Reassociate.cpp revision d34491f6751ae2f8daf3e857c84bcb5b06fba889
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Constants.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/Instructions.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/IRBuilder.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ValueHandle.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PostOrderIterator.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/Statistic.h"
43#include <algorithm>
44using namespace llvm;
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113}
114
115namespace {
116  class Reassociate : public FunctionPass {
117    DenseMap<BasicBlock*, unsigned> RankMap;
118    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119    SetVector<AssertingVH<Instruction> > RedoInsts;
120    bool MadeChange;
121  public:
122    static char ID; // Pass identification, replacement for typeid
123    Reassociate() : FunctionPass(ID) {
124      initializeReassociatePass(*PassRegistry::getPassRegistry());
125    }
126
127    bool runOnFunction(Function &F);
128
129    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130      AU.setPreservesCFG();
131    }
132  private:
133    void BuildRankMap(Function &F);
134    unsigned getRank(Value *V);
135    Value *ReassociateExpression(BinaryOperator *I);
136    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137    Value *OptimizeExpression(BinaryOperator *I,
138                              SmallVectorImpl<ValueEntry> &Ops);
139    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141                                SmallVectorImpl<Factor> &Factors);
142    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143                                   SmallVectorImpl<Factor> &Factors);
144    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146    void EraseInst(Instruction *I);
147    void OptimizeInst(Instruction *I);
148  };
149}
150
151char Reassociate::ID = 0;
152INITIALIZE_PASS(Reassociate, "reassociate",
153                "Reassociate expressions", false, false)
154
155// Public interface to the Reassociate pass
156FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157
158/// isReassociableOp - Return true if V is an instruction of the specified
159/// opcode and if it only has one use.
160static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161  if (V->hasOneUse() && isa<Instruction>(V) &&
162      cast<Instruction>(V)->getOpcode() == Opcode)
163    return cast<BinaryOperator>(V);
164  return 0;
165}
166
167static bool isUnmovableInstruction(Instruction *I) {
168  if (I->getOpcode() == Instruction::PHI ||
169      I->getOpcode() == Instruction::LandingPad ||
170      I->getOpcode() == Instruction::Alloca ||
171      I->getOpcode() == Instruction::Load ||
172      I->getOpcode() == Instruction::Invoke ||
173      (I->getOpcode() == Instruction::Call &&
174       !isa<DbgInfoIntrinsic>(I)) ||
175      I->getOpcode() == Instruction::UDiv ||
176      I->getOpcode() == Instruction::SDiv ||
177      I->getOpcode() == Instruction::FDiv ||
178      I->getOpcode() == Instruction::URem ||
179      I->getOpcode() == Instruction::SRem ||
180      I->getOpcode() == Instruction::FRem)
181    return true;
182  return false;
183}
184
185void Reassociate::BuildRankMap(Function &F) {
186  unsigned i = 2;
187
188  // Assign distinct ranks to function arguments
189  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190    ValueRankMap[&*I] = ++i;
191
192  ReversePostOrderTraversal<Function*> RPOT(&F);
193  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194         E = RPOT.end(); I != E; ++I) {
195    BasicBlock *BB = *I;
196    unsigned BBRank = RankMap[BB] = ++i << 16;
197
198    // Walk the basic block, adding precomputed ranks for any instructions that
199    // we cannot move.  This ensures that the ranks for these instructions are
200    // all different in the block.
201    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202      if (isUnmovableInstruction(I))
203        ValueRankMap[&*I] = ++BBRank;
204  }
205}
206
207unsigned Reassociate::getRank(Value *V) {
208  Instruction *I = dyn_cast<Instruction>(V);
209  if (I == 0) {
210    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
211    return 0;  // Otherwise it's a global or constant, rank 0.
212  }
213
214  if (unsigned Rank = ValueRankMap[I])
215    return Rank;    // Rank already known?
216
217  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218  // we can reassociate expressions for code motion!  Since we do not recurse
219  // for PHI nodes, we cannot have infinite recursion here, because there
220  // cannot be loops in the value graph that do not go through PHI nodes.
221  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222  for (unsigned i = 0, e = I->getNumOperands();
223       i != e && Rank != MaxRank; ++i)
224    Rank = std::max(Rank, getRank(I->getOperand(i)));
225
226  // If this is a not or neg instruction, do not count it for rank.  This
227  // assures us that X and ~X will have the same rank.
228  if (!I->getType()->isIntegerTy() ||
229      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230    ++Rank;
231
232  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233  //     << Rank << "\n");
234
235  return ValueRankMap[I] = Rank;
236}
237
238/// LowerNegateToMultiply - Replace 0-X with X*-1.
239///
240static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242
243  BinaryOperator *Res =
244    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246  Res->takeName(Neg);
247  Neg->replaceAllUsesWith(Res);
248  Res->setDebugLoc(Neg->getDebugLoc());
249  return Res;
250}
251
252/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256/// even x in Bitwidth-bit arithmetic.
257static unsigned CarmichaelShift(unsigned Bitwidth) {
258  if (Bitwidth < 3)
259    return Bitwidth - 1;
260  return Bitwidth - 2;
261}
262
263/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264/// reducing the combined weight using any special properties of the operation.
265/// The existing weight LHS represents the computation X op X op ... op X where
266/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
267/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
268/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271  // If we were working with infinite precision arithmetic then the combined
272  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
273  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274  // for nilpotent operations and addition, but not for idempotent operations
275  // and multiplication), so it is important to correctly reduce the combined
276  // weight back into range if wrapping would be wrong.
277
278  // If RHS is zero then the weight didn't change.
279  if (RHS.isMinValue())
280    return;
281  // If LHS is zero then the combined weight is RHS.
282  if (LHS.isMinValue()) {
283    LHS = RHS;
284    return;
285  }
286  // From this point on we know that neither LHS nor RHS is zero.
287
288  if (Instruction::isIdempotent(Opcode)) {
289    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290    // weight of 1.  Keeping weights at zero or one also means that wrapping is
291    // not a problem.
292    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293    return; // Return a weight of 1.
294  }
295  if (Instruction::isNilpotent(Opcode)) {
296    // Nilpotent means X op X === 0, so reduce weights modulo 2.
297    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298    LHS = 0; // 1 + 1 === 0 modulo 2.
299    return;
300  }
301  if (Opcode == Instruction::Add) {
302    // TODO: Reduce the weight by exploiting nsw/nuw?
303    LHS += RHS;
304    return;
305  }
306
307  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308  unsigned Bitwidth = LHS.getBitWidth();
309  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
311  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
313  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314  // which by a happy accident means that they can always be represented using
315  // Bitwidth bits.
316  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
317  // the Carmichael number).
318  if (Bitwidth > 3) {
319    /// CM - The value of Carmichael's lambda function.
320    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321    // Any weight W >= Threshold can be replaced with W - CM.
322    APInt Threshold = CM + Bitwidth;
323    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324    // For Bitwidth 4 or more the following sum does not overflow.
325    LHS += RHS;
326    while (LHS.uge(Threshold))
327      LHS -= CM;
328  } else {
329    // To avoid problems with overflow do everything the same as above but using
330    // a larger type.
331    unsigned CM = 1U << CarmichaelShift(Bitwidth);
332    unsigned Threshold = CM + Bitwidth;
333    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334           "Weights not reduced!");
335    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336    while (Total >= Threshold)
337      Total -= CM;
338    LHS = Total;
339  }
340}
341
342/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343/// is repeated Weight times.
344static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345                                          APInt Weight) {
346  // For addition the result can be efficiently computed as the product of the
347  // constant and the weight.
348  if (Opcode == Instruction::Add)
349    return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351  // The weight might be huge, so compute by repeated squaring to ensure that
352  // compile time is proportional to the logarithm of the weight.
353  Constant *Result = 0;
354  Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355  // Visit the bits in Weight.
356  while (Weight != 0) {
357    // If the current bit in Weight is non-zero do Result = Result op Power.
358    if (Weight[0])
359      Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360    // Move on to the next bit if any more are non-zero.
361    Weight = Weight.lshr(1);
362    if (Weight.isMinValue())
363      break;
364    // Square the power.
365    Power = ConstantExpr::get(Opcode, Power, Power);
366  }
367
368  assert(Result && "Only positive weights supported!");
369  return Result;
370}
371
372typedef std::pair<Value*, APInt> RepeatedValue;
373
374/// LinearizeExprTree - Given an associative binary expression, return the leaf
375/// nodes in Ops along with their weights (how many times the leaf occurs).  The
376/// original expression is the same as
377///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378/// op
379///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380/// op
381///   ...
382/// op
383///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384///
385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386/// they are all non-constant except possibly for the last one, which if it is
387/// constant will have weight one (Ops[N].second === 1).
388///
389/// This routine may modify the function, in which case it returns 'true'.  The
390/// changes it makes may well be destructive, changing the value computed by 'I'
391/// to something completely different.  Thus if the routine returns 'true' then
392/// you MUST either replace I with a new expression computed from the Ops array,
393/// or use RewriteExprTree to put the values back in.
394///
395/// A leaf node is either not a binary operation of the same kind as the root
396/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397/// opcode), or is the same kind of binary operator but has a use which either
398/// does not belong to the expression, or does belong to the expression but is
399/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
400/// of the expression, while for non-leaf nodes (except for the root 'I') every
401/// use is a non-leaf node of the expression.
402///
403/// For example:
404///           expression graph        node names
405///
406///                     +        |        I
407///                    / \       |
408///                   +   +      |      A,  B
409///                  / \ / \     |
410///                 *   +   *    |    C,  D,  E
411///                / \ / \ / \   |
412///                   +   *      |      F,  G
413///
414/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
415/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
416///
417/// The expression is maximal: if some instruction is a binary operator of the
418/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419/// then the instruction also belongs to the expression, is not a leaf node of
420/// it, and its operands also belong to the expression (but may be leaf nodes).
421///
422/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423/// order to ensure that every non-root node in the expression has *exactly one*
424/// use by a non-leaf node of the expression.  This destruction means that the
425/// caller MUST either replace 'I' with a new expression or use something like
426/// RewriteExprTree to put the values back in if the routine indicates that it
427/// made a change by returning 'true'.
428///
429/// In the above example either the right operand of A or the left operand of B
430/// will be replaced by undef.  If it is B's operand then this gives:
431///
432///                     +        |        I
433///                    / \       |
434///                   +   +      |      A,  B - operand of B replaced with undef
435///                  / \   \     |
436///                 *   +   *    |    C,  D,  E
437///                / \ / \ / \   |
438///                   +   *      |      F,  G
439///
440/// Note that such undef operands can only be reached by passing through 'I'.
441/// For example, if you visit operands recursively starting from a leaf node
442/// then you will never see such an undef operand unless you get back to 'I',
443/// which requires passing through a phi node.
444///
445/// Note that this routine may also mutate binary operators of the wrong type
446/// that have all uses inside the expression (i.e. only used by non-leaf nodes
447/// of the expression) if it can turn them into binary operators of the right
448/// type and thus make the expression bigger.
449
450static bool LinearizeExprTree(BinaryOperator *I,
451                              SmallVectorImpl<RepeatedValue> &Ops) {
452  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
453  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454  unsigned Opcode = I->getOpcode();
455  assert(Instruction::isAssociative(Opcode) &&
456         Instruction::isCommutative(Opcode) &&
457         "Expected an associative and commutative operation!");
458  // If we see an absorbing element then the entire expression must be equal to
459  // it.  For example, if this is a multiplication expression and zero occurs as
460  // an operand somewhere in it then the result of the expression must be zero.
461  Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
462
463  // Visit all operands of the expression, keeping track of their weight (the
464  // number of paths from the expression root to the operand, or if you like
465  // the number of times that operand occurs in the linearized expression).
466  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467  // while A has weight two.
468
469  // Worklist of non-leaf nodes (their operands are in the expression too) along
470  // with their weights, representing a certain number of paths to the operator.
471  // If an operator occurs in the worklist multiple times then we found multiple
472  // ways to get to it.
473  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475  bool MadeChange = false;
476
477  // Leaves of the expression are values that either aren't the right kind of
478  // operation (eg: a constant, or a multiply in an add tree), or are, but have
479  // some uses that are not inside the expression.  For example, in I = X + X,
480  // X = A + B, the value X has two uses (by I) that are in the expression.  If
481  // X has any other uses, for example in a return instruction, then we consider
482  // X to be a leaf, and won't analyze it further.  When we first visit a value,
483  // if it has more than one use then at first we conservatively consider it to
484  // be a leaf.  Later, as the expression is explored, we may discover some more
485  // uses of the value from inside the expression.  If all uses turn out to be
486  // from within the expression (and the value is a binary operator of the right
487  // kind) then the value is no longer considered to be a leaf, and its operands
488  // are explored.
489
490  // Leaves - Keeps track of the set of putative leaves as well as the number of
491  // paths to each leaf seen so far.
492  typedef DenseMap<Value*, APInt> LeafMap;
493  LeafMap Leaves; // Leaf -> Total weight so far.
494  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496#ifndef NDEBUG
497  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498#endif
499  while (!Worklist.empty()) {
500    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
501    I = P.first; // We examine the operands of this binary operator.
502
503    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504      Value *Op = I->getOperand(OpIdx);
505      APInt Weight = P.second; // Number of paths to this operand.
506      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
509      // If the expression contains an absorbing element then there is no need
510      // to analyze it further: it must evaluate to the absorbing element.
511      if (Op == Absorber && !Weight.isMinValue()) {
512        Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513        return MadeChange;
514      }
515
516      // If this is a binary operation of the right kind with only one use then
517      // add its operands to the expression.
518      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519        assert(Visited.insert(Op) && "Not first visit!");
520        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521        Worklist.push_back(std::make_pair(BO, Weight));
522        continue;
523      }
524
525      // Appears to be a leaf.  Is the operand already in the set of leaves?
526      LeafMap::iterator It = Leaves.find(Op);
527      if (It == Leaves.end()) {
528        // Not in the leaf map.  Must be the first time we saw this operand.
529        assert(Visited.insert(Op) && "Not first visit!");
530        if (!Op->hasOneUse()) {
531          // This value has uses not accounted for by the expression, so it is
532          // not safe to modify.  Mark it as being a leaf.
533          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534          LeafOrder.push_back(Op);
535          Leaves[Op] = Weight;
536          continue;
537        }
538        // No uses outside the expression, try morphing it.
539      } else if (It != Leaves.end()) {
540        // Already in the leaf map.
541        assert(Visited.count(Op) && "In leaf map but not visited!");
542
543        // Update the number of paths to the leaf.
544        IncorporateWeight(It->second, Weight, Opcode);
545
546        // The leaf already has one use from inside the expression.  As we want
547        // exactly one such use, drop this new use of the leaf.
548        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
549        I->setOperand(OpIdx, UndefValue::get(I->getType()));
550        MadeChange = true;
551
552        // If the leaf is a binary operation of the right kind and we now see
553        // that its multiple original uses were in fact all by nodes belonging
554        // to the expression, then no longer consider it to be a leaf and add
555        // its operands to the expression.
556        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
557          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
558          Worklist.push_back(std::make_pair(BO, It->second));
559          Leaves.erase(It);
560          continue;
561        }
562
563        // If we still have uses that are not accounted for by the expression
564        // then it is not safe to modify the value.
565        if (!Op->hasOneUse())
566          continue;
567
568        // No uses outside the expression, try morphing it.
569        Weight = It->second;
570        Leaves.erase(It); // Since the value may be morphed below.
571      }
572
573      // At this point we have a value which, first of all, is not a binary
574      // expression of the right kind, and secondly, is only used inside the
575      // expression.  This means that it can safely be modified.  See if we
576      // can usefully morph it into an expression of the right kind.
577      assert((!isa<Instruction>(Op) ||
578              cast<Instruction>(Op)->getOpcode() != Opcode) &&
579             "Should have been handled above!");
580      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
581
582      // If this is a multiply expression, turn any internal negations into
583      // multiplies by -1 so they can be reassociated.
584      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
585      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
586        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
587        BO = LowerNegateToMultiply(BO);
588        DEBUG(dbgs() << *BO << 'n');
589        Worklist.push_back(std::make_pair(BO, Weight));
590        MadeChange = true;
591        continue;
592      }
593
594      // Failed to morph into an expression of the right type.  This really is
595      // a leaf.
596      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
597      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
598      LeafOrder.push_back(Op);
599      Leaves[Op] = Weight;
600    }
601  }
602
603  // The leaves, repeated according to their weights, represent the linearized
604  // form of the expression.
605  Constant *Cst = 0; // Accumulate constants here.
606  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
607    Value *V = LeafOrder[i];
608    LeafMap::iterator It = Leaves.find(V);
609    if (It == Leaves.end())
610      // Node initially thought to be a leaf wasn't.
611      continue;
612    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
613    APInt Weight = It->second;
614    if (Weight.isMinValue())
615      // Leaf already output or weight reduction eliminated it.
616      continue;
617    // Ensure the leaf is only output once.
618    It->second = 0;
619    // Glob all constants together into Cst.
620    if (Constant *C = dyn_cast<Constant>(V)) {
621      C = EvaluateRepeatedConstant(Opcode, C, Weight);
622      Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
623      continue;
624    }
625    // Add non-constant
626    Ops.push_back(std::make_pair(V, Weight));
627  }
628
629  // Add any constants back into Ops, all globbed together and reduced to having
630  // weight 1 for the convenience of users.
631  Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
632  if (Cst && Cst != Identity) {
633    // If combining multiple constants resulted in the absorber then the entire
634    // expression must evaluate to the absorber.
635    if (Cst == Absorber)
636      Ops.clear();
637    Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
638  }
639
640  // For nilpotent operations or addition there may be no operands, for example
641  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
642  // in both cases the weight reduces to 0 causing the value to be skipped.
643  if (Ops.empty()) {
644    assert(Identity && "Associative operation without identity!");
645    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
646  }
647
648  return MadeChange;
649}
650
651// RewriteExprTree - Now that the operands for this expression tree are
652// linearized and optimized, emit them in-order.
653void Reassociate::RewriteExprTree(BinaryOperator *I,
654                                  SmallVectorImpl<ValueEntry> &Ops) {
655  assert(Ops.size() > 1 && "Single values should be used directly!");
656
657  // Since our optimizations never increase the number of operations, the new
658  // expression can always be written by reusing the existing binary operators
659  // from the original expression tree, without creating any new instructions,
660  // though the rewritten expression may have a completely different topology.
661  // We take care to not change anything if the new expression will be the same
662  // as the original.  If more than trivial changes (like commuting operands)
663  // were made then we are obliged to clear out any optional subclass data like
664  // nsw flags.
665
666  /// NodesToRewrite - Nodes from the original expression available for writing
667  /// the new expression into.
668  SmallVector<BinaryOperator*, 8> NodesToRewrite;
669  unsigned Opcode = I->getOpcode();
670  NodesToRewrite.push_back(I);
671
672  // ExpressionChanged - Non-null if the rewritten expression differs from the
673  // original in some non-trivial way, requiring the clearing of optional flags.
674  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
675  BinaryOperator *ExpressionChanged = 0;
676  BinaryOperator *Previous;
677  BinaryOperator *Op = 0;
678  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
679    assert(!NodesToRewrite.empty() &&
680           "Optimized expressions has more nodes than original!");
681    Previous = Op; Op = NodesToRewrite.pop_back_val();
682    if (ExpressionChanged)
683      // Compactify the tree instructions together with each other to guarantee
684      // that the expression tree is dominated by all of Ops.
685      Op->moveBefore(Previous);
686
687    // The last operation (which comes earliest in the IR) is special as both
688    // operands will come from Ops, rather than just one with the other being
689    // a subexpression.
690    if (i+2 == Ops.size()) {
691      Value *NewLHS = Ops[i].Op;
692      Value *NewRHS = Ops[i+1].Op;
693      Value *OldLHS = Op->getOperand(0);
694      Value *OldRHS = Op->getOperand(1);
695
696      if (NewLHS == OldLHS && NewRHS == OldRHS)
697        // Nothing changed, leave it alone.
698        break;
699
700      if (NewLHS == OldRHS && NewRHS == OldLHS) {
701        // The order of the operands was reversed.  Swap them.
702        DEBUG(dbgs() << "RA: " << *Op << '\n');
703        Op->swapOperands();
704        DEBUG(dbgs() << "TO: " << *Op << '\n');
705        MadeChange = true;
706        ++NumChanged;
707        break;
708      }
709
710      // The new operation differs non-trivially from the original. Overwrite
711      // the old operands with the new ones.
712      DEBUG(dbgs() << "RA: " << *Op << '\n');
713      if (NewLHS != OldLHS) {
714        if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
715          NodesToRewrite.push_back(BO);
716        Op->setOperand(0, NewLHS);
717      }
718      if (NewRHS != OldRHS) {
719        if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
720          NodesToRewrite.push_back(BO);
721        Op->setOperand(1, NewRHS);
722      }
723      DEBUG(dbgs() << "TO: " << *Op << '\n');
724
725      ExpressionChanged = Op;
726      MadeChange = true;
727      ++NumChanged;
728
729      break;
730    }
731
732    // Not the last operation.  The left-hand side will be a sub-expression
733    // while the right-hand side will be the current element of Ops.
734    Value *NewRHS = Ops[i].Op;
735    if (NewRHS != Op->getOperand(1)) {
736      DEBUG(dbgs() << "RA: " << *Op << '\n');
737      if (NewRHS == Op->getOperand(0)) {
738        // The new right-hand side was already present as the left operand.  If
739        // we are lucky then swapping the operands will sort out both of them.
740        Op->swapOperands();
741      } else {
742        // Overwrite with the new right-hand side.
743        if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
744          NodesToRewrite.push_back(BO);
745        Op->setOperand(1, NewRHS);
746        ExpressionChanged = Op;
747      }
748      DEBUG(dbgs() << "TO: " << *Op << '\n');
749      MadeChange = true;
750      ++NumChanged;
751    }
752
753    // Now deal with the left-hand side.  If this is already an operation node
754    // from the original expression then just rewrite the rest of the expression
755    // into it.
756    if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
757      NodesToRewrite.push_back(BO);
758      continue;
759    }
760
761    // Otherwise, grab a spare node from the original expression and use that as
762    // the left-hand side.
763    assert(!NodesToRewrite.empty() &&
764           "Optimized expressions has more nodes than original!");
765    DEBUG(dbgs() << "RA: " << *Op << '\n');
766    Op->setOperand(0, NodesToRewrite.back());
767    DEBUG(dbgs() << "TO: " << *Op << '\n');
768    ExpressionChanged = Op;
769    MadeChange = true;
770    ++NumChanged;
771  }
772
773  // If the expression changed non-trivially then clear out all subclass data
774  // starting from the operator specified in ExpressionChanged.
775  if (ExpressionChanged) {
776    do {
777      ExpressionChanged->clearSubclassOptionalData();
778      if (ExpressionChanged == I)
779        break;
780      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
781    } while (1);
782  }
783
784  // Throw away any left over nodes from the original expression.
785  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
786    RedoInsts.insert(NodesToRewrite[i]);
787}
788
789/// NegateValue - Insert instructions before the instruction pointed to by BI,
790/// that computes the negative version of the value specified.  The negative
791/// version of the value is returned, and BI is left pointing at the instruction
792/// that should be processed next by the reassociation pass.
793static Value *NegateValue(Value *V, Instruction *BI) {
794  if (Constant *C = dyn_cast<Constant>(V))
795    return ConstantExpr::getNeg(C);
796
797  // We are trying to expose opportunity for reassociation.  One of the things
798  // that we want to do to achieve this is to push a negation as deep into an
799  // expression chain as possible, to expose the add instructions.  In practice,
800  // this means that we turn this:
801  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
802  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
803  // the constants.  We assume that instcombine will clean up the mess later if
804  // we introduce tons of unnecessary negation instructions.
805  //
806  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
807    // Push the negates through the add.
808    I->setOperand(0, NegateValue(I->getOperand(0), BI));
809    I->setOperand(1, NegateValue(I->getOperand(1), BI));
810
811    // We must move the add instruction here, because the neg instructions do
812    // not dominate the old add instruction in general.  By moving it, we are
813    // assured that the neg instructions we just inserted dominate the
814    // instruction we are about to insert after them.
815    //
816    I->moveBefore(BI);
817    I->setName(I->getName()+".neg");
818    return I;
819  }
820
821  // Okay, we need to materialize a negated version of V with an instruction.
822  // Scan the use lists of V to see if we have one already.
823  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
824    User *U = *UI;
825    if (!BinaryOperator::isNeg(U)) continue;
826
827    // We found one!  Now we have to make sure that the definition dominates
828    // this use.  We do this by moving it to the entry block (if it is a
829    // non-instruction value) or right after the definition.  These negates will
830    // be zapped by reassociate later, so we don't need much finesse here.
831    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
832
833    // Verify that the negate is in this function, V might be a constant expr.
834    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
835      continue;
836
837    BasicBlock::iterator InsertPt;
838    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
839      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
840        InsertPt = II->getNormalDest()->begin();
841      } else {
842        InsertPt = InstInput;
843        ++InsertPt;
844      }
845      while (isa<PHINode>(InsertPt)) ++InsertPt;
846    } else {
847      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
848    }
849    TheNeg->moveBefore(InsertPt);
850    return TheNeg;
851  }
852
853  // Insert a 'neg' instruction that subtracts the value from zero to get the
854  // negation.
855  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
856}
857
858/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
859/// X-Y into (X + -Y).
860static bool ShouldBreakUpSubtract(Instruction *Sub) {
861  // If this is a negation, we can't split it up!
862  if (BinaryOperator::isNeg(Sub))
863    return false;
864
865  // Don't bother to break this up unless either the LHS is an associable add or
866  // subtract or if this is only used by one.
867  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
868      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
869    return true;
870  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
871      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
872    return true;
873  if (Sub->hasOneUse() &&
874      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
875       isReassociableOp(Sub->use_back(), Instruction::Sub)))
876    return true;
877
878  return false;
879}
880
881/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
882/// only used by an add, transform this into (X+(0-Y)) to promote better
883/// reassociation.
884static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
885  // Convert a subtract into an add and a neg instruction. This allows sub
886  // instructions to be commuted with other add instructions.
887  //
888  // Calculate the negative value of Operand 1 of the sub instruction,
889  // and set it as the RHS of the add instruction we just made.
890  //
891  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
892  BinaryOperator *New =
893    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
894  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
895  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
896  New->takeName(Sub);
897
898  // Everyone now refers to the add instruction.
899  Sub->replaceAllUsesWith(New);
900  New->setDebugLoc(Sub->getDebugLoc());
901
902  DEBUG(dbgs() << "Negated: " << *New << '\n');
903  return New;
904}
905
906/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
907/// by one, change this into a multiply by a constant to assist with further
908/// reassociation.
909static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
910  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
911  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
912
913  BinaryOperator *Mul =
914    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
915  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
916  Mul->takeName(Shl);
917  Shl->replaceAllUsesWith(Mul);
918  Mul->setDebugLoc(Shl->getDebugLoc());
919  return Mul;
920}
921
922/// FindInOperandList - Scan backwards and forwards among values with the same
923/// rank as element i to see if X exists.  If X does not exist, return i.  This
924/// is useful when scanning for 'x' when we see '-x' because they both get the
925/// same rank.
926static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
927                                  Value *X) {
928  unsigned XRank = Ops[i].Rank;
929  unsigned e = Ops.size();
930  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
931    if (Ops[j].Op == X)
932      return j;
933  // Scan backwards.
934  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
935    if (Ops[j].Op == X)
936      return j;
937  return i;
938}
939
940/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
941/// and returning the result.  Insert the tree before I.
942static Value *EmitAddTreeOfValues(Instruction *I,
943                                  SmallVectorImpl<WeakVH> &Ops){
944  if (Ops.size() == 1) return Ops.back();
945
946  Value *V1 = Ops.back();
947  Ops.pop_back();
948  Value *V2 = EmitAddTreeOfValues(I, Ops);
949  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
950}
951
952/// RemoveFactorFromExpression - If V is an expression tree that is a
953/// multiplication sequence, and if this sequence contains a multiply by Factor,
954/// remove Factor from the tree and return the new tree.
955Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
956  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
957  if (!BO) return 0;
958
959  SmallVector<RepeatedValue, 8> Tree;
960  MadeChange |= LinearizeExprTree(BO, Tree);
961  SmallVector<ValueEntry, 8> Factors;
962  Factors.reserve(Tree.size());
963  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
964    RepeatedValue E = Tree[i];
965    Factors.append(E.second.getZExtValue(),
966                   ValueEntry(getRank(E.first), E.first));
967  }
968
969  bool FoundFactor = false;
970  bool NeedsNegate = false;
971  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
972    if (Factors[i].Op == Factor) {
973      FoundFactor = true;
974      Factors.erase(Factors.begin()+i);
975      break;
976    }
977
978    // If this is a negative version of this factor, remove it.
979    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
980      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
981        if (FC1->getValue() == -FC2->getValue()) {
982          FoundFactor = NeedsNegate = true;
983          Factors.erase(Factors.begin()+i);
984          break;
985        }
986  }
987
988  if (!FoundFactor) {
989    // Make sure to restore the operands to the expression tree.
990    RewriteExprTree(BO, Factors);
991    return 0;
992  }
993
994  BasicBlock::iterator InsertPt = BO; ++InsertPt;
995
996  // If this was just a single multiply, remove the multiply and return the only
997  // remaining operand.
998  if (Factors.size() == 1) {
999    RedoInsts.insert(BO);
1000    V = Factors[0].Op;
1001  } else {
1002    RewriteExprTree(BO, Factors);
1003    V = BO;
1004  }
1005
1006  if (NeedsNegate)
1007    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1008
1009  return V;
1010}
1011
1012/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1013/// add its operands as factors, otherwise add V to the list of factors.
1014///
1015/// Ops is the top-level list of add operands we're trying to factor.
1016static void FindSingleUseMultiplyFactors(Value *V,
1017                                         SmallVectorImpl<Value*> &Factors,
1018                                       const SmallVectorImpl<ValueEntry> &Ops) {
1019  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1020  if (!BO) {
1021    Factors.push_back(V);
1022    return;
1023  }
1024
1025  // Otherwise, add the LHS and RHS to the list of factors.
1026  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1027  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1028}
1029
1030/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1031/// instruction.  This optimizes based on identities.  If it can be reduced to
1032/// a single Value, it is returned, otherwise the Ops list is mutated as
1033/// necessary.
1034static Value *OptimizeAndOrXor(unsigned Opcode,
1035                               SmallVectorImpl<ValueEntry> &Ops) {
1036  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1037  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1038  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1039    // First, check for X and ~X in the operand list.
1040    assert(i < Ops.size());
1041    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1042      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1043      unsigned FoundX = FindInOperandList(Ops, i, X);
1044      if (FoundX != i) {
1045        if (Opcode == Instruction::And)   // ...&X&~X = 0
1046          return Constant::getNullValue(X->getType());
1047
1048        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1049          return Constant::getAllOnesValue(X->getType());
1050      }
1051    }
1052
1053    // Next, check for duplicate pairs of values, which we assume are next to
1054    // each other, due to our sorting criteria.
1055    assert(i < Ops.size());
1056    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1057      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1058        // Drop duplicate values for And and Or.
1059        Ops.erase(Ops.begin()+i);
1060        --i; --e;
1061        ++NumAnnihil;
1062        continue;
1063      }
1064
1065      // Drop pairs of values for Xor.
1066      assert(Opcode == Instruction::Xor);
1067      if (e == 2)
1068        return Constant::getNullValue(Ops[0].Op->getType());
1069
1070      // Y ^ X^X -> Y
1071      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1072      i -= 1; e -= 2;
1073      ++NumAnnihil;
1074    }
1075  }
1076  return 0;
1077}
1078
1079/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1080/// optimizes based on identities.  If it can be reduced to a single Value, it
1081/// is returned, otherwise the Ops list is mutated as necessary.
1082Value *Reassociate::OptimizeAdd(Instruction *I,
1083                                SmallVectorImpl<ValueEntry> &Ops) {
1084  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1085  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1086  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1087  //
1088  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1089  //
1090  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1091    Value *TheOp = Ops[i].Op;
1092    // Check to see if we've seen this operand before.  If so, we factor all
1093    // instances of the operand together.  Due to our sorting criteria, we know
1094    // that these need to be next to each other in the vector.
1095    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1096      // Rescan the list, remove all instances of this operand from the expr.
1097      unsigned NumFound = 0;
1098      do {
1099        Ops.erase(Ops.begin()+i);
1100        ++NumFound;
1101      } while (i != Ops.size() && Ops[i].Op == TheOp);
1102
1103      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1104      ++NumFactor;
1105
1106      // Insert a new multiply.
1107      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1108      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1109
1110      // Now that we have inserted a multiply, optimize it. This allows us to
1111      // handle cases that require multiple factoring steps, such as this:
1112      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1113      RedoInsts.insert(cast<Instruction>(Mul));
1114
1115      // If every add operand was a duplicate, return the multiply.
1116      if (Ops.empty())
1117        return Mul;
1118
1119      // Otherwise, we had some input that didn't have the dupe, such as
1120      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1121      // things being added by this operation.
1122      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1123
1124      --i;
1125      e = Ops.size();
1126      continue;
1127    }
1128
1129    // Check for X and -X in the operand list.
1130    if (!BinaryOperator::isNeg(TheOp))
1131      continue;
1132
1133    Value *X = BinaryOperator::getNegArgument(TheOp);
1134    unsigned FoundX = FindInOperandList(Ops, i, X);
1135    if (FoundX == i)
1136      continue;
1137
1138    // Remove X and -X from the operand list.
1139    if (Ops.size() == 2)
1140      return Constant::getNullValue(X->getType());
1141
1142    Ops.erase(Ops.begin()+i);
1143    if (i < FoundX)
1144      --FoundX;
1145    else
1146      --i;   // Need to back up an extra one.
1147    Ops.erase(Ops.begin()+FoundX);
1148    ++NumAnnihil;
1149    --i;     // Revisit element.
1150    e -= 2;  // Removed two elements.
1151  }
1152
1153  // Scan the operand list, checking to see if there are any common factors
1154  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1155  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1156  // To efficiently find this, we count the number of times a factor occurs
1157  // for any ADD operands that are MULs.
1158  DenseMap<Value*, unsigned> FactorOccurrences;
1159
1160  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1161  // where they are actually the same multiply.
1162  unsigned MaxOcc = 0;
1163  Value *MaxOccVal = 0;
1164  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1165    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1166    if (!BOp)
1167      continue;
1168
1169    // Compute all of the factors of this added value.
1170    SmallVector<Value*, 8> Factors;
1171    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1172    assert(Factors.size() > 1 && "Bad linearize!");
1173
1174    // Add one to FactorOccurrences for each unique factor in this op.
1175    SmallPtrSet<Value*, 8> Duplicates;
1176    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1177      Value *Factor = Factors[i];
1178      if (!Duplicates.insert(Factor)) continue;
1179
1180      unsigned Occ = ++FactorOccurrences[Factor];
1181      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1182
1183      // If Factor is a negative constant, add the negated value as a factor
1184      // because we can percolate the negate out.  Watch for minint, which
1185      // cannot be positivified.
1186      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1187        if (CI->isNegative() && !CI->isMinValue(true)) {
1188          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1189          assert(!Duplicates.count(Factor) &&
1190                 "Shouldn't have two constant factors, missed a canonicalize");
1191
1192          unsigned Occ = ++FactorOccurrences[Factor];
1193          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1194        }
1195    }
1196  }
1197
1198  // If any factor occurred more than one time, we can pull it out.
1199  if (MaxOcc > 1) {
1200    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1201    ++NumFactor;
1202
1203    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1204    // this, we could otherwise run into situations where removing a factor
1205    // from an expression will drop a use of maxocc, and this can cause
1206    // RemoveFactorFromExpression on successive values to behave differently.
1207    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1208    SmallVector<WeakVH, 4> NewMulOps;
1209    for (unsigned i = 0; i != Ops.size(); ++i) {
1210      // Only try to remove factors from expressions we're allowed to.
1211      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1212      if (!BOp)
1213        continue;
1214
1215      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1216        // The factorized operand may occur several times.  Convert them all in
1217        // one fell swoop.
1218        for (unsigned j = Ops.size(); j != i;) {
1219          --j;
1220          if (Ops[j].Op == Ops[i].Op) {
1221            NewMulOps.push_back(V);
1222            Ops.erase(Ops.begin()+j);
1223          }
1224        }
1225        --i;
1226      }
1227    }
1228
1229    // No need for extra uses anymore.
1230    delete DummyInst;
1231
1232    unsigned NumAddedValues = NewMulOps.size();
1233    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1234
1235    // Now that we have inserted the add tree, optimize it. This allows us to
1236    // handle cases that require multiple factoring steps, such as this:
1237    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1238    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1239    (void)NumAddedValues;
1240    if (Instruction *VI = dyn_cast<Instruction>(V))
1241      RedoInsts.insert(VI);
1242
1243    // Create the multiply.
1244    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1245
1246    // Rerun associate on the multiply in case the inner expression turned into
1247    // a multiply.  We want to make sure that we keep things in canonical form.
1248    RedoInsts.insert(V2);
1249
1250    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1251    // entire result expression is just the multiply "A*(B+C)".
1252    if (Ops.empty())
1253      return V2;
1254
1255    // Otherwise, we had some input that didn't have the factor, such as
1256    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1257    // things being added by this operation.
1258    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1259  }
1260
1261  return 0;
1262}
1263
1264namespace {
1265  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1266  struct IsValueInMap {
1267    const DenseMap<Value *, unsigned> &Map;
1268
1269    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1270
1271    bool operator()(const ValueEntry &Entry) {
1272      return Map.find(Entry.Op) != Map.end();
1273    }
1274  };
1275}
1276
1277/// \brief Build up a vector of value/power pairs factoring a product.
1278///
1279/// Given a series of multiplication operands, build a vector of factors and
1280/// the powers each is raised to when forming the final product. Sort them in
1281/// the order of descending power.
1282///
1283///      (x*x)          -> [(x, 2)]
1284///     ((x*x)*x)       -> [(x, 3)]
1285///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1286///
1287/// \returns Whether any factors have a power greater than one.
1288bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1289                                         SmallVectorImpl<Factor> &Factors) {
1290  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1291  // Compute the sum of powers of simplifiable factors.
1292  unsigned FactorPowerSum = 0;
1293  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1294    Value *Op = Ops[Idx-1].Op;
1295
1296    // Count the number of occurrences of this value.
1297    unsigned Count = 1;
1298    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1299      ++Count;
1300    // Track for simplification all factors which occur 2 or more times.
1301    if (Count > 1)
1302      FactorPowerSum += Count;
1303  }
1304
1305  // We can only simplify factors if the sum of the powers of our simplifiable
1306  // factors is 4 or higher. When that is the case, we will *always* have
1307  // a simplification. This is an important invariant to prevent cyclicly
1308  // trying to simplify already minimal formations.
1309  if (FactorPowerSum < 4)
1310    return false;
1311
1312  // Now gather the simplifiable factors, removing them from Ops.
1313  FactorPowerSum = 0;
1314  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1315    Value *Op = Ops[Idx-1].Op;
1316
1317    // Count the number of occurrences of this value.
1318    unsigned Count = 1;
1319    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1320      ++Count;
1321    if (Count == 1)
1322      continue;
1323    // Move an even number of occurrences to Factors.
1324    Count &= ~1U;
1325    Idx -= Count;
1326    FactorPowerSum += Count;
1327    Factors.push_back(Factor(Op, Count));
1328    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1329  }
1330
1331  // None of the adjustments above should have reduced the sum of factor powers
1332  // below our mininum of '4'.
1333  assert(FactorPowerSum >= 4);
1334
1335  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1336  return true;
1337}
1338
1339/// \brief Build a tree of multiplies, computing the product of Ops.
1340static Value *buildMultiplyTree(IRBuilder<> &Builder,
1341                                SmallVectorImpl<Value*> &Ops) {
1342  if (Ops.size() == 1)
1343    return Ops.back();
1344
1345  Value *LHS = Ops.pop_back_val();
1346  do {
1347    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1348  } while (!Ops.empty());
1349
1350  return LHS;
1351}
1352
1353/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1354///
1355/// Given a vector of values raised to various powers, where no two values are
1356/// equal and the powers are sorted in decreasing order, compute the minimal
1357/// DAG of multiplies to compute the final product, and return that product
1358/// value.
1359Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1360                                            SmallVectorImpl<Factor> &Factors) {
1361  assert(Factors[0].Power);
1362  SmallVector<Value *, 4> OuterProduct;
1363  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1364       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1365    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1366      LastIdx = Idx;
1367      continue;
1368    }
1369
1370    // We want to multiply across all the factors with the same power so that
1371    // we can raise them to that power as a single entity. Build a mini tree
1372    // for that.
1373    SmallVector<Value *, 4> InnerProduct;
1374    InnerProduct.push_back(Factors[LastIdx].Base);
1375    do {
1376      InnerProduct.push_back(Factors[Idx].Base);
1377      ++Idx;
1378    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1379
1380    // Reset the base value of the first factor to the new expression tree.
1381    // We'll remove all the factors with the same power in a second pass.
1382    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1383    if (Instruction *MI = dyn_cast<Instruction>(M))
1384      RedoInsts.insert(MI);
1385
1386    LastIdx = Idx;
1387  }
1388  // Unique factors with equal powers -- we've folded them into the first one's
1389  // base.
1390  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1391                            Factor::PowerEqual()),
1392                Factors.end());
1393
1394  // Iteratively collect the base of each factor with an add power into the
1395  // outer product, and halve each power in preparation for squaring the
1396  // expression.
1397  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1398    if (Factors[Idx].Power & 1)
1399      OuterProduct.push_back(Factors[Idx].Base);
1400    Factors[Idx].Power >>= 1;
1401  }
1402  if (Factors[0].Power) {
1403    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1404    OuterProduct.push_back(SquareRoot);
1405    OuterProduct.push_back(SquareRoot);
1406  }
1407  if (OuterProduct.size() == 1)
1408    return OuterProduct.front();
1409
1410  Value *V = buildMultiplyTree(Builder, OuterProduct);
1411  return V;
1412}
1413
1414Value *Reassociate::OptimizeMul(BinaryOperator *I,
1415                                SmallVectorImpl<ValueEntry> &Ops) {
1416  // We can only optimize the multiplies when there is a chain of more than
1417  // three, such that a balanced tree might require fewer total multiplies.
1418  if (Ops.size() < 4)
1419    return 0;
1420
1421  // Try to turn linear trees of multiplies without other uses of the
1422  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1423  // re-use.
1424  SmallVector<Factor, 4> Factors;
1425  if (!collectMultiplyFactors(Ops, Factors))
1426    return 0; // All distinct factors, so nothing left for us to do.
1427
1428  IRBuilder<> Builder(I);
1429  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1430  if (Ops.empty())
1431    return V;
1432
1433  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1434  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1435  return 0;
1436}
1437
1438Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1439                                       SmallVectorImpl<ValueEntry> &Ops) {
1440  // Now that we have the linearized expression tree, try to optimize it.
1441  // Start by folding any constants that we found.
1442  if (Ops.size() == 1) return Ops[0].Op;
1443
1444  unsigned Opcode = I->getOpcode();
1445
1446  // Handle destructive annihilation due to identities between elements in the
1447  // argument list here.
1448  unsigned NumOps = Ops.size();
1449  switch (Opcode) {
1450  default: break;
1451  case Instruction::And:
1452  case Instruction::Or:
1453  case Instruction::Xor:
1454    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1455      return Result;
1456    break;
1457
1458  case Instruction::Add:
1459    if (Value *Result = OptimizeAdd(I, Ops))
1460      return Result;
1461    break;
1462
1463  case Instruction::Mul:
1464    if (Value *Result = OptimizeMul(I, Ops))
1465      return Result;
1466    break;
1467  }
1468
1469  if (Ops.size() != NumOps)
1470    return OptimizeExpression(I, Ops);
1471  return 0;
1472}
1473
1474/// EraseInst - Zap the given instruction, adding interesting operands to the
1475/// work list.
1476void Reassociate::EraseInst(Instruction *I) {
1477  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1478  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1479  // Erase the dead instruction.
1480  ValueRankMap.erase(I);
1481  I->eraseFromParent();
1482  // Optimize its operands.
1483  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1484    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1485      // If this is a node in an expression tree, climb to the expression root
1486      // and add that since that's where optimization actually happens.
1487      unsigned Opcode = Op->getOpcode();
1488      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode)
1489        Op = Op->use_back();
1490      RedoInsts.insert(Op);
1491    }
1492}
1493
1494/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1495/// instructions is not allowed.
1496void Reassociate::OptimizeInst(Instruction *I) {
1497  // Only consider operations that we understand.
1498  if (!isa<BinaryOperator>(I))
1499    return;
1500
1501  if (I->getOpcode() == Instruction::Shl &&
1502      isa<ConstantInt>(I->getOperand(1)))
1503    // If an operand of this shift is a reassociable multiply, or if the shift
1504    // is used by a reassociable multiply or add, turn into a multiply.
1505    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1506        (I->hasOneUse() &&
1507         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1508          isReassociableOp(I->use_back(), Instruction::Add)))) {
1509      Instruction *NI = ConvertShiftToMul(I);
1510      RedoInsts.insert(I);
1511      MadeChange = true;
1512      I = NI;
1513    }
1514
1515  // Floating point binary operators are not associative, but we can still
1516  // commute (some) of them, to canonicalize the order of their operands.
1517  // This can potentially expose more CSE opportunities, and makes writing
1518  // other transformations simpler.
1519  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1520    // FAdd and FMul can be commuted.
1521    if (I->getOpcode() != Instruction::FMul &&
1522        I->getOpcode() != Instruction::FAdd)
1523      return;
1524
1525    Value *LHS = I->getOperand(0);
1526    Value *RHS = I->getOperand(1);
1527    unsigned LHSRank = getRank(LHS);
1528    unsigned RHSRank = getRank(RHS);
1529
1530    // Sort the operands by rank.
1531    if (RHSRank < LHSRank) {
1532      I->setOperand(0, RHS);
1533      I->setOperand(1, LHS);
1534    }
1535
1536    return;
1537  }
1538
1539  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1540  // original order of evaluation for short-circuited comparisons that
1541  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1542  // is not further optimized, it is likely to be transformed back to a
1543  // short-circuited form for code gen, and the source order may have been
1544  // optimized for the most likely conditions.
1545  if (I->getType()->isIntegerTy(1))
1546    return;
1547
1548  // If this is a subtract instruction which is not already in negate form,
1549  // see if we can convert it to X+-Y.
1550  if (I->getOpcode() == Instruction::Sub) {
1551    if (ShouldBreakUpSubtract(I)) {
1552      Instruction *NI = BreakUpSubtract(I);
1553      RedoInsts.insert(I);
1554      MadeChange = true;
1555      I = NI;
1556    } else if (BinaryOperator::isNeg(I)) {
1557      // Otherwise, this is a negation.  See if the operand is a multiply tree
1558      // and if this is not an inner node of a multiply tree.
1559      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1560          (!I->hasOneUse() ||
1561           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1562        Instruction *NI = LowerNegateToMultiply(I);
1563        RedoInsts.insert(I);
1564        MadeChange = true;
1565        I = NI;
1566      }
1567    }
1568  }
1569
1570  // If this instruction is an associative binary operator, process it.
1571  if (!I->isAssociative()) return;
1572  BinaryOperator *BO = cast<BinaryOperator>(I);
1573
1574  // If this is an interior node of a reassociable tree, ignore it until we
1575  // get to the root of the tree, to avoid N^2 analysis.
1576  if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode())
1577    return;
1578
1579  // If this is an add tree that is used by a sub instruction, ignore it
1580  // until we process the subtract.
1581  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1582      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1583    return;
1584
1585  ReassociateExpression(BO);
1586}
1587
1588Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1589
1590  // First, walk the expression tree, linearizing the tree, collecting the
1591  // operand information.
1592  SmallVector<RepeatedValue, 8> Tree;
1593  MadeChange |= LinearizeExprTree(I, Tree);
1594  SmallVector<ValueEntry, 8> Ops;
1595  Ops.reserve(Tree.size());
1596  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1597    RepeatedValue E = Tree[i];
1598    Ops.append(E.second.getZExtValue(),
1599               ValueEntry(getRank(E.first), E.first));
1600  }
1601
1602  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1603
1604  // Now that we have linearized the tree to a list and have gathered all of
1605  // the operands and their ranks, sort the operands by their rank.  Use a
1606  // stable_sort so that values with equal ranks will have their relative
1607  // positions maintained (and so the compiler is deterministic).  Note that
1608  // this sorts so that the highest ranking values end up at the beginning of
1609  // the vector.
1610  std::stable_sort(Ops.begin(), Ops.end());
1611
1612  // OptimizeExpression - Now that we have the expression tree in a convenient
1613  // sorted form, optimize it globally if possible.
1614  if (Value *V = OptimizeExpression(I, Ops)) {
1615    // This expression tree simplified to something that isn't a tree,
1616    // eliminate it.
1617    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1618    I->replaceAllUsesWith(V);
1619    if (Instruction *VI = dyn_cast<Instruction>(V))
1620      VI->setDebugLoc(I->getDebugLoc());
1621    RedoInsts.insert(I);
1622    ++NumAnnihil;
1623    return V;
1624  }
1625
1626  // We want to sink immediates as deeply as possible except in the case where
1627  // this is a multiply tree used only by an add, and the immediate is a -1.
1628  // In this case we reassociate to put the negation on the outside so that we
1629  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1630  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1631      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1632      isa<ConstantInt>(Ops.back().Op) &&
1633      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1634    ValueEntry Tmp = Ops.pop_back_val();
1635    Ops.insert(Ops.begin(), Tmp);
1636  }
1637
1638  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1639
1640  if (Ops.size() == 1) {
1641    // This expression tree simplified to something that isn't a tree,
1642    // eliminate it.
1643    I->replaceAllUsesWith(Ops[0].Op);
1644    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1645      OI->setDebugLoc(I->getDebugLoc());
1646    RedoInsts.insert(I);
1647    return Ops[0].Op;
1648  }
1649
1650  // Now that we ordered and optimized the expressions, splat them back into
1651  // the expression tree, removing any unneeded nodes.
1652  RewriteExprTree(I, Ops);
1653  return I;
1654}
1655
1656bool Reassociate::runOnFunction(Function &F) {
1657  // Calculate the rank map for F
1658  BuildRankMap(F);
1659
1660  MadeChange = false;
1661  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1662    // Optimize every instruction in the basic block.
1663    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1664      if (isInstructionTriviallyDead(II)) {
1665        EraseInst(II++);
1666      } else {
1667        OptimizeInst(II);
1668        assert(II->getParent() == BI && "Moved to a different block!");
1669        ++II;
1670      }
1671
1672    // If this produced extra instructions to optimize, handle them now.
1673    while (!RedoInsts.empty()) {
1674      Instruction *I = RedoInsts.pop_back_val();
1675      if (isInstructionTriviallyDead(I))
1676        EraseInst(I);
1677      else
1678        OptimizeInst(I);
1679    }
1680  }
1681
1682  // We are done with the rank map.
1683  RankMap.clear();
1684  ValueRankMap.clear();
1685
1686  return MadeChange;
1687}
1688