.
322  Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324  // Clear the RHS leaf out.
325  I->setOperand(1, UndefValue::get(I->getType()));
326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order.  This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
332                                  std::vector<ValueEntry> &Ops,
333                                  unsigned i) {
334  if (i+2 == Ops.size()) {
335    if (I->getOperand(0) != Ops[i].Op ||
336        I->getOperand(1) != Ops[i+1].Op) {
337      Value *OldLHS = I->getOperand(0);
338      DEBUG(errs() << "RA: " << *I << '\n');
339      I->setOperand(0, Ops[i].Op);
340      I->setOperand(1, Ops[i+1].Op);
341      DEBUG(errs() << "TO: " << *I << '\n');
342      MadeChange = true;
343      ++NumChanged;
344
345      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346      // delete the extra, now dead, nodes.
347      RemoveDeadBinaryOp(OldLHS);
348    }
349    return;
350  }
351  assert(i+2 < Ops.size() && "Ops index out of range!");
352
353  if (I->getOperand(1) != Ops[i].Op) {
354    DEBUG(errs() << "RA: " << *I << '\n');
355    I->setOperand(1, Ops[i].Op);
356    DEBUG(errs() << "TO: " << *I << '\n');
357    MadeChange = true;
358    ++NumChanged;
359  }
360
361  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362  assert(LHS->getOpcode() == I->getOpcode() &&
363         "Improper expression tree!");
364
365  // Compactify the tree instructions together with each other to guarantee
366  // that the expression tree is dominated by all of Ops.
367  LHS->moveBefore(I);
368  RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified.  The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
378static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
379  // We are trying to expose opportunity for reassociation.  One of the things
380  // that we want to do to achieve this is to push a negation as deep into an
381  // expression chain as possible, to expose the add instructions.  In practice,
382  // this means that we turn this:
383  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
384  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385  // the constants.  We assume that instcombine will clean up the mess later if
386  // we introduce tons of unnecessary negation instructions...
387  //
388  if (Instruction *I = dyn_cast<Instruction>(V))
389    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
390      // Push the negates through the add.
391      I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
392      I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
393
394      // We must move the add instruction here, because the neg instructions do
395      // not dominate the old add instruction in general.  By moving it, we are
396      // assured that the neg instructions we just inserted dominate the
397      // instruction we are about to insert after them.
398      //
399      I->moveBefore(BI);
400      I->setName(I->getName()+".neg");
401      return I;
402    }
403
404  // Insert a 'neg' instruction that subtracts the value from zero to get the
405  // negation.
406  //
407  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
408}
409
410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
412static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
413  // If this is a negation, we can't split it up!
414  if (BinaryOperator::isNeg(Sub))
415    return false;
416
417  // Don't bother to break this up unless either the LHS is an associable add or
418  // subtract or if this is only used by one.
419  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
421    return true;
422  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
423      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
424    return true;
425  if (Sub->hasOneUse() &&
426      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427       isReassociableOp(Sub->use_back(), Instruction::Sub)))
428    return true;
429
430  return false;
431}
432
433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
436static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
437                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
438  // Convert a subtract into an add and a neg instruction... so that sub
439  // instructions can be commuted with other add instructions...
440  //
441  // Calculate the negative value of Operand 1 of the sub instruction...
442  // and set it as the RHS of the add instruction we just made...
443  //
444  Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
445  Instruction *New =
446    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
447  New->takeName(Sub);
448
449  // Everyone now refers to the add instruction.
450  ValueRankMap.erase(Sub);
451  Sub->replaceAllUsesWith(New);
452  Sub->eraseFromParent();
453
454  DEBUG(errs() << "Negated: " << *New << '\n');
455  return New;
456}
457
458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
461static Instruction *ConvertShiftToMul(Instruction *Shl,
462                              std::map<AssertingVH<>, unsigned> &ValueRankMap,
463                              LLVMContext &Context) {
464  // If an operand of this shift is a reassociable multiply, or if the shift
465  // is used by a reassociable multiply or add, turn into a multiply.
466  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
467      (Shl->hasOneUse() &&
468       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
469        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
470    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
471    MulCst =
472        ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
473
474    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
475                                                 "", Shl);
476    ValueRankMap.erase(Shl);
477    Mul->takeName(Shl);
478    Shl->replaceAllUsesWith(Mul);
479    Shl->eraseFromParent();
480    return Mul;
481  }
482  return 0;
483}
484
485// Scan backwards and forwards among values with the same rank as element i to
486// see if X exists.  If X does not exist, return i.
487static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
488                                  Value *X) {
489  unsigned XRank = Ops[i].Rank;
490  unsigned e = Ops.size();
491  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
492    if (Ops[j].Op == X)
493      return j;
494  // Scan backwards
495  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
496    if (Ops[j].Op == X)
497      return j;
498  return i;
499}
500
501/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
502/// and returning the result.  Insert the tree before I.
503static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
504  if (Ops.size() == 1) return Ops.back();
505
506  Value *V1 = Ops.back();
507  Ops.pop_back();
508  Value *V2 = EmitAddTreeOfValues(I, Ops);
509  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
510}
511
512/// RemoveFactorFromExpression - If V is an expression tree that is a
513/// multiplication sequence, and if this sequence contains a multiply by Factor,
514/// remove Factor from the tree and return the new tree.
515Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
516  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
517  if (!BO) return 0;
518
519  std::vector<ValueEntry> Factors;
520  LinearizeExprTree(BO, Factors);
521
522  bool FoundFactor = false;
523  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
524    if (Factors[i].Op == Factor) {
525      FoundFactor = true;
526      Factors.erase(Factors.begin()+i);
527      break;
528    }
529  if (!FoundFactor) {
530    // Make sure to restore the operands to the expression tree.
531    RewriteExprTree(BO, Factors);
532    return 0;
533  }
534
535  if (Factors.size() == 1) return Factors[0].Op;
536
537  RewriteExprTree(BO, Factors);
538  return BO;
539}
540
541/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
542/// add its operands as factors, otherwise add V to the list of factors.
543static void FindSingleUseMultiplyFactors(Value *V,
544                                         std::vector<Value*> &Factors) {
545  BinaryOperator *BO;
546  if ((!V->hasOneUse() && !V->use_empty()) ||
547      !(BO = dyn_cast<BinaryOperator>(V)) ||
548      BO->getOpcode() != Instruction::Mul) {
549    Factors.push_back(V);
550    return;
551  }
552
553  // Otherwise, add the LHS and RHS to the list of factors.
554  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
555  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
556}
557
558
559
560Value *Reassociate::OptimizeExpression(BinaryOperator *I,
561                                       std::vector<ValueEntry> &Ops) {
562  // Now that we have the linearized expression tree, try to optimize it.
563  // Start by folding any constants that we found.
564  bool IterateOptimization = false;
565  if (Ops.size() == 1) return Ops[0].Op;
566
567  unsigned Opcode = I->getOpcode();
568
569  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
570    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
571      Ops.pop_back();
572      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
573      return OptimizeExpression(I, Ops);
574    }
575
576  // Check for destructive annihilation due to a constant being used.
577  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
578    switch (Opcode) {
579    default: break;
580    case Instruction::And:
581      if (CstVal->isZero()) {                // ... & 0 -> 0
582        ++NumAnnihil;
583        return CstVal;
584      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
585        Ops.pop_back();
586      }
587      break;
588    case Instruction::Mul:
589      if (CstVal->isZero()) {                // ... * 0 -> 0
590        ++NumAnnihil;
591        return CstVal;
592      } else if (cast<ConstantInt>(CstVal)->isOne()) {
593        Ops.pop_back();                      // ... * 1 -> ...
594      }
595      break;
596    case Instruction::Or:
597      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
598        ++NumAnnihil;
599        return CstVal;
600      }
601      // FALLTHROUGH!
602    case Instruction::Add:
603    case Instruction::Xor:
604      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
605        Ops.pop_back();
606      break;
607    }
608  if (Ops.size() == 1) return Ops[0].Op;
609
610  // Handle destructive annihilation do to identities between elements in the
611  // argument list here.
612  switch (Opcode) {
613  default: break;
614  case Instruction::And:
615  case Instruction::Or:
616  case Instruction::Xor:
617    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
618    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
619    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
620      // First, check for X and ~X in the operand list.
621      assert(i < Ops.size());
622      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
623        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
624        unsigned FoundX = FindInOperandList(Ops, i, X);
625        if (FoundX != i) {
626          if (Opcode == Instruction::And) {   // ...&X&~X = 0
627            ++NumAnnihil;
628            return Constant::getNullValue(X->getType());
629          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
630            ++NumAnnihil;
631            return Constant::getAllOnesValue(X->getType());
632          }
633        }
634      }
635
636      // Next, check for duplicate pairs of values, which we assume are next to
637      // each other, due to our sorting criteria.
638      assert(i < Ops.size());
639      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
640        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
641          // Drop duplicate values.
642          Ops.erase(Ops.begin()+i);
643          --i; --e;
644          IterateOptimization = true;
645          ++NumAnnihil;
646        } else {
647          assert(Opcode == Instruction::Xor);
648          if (e == 2) {
649            ++NumAnnihil;
650            return Constant::getNullValue(Ops[0].Op->getType());
651          }
652          // ... X^X -> ...
653          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
654          i -= 1; e -= 2;
655          IterateOptimization = true;
656          ++NumAnnihil;
657        }
658      }
659    }
660    break;
661
662  case Instruction::Add:
663    // Scan the operand lists looking for X and -X pairs.  If we find any, we
664    // can simplify the expression. X+-X == 0.
665    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
666      assert(i < Ops.size());
667      // Check for X and -X in the operand list.
668      if (BinaryOperator::isNeg(Ops[i].Op)) {
669        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
670        unsigned FoundX = FindInOperandList(Ops, i, X);
671        if (FoundX != i) {
672          // Remove X and -X from the operand list.
673          if (Ops.size() == 2) {
674            ++NumAnnihil;
675            return Constant::getNullValue(X->getType());
676          } else {
677            Ops.erase(Ops.begin()+i);
678            if (i < FoundX)
679              --FoundX;
680            else
681              --i;   // Need to back up an extra one.
682            Ops.erase(Ops.begin()+FoundX);
683            IterateOptimization = true;
684            ++NumAnnihil;
685            --i;     // Revisit element.
686            e -= 2;  // Removed two elements.
687          }
688        }
689      }
690    }
691
692
693    // Scan the operand list, checking to see if there are any common factors
694    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
695    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
696    // To efficiently find this, we count the number of times a factor occurs
697    // for any ADD operands that are MULs.
698    std::map<Value*, unsigned> FactorOccurrences;
699    unsigned MaxOcc = 0;
700    Value *MaxOccVal = 0;
701    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
702      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
703        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
704          // Compute all of the factors of this added value.
705          std::vector<Value*> Factors;
706          FindSingleUseMultiplyFactors(BOp, Factors);
707          assert(Factors.size() > 1 && "Bad linearize!");
708
709          // Add one to FactorOccurrences for each unique factor in this op.
710          if (Factors.size() == 2) {
711            unsigned Occ = ++FactorOccurrences[Factors[0]];
712            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
713            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
714              Occ = ++FactorOccurrences[Factors[1]];
715              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
716            }
717          } else {
718            std::set<Value*> Duplicates;
719            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
720              if (Duplicates.insert(Factors[i]).second) {
721                unsigned Occ = ++FactorOccurrences[Factors[i]];
722                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
723              }
724            }
725          }
726        }
727      }
728    }
729
730    // If any factor occurred more than one time, we can pull it out.
731    if (MaxOcc > 1) {
732      DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
733
734      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
735      // this, we could otherwise run into situations where removing a factor
736      // from an expression will drop a use of maxocc, and this can cause
737      // RemoveFactorFromExpression on successive values to behave differently.
738      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
739      std::vector<Value*> NewMulOps;
740      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
741        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
742          NewMulOps.push_back(V);
743          Ops.erase(Ops.begin()+i);
744          --i; --e;
745        }
746      }
747
748      // No need for extra uses anymore.
749      delete DummyInst;
750
751      unsigned NumAddedValues = NewMulOps.size();
752      Value *V = EmitAddTreeOfValues(I, NewMulOps);
753      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
754
755      // Now that we have inserted V and its sole use, optimize it. This allows
756      // us to handle cases that require multiple factoring steps, such as this:
757      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
758      if (NumAddedValues > 1)
759        ReassociateExpression(cast<BinaryOperator>(V));
760
761      ++NumFactor;
762
763      if (Ops.empty())
764        return V2;
765
766      // Add the new value to the list of things being added.
767      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
768
769      // Rewrite the tree so that there is now a use of V.
770      RewriteExprTree(I, Ops);
771      return OptimizeExpression(I, Ops);
772    }
773    break;
774  //case Instruction::Mul:
775  }
776
777  if (IterateOptimization)
778    return OptimizeExpression(I, Ops);
779  return 0;
780}
781
782
783/// ReassociateBB - Inspect all of the instructions in this basic block,
784/// reassociating them as we go.
785void Reassociate::ReassociateBB(BasicBlock *BB) {
786  LLVMContext &Context = BB->getContext();
787
788  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
789    Instruction *BI = BBI++;
790    if (BI->getOpcode() == Instruction::Shl &&
791        isa<ConstantInt>(BI->getOperand(1)))
792      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) {
793        MadeChange = true;
794        BI = NI;
795      }
796
797    // Reject cases where it is pointless to do this.
798    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
799        isa<VectorType>(BI->getType()))
800      continue;  // Floating point ops are not associative.
801
802    // If this is a subtract instruction which is not already in negate form,
803    // see if we can convert it to X+-Y.
804    if (BI->getOpcode() == Instruction::Sub) {
805      if (ShouldBreakUpSubtract(Context, BI)) {
806        BI = BreakUpSubtract(Context, BI, ValueRankMap);
807        MadeChange = true;
808      } else if (BinaryOperator::isNeg(BI)) {
809        // Otherwise, this is a negation.  See if the operand is a multiply tree
810        // and if this is not an inner node of a multiply tree.
811        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
812            (!BI->hasOneUse() ||
813             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
814          BI = LowerNegateToMultiply(BI, ValueRankMap, Context);
815          MadeChange = true;
816        }
817      }
818    }
819
820    // If this instruction is a commutative binary operator, process it.
821    if (!BI->isAssociative()) continue;
822    BinaryOperator *I = cast<BinaryOperator>(BI);
823
824    // If this is an interior node of a reassociable tree, ignore it until we
825    // get to the root of the tree, to avoid N^2 analysis.
826    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
827      continue;
828
829    // If this is an add tree that is used by a sub instruction, ignore it
830    // until we process the subtract.
831    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
832        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
833      continue;
834
835    ReassociateExpression(I);
836  }
837}
838
839void Reassociate::ReassociateExpression(BinaryOperator *I) {
840
841  // First, walk the expression tree, linearizing the tree, collecting
842  std::vector<ValueEntry> Ops;
843  LinearizeExprTree(I, Ops);
844
845  DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
846
847  // Now that we have linearized the tree to a list and have gathered all of
848  // the operands and their ranks, sort the operands by their rank.  Use a
849  // stable_sort so that values with equal ranks will have their relative
850  // positions maintained (and so the compiler is deterministic).  Note that
851  // this sorts so that the highest ranking values end up at the beginning of
852  // the vector.
853  std::stable_sort(Ops.begin(), Ops.end());
854
855  // OptimizeExpression - Now that we have the expression tree in a convenient
856  // sorted form, optimize it globally if possible.
857  if (Value *V = OptimizeExpression(I, Ops)) {
858    // This expression tree simplified to something that isn't a tree,
859    // eliminate it.
860    DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
861    I->replaceAllUsesWith(V);
862    RemoveDeadBinaryOp(I);
863    return;
864  }
865
866  // We want to sink immediates as deeply as possible except in the case where
867  // this is a multiply tree used only by an add, and the immediate is a -1.
868  // In this case we reassociate to put the negation on the outside so that we
869  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
870  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
871      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
872      isa<ConstantInt>(Ops.back().Op) &&
873      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
874    Ops.insert(Ops.begin(), Ops.back());
875    Ops.pop_back();
876  }
877
878  DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
879
880  if (Ops.size() == 1) {
881    // This expression tree simplified to something that isn't a tree,
882    // eliminate it.
883    I->replaceAllUsesWith(Ops[0].Op);
884    RemoveDeadBinaryOp(I);
885  } else {
886    // Now that we ordered and optimized the expressions, splat them back into
887    // the expression tree, removing any unneeded nodes.
888    RewriteExprTree(I, Ops);
889  }
890}
891
892
893bool Reassociate::runOnFunction(Function &F) {
894  // Recalculate the rank map for F
895  BuildRankMap(F);
896
897  MadeChange = false;
898  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
899    ReassociateBB(FI);
900
901  // We are done with the rank map...
902  RankMap.clear();
903  ValueRankMap.clear();
904  return MadeChange;
905}
906
907