Reassociate.cpp revision ae74f555522298bef3be8a173163bf778d59adf9
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include <algorithm>
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  Statistic<> NumLinear ("reassociate","Number of insts linearized");
41  Statistic<> NumChanged("reassociate","Number of insts reassociated");
42  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
43  Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
44  Statistic<> NumFactor ("reassociate","Number of multiplies factored");
45
46  struct ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59  Module *M = I->getParent()->getParent()->getParent();
60  std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61  << *Ops[0].Op->getType();
62  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63    WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
64      << "," << Ops[i].Rank;
65}
66
67namespace {
68  class Reassociate : public FunctionPass {
69    std::map<BasicBlock*, unsigned> RankMap;
70    std::map<Value*, unsigned> ValueRankMap;
71    bool MadeChange;
72  public:
73    bool runOnFunction(Function &F);
74
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77    }
78  private:
79    void BuildRankMap(Function &F);
80    unsigned getRank(Value *V);
81    void ReassociateExpression(BinaryOperator *I);
82    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
83                         unsigned Idx = 0);
84    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
85    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
86    void LinearizeExpr(BinaryOperator *I);
87    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
88    void ReassociateBB(BasicBlock *BB);
89
90    void RemoveDeadBinaryOp(Value *V);
91  };
92
93  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
94}
95
96// Public interface to the Reassociate pass
97FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
98
99void Reassociate::RemoveDeadBinaryOp(Value *V) {
100  BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
101  if (!BOp || !BOp->use_empty()) return;
102
103  Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
104  RemoveDeadBinaryOp(LHS);
105  RemoveDeadBinaryOp(RHS);
106}
107
108
109static bool isUnmovableInstruction(Instruction *I) {
110  if (I->getOpcode() == Instruction::PHI ||
111      I->getOpcode() == Instruction::Alloca ||
112      I->getOpcode() == Instruction::Load ||
113      I->getOpcode() == Instruction::Malloc ||
114      I->getOpcode() == Instruction::Invoke ||
115      I->getOpcode() == Instruction::Call ||
116      I->getOpcode() == Instruction::Div ||
117      I->getOpcode() == Instruction::Rem)
118    return true;
119  return false;
120}
121
122void Reassociate::BuildRankMap(Function &F) {
123  unsigned i = 2;
124
125  // Assign distinct ranks to function arguments
126  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
127    ValueRankMap[I] = ++i;
128
129  ReversePostOrderTraversal<Function*> RPOT(&F);
130  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
131         E = RPOT.end(); I != E; ++I) {
132    BasicBlock *BB = *I;
133    unsigned BBRank = RankMap[BB] = ++i << 16;
134
135    // Walk the basic block, adding precomputed ranks for any instructions that
136    // we cannot move.  This ensures that the ranks for these instructions are
137    // all different in the block.
138    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
139      if (isUnmovableInstruction(I))
140        ValueRankMap[I] = ++BBRank;
141  }
142}
143
144unsigned Reassociate::getRank(Value *V) {
145  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
146
147  Instruction *I = dyn_cast<Instruction>(V);
148  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
149
150  unsigned &CachedRank = ValueRankMap[I];
151  if (CachedRank) return CachedRank;    // Rank already known?
152
153  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
154  // we can reassociate expressions for code motion!  Since we do not recurse
155  // for PHI nodes, we cannot have infinite recursion here, because there
156  // cannot be loops in the value graph that do not go through PHI nodes.
157  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
158  for (unsigned i = 0, e = I->getNumOperands();
159       i != e && Rank != MaxRank; ++i)
160    Rank = std::max(Rank, getRank(I->getOperand(i)));
161
162  // If this is a not or neg instruction, do not count it for rank.  This
163  // assures us that X and ~X will have the same rank.
164  if (!I->getType()->isIntegral() ||
165      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
166    ++Rank;
167
168  //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
169  //<< Rank << "\n");
170
171  return CachedRank = Rank;
172}
173
174/// isReassociableOp - Return true if V is an instruction of the specified
175/// opcode and if it only has one use.
176static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
177  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
178      cast<Instruction>(V)->getOpcode() == Opcode)
179    return cast<BinaryOperator>(V);
180  return 0;
181}
182
183/// LowerNegateToMultiply - Replace 0-X with X*-1.
184///
185static Instruction *LowerNegateToMultiply(Instruction *Neg) {
186  Constant *Cst;
187  if (Neg->getType()->isFloatingPoint())
188    Cst = ConstantFP::get(Neg->getType(), -1);
189  else
190    Cst = ConstantInt::getAllOnesValue(Neg->getType());
191
192  std::string NegName = Neg->getName(); Neg->setName("");
193  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
194                                               Neg);
195  Neg->replaceAllUsesWith(Res);
196  Neg->eraseFromParent();
197  return Res;
198}
199
200// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
201// Note that if D is also part of the expression tree that we recurse to
202// linearize it as well.  Besides that case, this does not recurse into A,B, or
203// C.
204void Reassociate::LinearizeExpr(BinaryOperator *I) {
205  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
206  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
207  assert(isReassociableOp(LHS, I->getOpcode()) &&
208         isReassociableOp(RHS, I->getOpcode()) &&
209         "Not an expression that needs linearization?");
210
211  DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
212
213  // Move the RHS instruction to live immediately before I, avoiding breaking
214  // dominator properties.
215  RHS->moveBefore(I);
216
217  // Move operands around to do the linearization.
218  I->setOperand(1, RHS->getOperand(0));
219  RHS->setOperand(0, LHS);
220  I->setOperand(0, RHS);
221
222  ++NumLinear;
223  MadeChange = true;
224  DEBUG(std::cerr << "Linearized: " << *I);
225
226  // If D is part of this expression tree, tail recurse.
227  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
228    LinearizeExpr(I);
229}
230
231
232/// LinearizeExprTree - Given an associative binary expression tree, traverse
233/// all of the uses putting it into canonical form.  This forces a left-linear
234/// form of the the expression (((a+b)+c)+d), and collects information about the
235/// rank of the non-tree operands.
236///
237/// NOTE: These intentionally destroys the expression tree operands (turning
238/// them into undef values) to reduce #uses of the values.  This means that the
239/// caller MUST use something like RewriteExprTree to put the values back in.
240///
241void Reassociate::LinearizeExprTree(BinaryOperator *I,
242                                    std::vector<ValueEntry> &Ops) {
243  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
244  unsigned Opcode = I->getOpcode();
245
246  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
247  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
248  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
249
250  // If this is a multiply expression tree and it contains internal negations,
251  // transform them into multiplies by -1 so they can be reassociated.
252  if (I->getOpcode() == Instruction::Mul) {
253    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
254      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
255      LHSBO = isReassociableOp(LHS, Opcode);
256    }
257    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
258      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
259      RHSBO = isReassociableOp(RHS, Opcode);
260    }
261  }
262
263  if (!LHSBO) {
264    if (!RHSBO) {
265      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
266      // such, just remember these operands and their rank.
267      Ops.push_back(ValueEntry(getRank(LHS), LHS));
268      Ops.push_back(ValueEntry(getRank(RHS), RHS));
269
270      // Clear the leaves out.
271      I->setOperand(0, UndefValue::get(I->getType()));
272      I->setOperand(1, UndefValue::get(I->getType()));
273      return;
274    } else {
275      // Turn X+(Y+Z) -> (Y+Z)+X
276      std::swap(LHSBO, RHSBO);
277      std::swap(LHS, RHS);
278      bool Success = !I->swapOperands();
279      assert(Success && "swapOperands failed");
280      MadeChange = true;
281    }
282  } else if (RHSBO) {
283    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
284    // part of the expression tree.
285    LinearizeExpr(I);
286    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
287    RHS = I->getOperand(1);
288    RHSBO = 0;
289  }
290
291  // Okay, now we know that the LHS is a nested expression and that the RHS is
292  // not.  Perform reassociation.
293  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
294
295  // Move LHS right before I to make sure that the tree expression dominates all
296  // values.
297  LHSBO->moveBefore(I);
298
299  // Linearize the expression tree on the LHS.
300  LinearizeExprTree(LHSBO, Ops);
301
302  // Remember the RHS operand and its rank.
303  Ops.push_back(ValueEntry(getRank(RHS), RHS));
304
305  // Clear the RHS leaf out.
306  I->setOperand(1, UndefValue::get(I->getType()));
307}
308
309// RewriteExprTree - Now that the operands for this expression tree are
310// linearized and optimized, emit them in-order.  This function is written to be
311// tail recursive.
312void Reassociate::RewriteExprTree(BinaryOperator *I,
313                                  std::vector<ValueEntry> &Ops,
314                                  unsigned i) {
315  if (i+2 == Ops.size()) {
316    if (I->getOperand(0) != Ops[i].Op ||
317        I->getOperand(1) != Ops[i+1].Op) {
318      Value *OldLHS = I->getOperand(0);
319      DEBUG(std::cerr << "RA: " << *I);
320      I->setOperand(0, Ops[i].Op);
321      I->setOperand(1, Ops[i+1].Op);
322      DEBUG(std::cerr << "TO: " << *I);
323      MadeChange = true;
324      ++NumChanged;
325
326      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
327      // delete the extra, now dead, nodes.
328      RemoveDeadBinaryOp(OldLHS);
329    }
330    return;
331  }
332  assert(i+2 < Ops.size() && "Ops index out of range!");
333
334  if (I->getOperand(1) != Ops[i].Op) {
335    DEBUG(std::cerr << "RA: " << *I);
336    I->setOperand(1, Ops[i].Op);
337    DEBUG(std::cerr << "TO: " << *I);
338    MadeChange = true;
339    ++NumChanged;
340  }
341
342  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
343  assert(LHS->getOpcode() == I->getOpcode() &&
344         "Improper expression tree!");
345
346  // Compactify the tree instructions together with each other to guarantee
347  // that the expression tree is dominated by all of Ops.
348  LHS->moveBefore(I);
349  RewriteExprTree(LHS, Ops, i+1);
350}
351
352
353
354// NegateValue - Insert instructions before the instruction pointed to by BI,
355// that computes the negative version of the value specified.  The negative
356// version of the value is returned, and BI is left pointing at the instruction
357// that should be processed next by the reassociation pass.
358//
359static Value *NegateValue(Value *V, Instruction *BI) {
360  // We are trying to expose opportunity for reassociation.  One of the things
361  // that we want to do to achieve this is to push a negation as deep into an
362  // expression chain as possible, to expose the add instructions.  In practice,
363  // this means that we turn this:
364  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
365  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
366  // the constants.  We assume that instcombine will clean up the mess later if
367  // we introduce tons of unnecessary negation instructions...
368  //
369  if (Instruction *I = dyn_cast<Instruction>(V))
370    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
371      // Push the negates through the add.
372      I->setOperand(0, NegateValue(I->getOperand(0), BI));
373      I->setOperand(1, NegateValue(I->getOperand(1), BI));
374
375      // We must move the add instruction here, because the neg instructions do
376      // not dominate the old add instruction in general.  By moving it, we are
377      // assured that the neg instructions we just inserted dominate the
378      // instruction we are about to insert after them.
379      //
380      I->moveBefore(BI);
381      I->setName(I->getName()+".neg");
382      return I;
383    }
384
385  // Insert a 'neg' instruction that subtracts the value from zero to get the
386  // negation.
387  //
388  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
389}
390
391/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
392/// only used by an add, transform this into (X+(0-Y)) to promote better
393/// reassociation.
394static Instruction *BreakUpSubtract(Instruction *Sub) {
395  // Don't bother to break this up unless either the LHS is an associable add or
396  // if this is only used by one.
397  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
398      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
399      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
400    return 0;
401
402  // Convert a subtract into an add and a neg instruction... so that sub
403  // instructions can be commuted with other add instructions...
404  //
405  // Calculate the negative value of Operand 1 of the sub instruction...
406  // and set it as the RHS of the add instruction we just made...
407  //
408  std::string Name = Sub->getName();
409  Sub->setName("");
410  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
411  Instruction *New =
412    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
413
414  // Everyone now refers to the add instruction.
415  Sub->replaceAllUsesWith(New);
416  Sub->eraseFromParent();
417
418  DEBUG(std::cerr << "Negated: " << *New);
419  return New;
420}
421
422/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
423/// by one, change this into a multiply by a constant to assist with further
424/// reassociation.
425static Instruction *ConvertShiftToMul(Instruction *Shl) {
426  // If an operand of this shift is a reassociable multiply, or if the shift
427  // is used by a reassociable multiply or add, turn into a multiply.
428  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
429      (Shl->hasOneUse() &&
430       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
431        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
432    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
433    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
434
435    std::string Name = Shl->getName();  Shl->setName("");
436    Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
437                                                 Name, Shl);
438    Shl->replaceAllUsesWith(Mul);
439    Shl->eraseFromParent();
440    return Mul;
441  }
442  return 0;
443}
444
445// Scan backwards and forwards among values with the same rank as element i to
446// see if X exists.  If X does not exist, return i.
447static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
448                                  Value *X) {
449  unsigned XRank = Ops[i].Rank;
450  unsigned e = Ops.size();
451  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
452    if (Ops[j].Op == X)
453      return j;
454  // Scan backwards
455  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
456    if (Ops[j].Op == X)
457      return j;
458  return i;
459}
460
461/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
462/// and returning the result.  Insert the tree before I.
463static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
464  if (Ops.size() == 1) return Ops.back();
465
466  Value *V1 = Ops.back();
467  Ops.pop_back();
468  Value *V2 = EmitAddTreeOfValues(I, Ops);
469  return BinaryOperator::createAdd(V2, V1, "tmp", I);
470}
471
472/// RemoveFactorFromExpression - If V is an expression tree that is a
473/// multiplication sequence, and if this sequence contains a multiply by Factor,
474/// remove Factor from the tree and return the new tree.
475Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
476  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
477  if (!BO) return 0;
478
479  std::vector<ValueEntry> Factors;
480  LinearizeExprTree(BO, Factors);
481
482  bool FoundFactor = false;
483  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
484    if (Factors[i].Op == Factor) {
485      FoundFactor = true;
486      Factors.erase(Factors.begin()+i);
487      break;
488    }
489  if (!FoundFactor) {
490    // Make sure to restore the operands to the expression tree.
491    RewriteExprTree(BO, Factors);
492    return 0;
493  }
494
495  if (Factors.size() == 1) return Factors[0].Op;
496
497  RewriteExprTree(BO, Factors);
498  return BO;
499}
500
501/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
502/// add its operands as factors, otherwise add V to the list of factors.
503static void FindSingleUseMultiplyFactors(Value *V,
504                                         std::vector<Value*> &Factors) {
505  BinaryOperator *BO;
506  if ((!V->hasOneUse() && !V->use_empty()) ||
507      !(BO = dyn_cast<BinaryOperator>(V)) ||
508      BO->getOpcode() != Instruction::Mul) {
509    Factors.push_back(V);
510    return;
511  }
512
513  // Otherwise, add the LHS and RHS to the list of factors.
514  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
515  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
516}
517
518
519
520Value *Reassociate::OptimizeExpression(BinaryOperator *I,
521                                       std::vector<ValueEntry> &Ops) {
522  // Now that we have the linearized expression tree, try to optimize it.
523  // Start by folding any constants that we found.
524  bool IterateOptimization = false;
525  if (Ops.size() == 1) return Ops[0].Op;
526
527  unsigned Opcode = I->getOpcode();
528
529  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
530    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
531      Ops.pop_back();
532      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
533      return OptimizeExpression(I, Ops);
534    }
535
536  // Check for destructive annihilation due to a constant being used.
537  if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
538    switch (Opcode) {
539    default: break;
540    case Instruction::And:
541      if (CstVal->isNullValue()) {           // ... & 0 -> 0
542        ++NumAnnihil;
543        return CstVal;
544      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
545        Ops.pop_back();
546      }
547      break;
548    case Instruction::Mul:
549      if (CstVal->isNullValue()) {           // ... * 0 -> 0
550        ++NumAnnihil;
551        return CstVal;
552      } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
553        Ops.pop_back();                      // ... * 1 -> ...
554      }
555      break;
556    case Instruction::Or:
557      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
558        ++NumAnnihil;
559        return CstVal;
560      }
561      // FALLTHROUGH!
562    case Instruction::Add:
563    case Instruction::Xor:
564      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
565        Ops.pop_back();
566      break;
567    }
568  if (Ops.size() == 1) return Ops[0].Op;
569
570  // Handle destructive annihilation do to identities between elements in the
571  // argument list here.
572  switch (Opcode) {
573  default: break;
574  case Instruction::And:
575  case Instruction::Or:
576  case Instruction::Xor:
577    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
578    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
579    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
580      // First, check for X and ~X in the operand list.
581      assert(i < Ops.size());
582      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
583        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
584        unsigned FoundX = FindInOperandList(Ops, i, X);
585        if (FoundX != i) {
586          if (Opcode == Instruction::And) {   // ...&X&~X = 0
587            ++NumAnnihil;
588            return Constant::getNullValue(X->getType());
589          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
590            ++NumAnnihil;
591            return ConstantIntegral::getAllOnesValue(X->getType());
592          }
593        }
594      }
595
596      // Next, check for duplicate pairs of values, which we assume are next to
597      // each other, due to our sorting criteria.
598      assert(i < Ops.size());
599      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
600        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
601          // Drop duplicate values.
602          Ops.erase(Ops.begin()+i);
603          --i; --e;
604          IterateOptimization = true;
605          ++NumAnnihil;
606        } else {
607          assert(Opcode == Instruction::Xor);
608          if (e == 2) {
609            ++NumAnnihil;
610            return Constant::getNullValue(Ops[0].Op->getType());
611          }
612          // ... X^X -> ...
613          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
614          i -= 1; e -= 2;
615          IterateOptimization = true;
616          ++NumAnnihil;
617        }
618      }
619    }
620    break;
621
622  case Instruction::Add:
623    // Scan the operand lists looking for X and -X pairs.  If we find any, we
624    // can simplify the expression. X+-X == 0.
625    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
626      assert(i < Ops.size());
627      // Check for X and -X in the operand list.
628      if (BinaryOperator::isNeg(Ops[i].Op)) {
629        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
630        unsigned FoundX = FindInOperandList(Ops, i, X);
631        if (FoundX != i) {
632          // Remove X and -X from the operand list.
633          if (Ops.size() == 2) {
634            ++NumAnnihil;
635            return Constant::getNullValue(X->getType());
636          } else {
637            Ops.erase(Ops.begin()+i);
638            if (i < FoundX)
639              --FoundX;
640            else
641              --i;   // Need to back up an extra one.
642            Ops.erase(Ops.begin()+FoundX);
643            IterateOptimization = true;
644            ++NumAnnihil;
645            --i;     // Revisit element.
646            e -= 2;  // Removed two elements.
647          }
648        }
649      }
650    }
651
652
653    // Scan the operand list, checking to see if there are any common factors
654    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
655    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
656    // To efficiently find this, we count the number of times a factor occurs
657    // for any ADD operands that are MULs.
658    std::map<Value*, unsigned> FactorOccurrences;
659    unsigned MaxOcc = 0;
660    Value *MaxOccVal = 0;
661    if (!I->getType()->isFloatingPoint()) {
662      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663        if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
664          if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
665            // Compute all of the factors of this added value.
666            std::vector<Value*> Factors;
667            FindSingleUseMultiplyFactors(BOp, Factors);
668            assert(Factors.size() > 1 && "Bad linearize!");
669
670            // Add one to FactorOccurrences for each unique factor in this op.
671            if (Factors.size() == 2) {
672              unsigned Occ = ++FactorOccurrences[Factors[0]];
673              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
674              if (Factors[0] != Factors[1]) {   // Don't double count A*A.
675                Occ = ++FactorOccurrences[Factors[1]];
676                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
677              }
678            } else {
679              std::set<Value*> Duplicates;
680              for (unsigned i = 0, e = Factors.size(); i != e; ++i)
681                if (Duplicates.insert(Factors[i]).second) {
682                  unsigned Occ = ++FactorOccurrences[Factors[i]];
683                  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
684                }
685            }
686          }
687      }
688    }
689
690    // If any factor occurred more than one time, we can pull it out.
691    if (MaxOcc > 1) {
692      DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
693                      << *MaxOccVal << "\n");
694
695      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
696      // this, we could otherwise run into situations where removing a factor
697      // from an expression will drop a use of maxocc, and this can cause
698      // RemoveFactorFromExpression on successive values to behave differently.
699      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
700      std::vector<Value*> NewMulOps;
701      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
702        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
703          NewMulOps.push_back(V);
704          Ops.erase(Ops.begin()+i);
705          --i; --e;
706        }
707      }
708
709      // No need for extra uses anymore.
710      delete DummyInst;
711
712      unsigned NumAddedValues = NewMulOps.size();
713      Value *V = EmitAddTreeOfValues(I, NewMulOps);
714      Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
715
716      // Now that we have inserted V and its sole use, optimize it. This allows
717      // us to handle cases that require multiple factoring steps, such as this:
718      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
719      if (NumAddedValues > 1)
720        ReassociateExpression(cast<BinaryOperator>(V));
721
722      ++NumFactor;
723
724      if (Ops.size() == 0)
725        return V2;
726
727      // Add the new value to the list of things being added.
728      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
729
730      // Rewrite the tree so that there is now a use of V.
731      RewriteExprTree(I, Ops);
732      return OptimizeExpression(I, Ops);
733    }
734    break;
735  //case Instruction::Mul:
736  }
737
738  if (IterateOptimization)
739    return OptimizeExpression(I, Ops);
740  return 0;
741}
742
743
744/// ReassociateBB - Inspect all of the instructions in this basic block,
745/// reassociating them as we go.
746void Reassociate::ReassociateBB(BasicBlock *BB) {
747  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
748    Instruction *BI = BBI++;
749    if (BI->getOpcode() == Instruction::Shl &&
750        isa<ConstantInt>(BI->getOperand(1)))
751      if (Instruction *NI = ConvertShiftToMul(BI)) {
752        MadeChange = true;
753        BI = NI;
754      }
755
756    // Reject cases where it is pointless to do this.
757    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
758        isa<PackedType>(BI->getType()))
759      continue;  // Floating point ops are not associative.
760
761    // If this is a subtract instruction which is not already in negate form,
762    // see if we can convert it to X+-Y.
763    if (BI->getOpcode() == Instruction::Sub) {
764      if (!BinaryOperator::isNeg(BI)) {
765        if (Instruction *NI = BreakUpSubtract(BI)) {
766          MadeChange = true;
767          BI = NI;
768        }
769      } else {
770        // Otherwise, this is a negation.  See if the operand is a multiply tree
771        // and if this is not an inner node of a multiply tree.
772        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
773            (!BI->hasOneUse() ||
774             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
775          BI = LowerNegateToMultiply(BI);
776          MadeChange = true;
777        }
778      }
779    }
780
781    // If this instruction is a commutative binary operator, process it.
782    if (!BI->isAssociative()) continue;
783    BinaryOperator *I = cast<BinaryOperator>(BI);
784
785    // If this is an interior node of a reassociable tree, ignore it until we
786    // get to the root of the tree, to avoid N^2 analysis.
787    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
788      continue;
789
790    // If this is an add tree that is used by a sub instruction, ignore it
791    // until we process the subtract.
792    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
793        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
794      continue;
795
796    ReassociateExpression(I);
797  }
798}
799
800void Reassociate::ReassociateExpression(BinaryOperator *I) {
801
802  // First, walk the expression tree, linearizing the tree, collecting
803  std::vector<ValueEntry> Ops;
804  LinearizeExprTree(I, Ops);
805
806  DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
807        std::cerr << "\n");
808
809  // Now that we have linearized the tree to a list and have gathered all of
810  // the operands and their ranks, sort the operands by their rank.  Use a
811  // stable_sort so that values with equal ranks will have their relative
812  // positions maintained (and so the compiler is deterministic).  Note that
813  // this sorts so that the highest ranking values end up at the beginning of
814  // the vector.
815  std::stable_sort(Ops.begin(), Ops.end());
816
817  // OptimizeExpression - Now that we have the expression tree in a convenient
818  // sorted form, optimize it globally if possible.
819  if (Value *V = OptimizeExpression(I, Ops)) {
820    // This expression tree simplified to something that isn't a tree,
821    // eliminate it.
822    DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
823    I->replaceAllUsesWith(V);
824    RemoveDeadBinaryOp(I);
825    return;
826  }
827
828  // We want to sink immediates as deeply as possible except in the case where
829  // this is a multiply tree used only by an add, and the immediate is a -1.
830  // In this case we reassociate to put the negation on the outside so that we
831  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
832  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
833      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
834      isa<ConstantInt>(Ops.back().Op) &&
835      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
836    Ops.insert(Ops.begin(), Ops.back());
837    Ops.pop_back();
838  }
839
840  DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
841        std::cerr << "\n");
842
843  if (Ops.size() == 1) {
844    // This expression tree simplified to something that isn't a tree,
845    // eliminate it.
846    I->replaceAllUsesWith(Ops[0].Op);
847    RemoveDeadBinaryOp(I);
848  } else {
849    // Now that we ordered and optimized the expressions, splat them back into
850    // the expression tree, removing any unneeded nodes.
851    RewriteExprTree(I, Ops);
852  }
853}
854
855
856bool Reassociate::runOnFunction(Function &F) {
857  // Recalculate the rank map for F
858  BuildRankMap(F);
859
860  MadeChange = false;
861  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
862    ReassociateBB(FI);
863
864  // We are done with the rank map...
865  RankMap.clear();
866  ValueRankMap.clear();
867  return MadeChange;
868}
869
870