Reassociate.cpp revision d8e1eea678833cc2b15e4ea69a5a403ba9c3b013
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// Note that this pass works best if left shifts have been promoted to explicit
16// multiplies before this pass executes.
17//
18// In the implementation of this algorithm, constants are assigned rank = 0,
19// function arguments are rank = 1, and other values are assigned ranks
20// corresponding to the reverse post order traversal of current function
21// (starting at 2), which effectively gives values in deep loops higher rank
22// than values not in loops.
23//
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Type.h"
30#include "llvm/Pass.h"
31#include "llvm/Constant.h"
32#include "llvm/Support/CFG.h"
33#include "Support/Debug.h"
34#include "Support/PostOrderIterator.h"
35#include "Support/Statistic.h"
36using namespace llvm;
37
38namespace {
39  Statistic<> NumLinear ("reassociate","Number of insts linearized");
40  Statistic<> NumChanged("reassociate","Number of insts reassociated");
41  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
42
43  class Reassociate : public FunctionPass {
44    std::map<BasicBlock*, unsigned> RankMap;
45    std::map<Value*, unsigned> ValueRankMap;
46  public:
47    bool runOnFunction(Function &F);
48
49    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
50      AU.setPreservesCFG();
51    }
52  private:
53    void BuildRankMap(Function &F);
54    unsigned getRank(Value *V);
55    bool ReassociateExpr(BinaryOperator *I);
56    bool ReassociateBB(BasicBlock *BB);
57  };
58
59  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
60}
61
62// Public interface to the Reassociate pass
63FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
64
65void Reassociate::BuildRankMap(Function &F) {
66  unsigned i = 2;
67
68  // Assign distinct ranks to function arguments
69  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
70    ValueRankMap[I] = ++i;
71
72  ReversePostOrderTraversal<Function*> RPOT(&F);
73  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
74         E = RPOT.end(); I != E; ++I)
75    RankMap[*I] = ++i << 16;
76}
77
78unsigned Reassociate::getRank(Value *V) {
79  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
80
81  if (Instruction *I = dyn_cast<Instruction>(V)) {
82    // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
83    // we can reassociate expressions for code motion!  Since we do not recurse
84    // for PHI nodes, we cannot have infinite recursion here, because there
85    // cannot be loops in the value graph that do not go through PHI nodes.
86    //
87    if (I->getOpcode() == Instruction::PHI ||
88        I->getOpcode() == Instruction::Alloca ||
89        I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
90        I->mayWriteToMemory())  // Cannot move inst if it writes to memory!
91      return RankMap[I->getParent()];
92
93    unsigned &CachedRank = ValueRankMap[I];
94    if (CachedRank) return CachedRank;    // Rank already known?
95
96    // If not, compute it!
97    unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
98    for (unsigned i = 0, e = I->getNumOperands();
99         i != e && Rank != MaxRank; ++i)
100      Rank = std::max(Rank, getRank(I->getOperand(i)));
101
102    DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
103                    << Rank+1 << "\n");
104
105    return CachedRank = Rank+1;
106  }
107
108  // Otherwise it's a global or constant, rank 0.
109  return 0;
110}
111
112
113bool Reassociate::ReassociateExpr(BinaryOperator *I) {
114  Value *LHS = I->getOperand(0);
115  Value *RHS = I->getOperand(1);
116  unsigned LHSRank = getRank(LHS);
117  unsigned RHSRank = getRank(RHS);
118
119  bool Changed = false;
120
121  // Make sure the LHS of the operand always has the greater rank...
122  if (LHSRank < RHSRank) {
123    bool Success = !I->swapOperands();
124    assert(Success && "swapOperands failed");
125
126    std::swap(LHS, RHS);
127    std::swap(LHSRank, RHSRank);
128    Changed = true;
129    ++NumSwapped;
130    DEBUG(std::cerr << "Transposed: " << *I
131          /* << " Result BB: " << I->getParent()*/);
132  }
133
134  // If the LHS is the same operator as the current one is, and if we are the
135  // only expression using it...
136  //
137  if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
138    if (LHSI->getOpcode() == I->getOpcode() && LHSI->hasOneUse()) {
139      // If the rank of our current RHS is less than the rank of the LHS's LHS,
140      // then we reassociate the two instructions...
141
142      unsigned TakeOp = 0;
143      if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
144        if (IOp->getOpcode() == LHSI->getOpcode())
145          TakeOp = 1;   // Hoist out non-tree portion
146
147      if (RHSRank < getRank(LHSI->getOperand(TakeOp))) {
148        // Convert ((a + 12) + 10) into (a + (12 + 10))
149        I->setOperand(0, LHSI->getOperand(TakeOp));
150        LHSI->setOperand(TakeOp, RHS);
151        I->setOperand(1, LHSI);
152
153        // Move the LHS expression forward, to ensure that it is dominated by
154        // its operands.
155        LHSI->getParent()->getInstList().remove(LHSI);
156        I->getParent()->getInstList().insert(I, LHSI);
157
158        ++NumChanged;
159        DEBUG(std::cerr << "Reassociated: " << *I/* << " Result BB: "
160                                                   << I->getParent()*/);
161
162        // Since we modified the RHS instruction, make sure that we recheck it.
163        ReassociateExpr(LHSI);
164        ReassociateExpr(I);
165        return true;
166      }
167    }
168
169  return Changed;
170}
171
172
173// NegateValue - Insert instructions before the instruction pointed to by BI,
174// that computes the negative version of the value specified.  The negative
175// version of the value is returned, and BI is left pointing at the instruction
176// that should be processed next by the reassociation pass.
177//
178static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
179  // We are trying to expose opportunity for reassociation.  One of the things
180  // that we want to do to achieve this is to push a negation as deep into an
181  // expression chain as possible, to expose the add instructions.  In practice,
182  // this means that we turn this:
183  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
184  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
185  // the constants.  We assume that instcombine will clean up the mess later if
186  // we introduce tons of unnecessary negation instructions...
187  //
188  if (Instruction *I = dyn_cast<Instruction>(V))
189    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
190      Value *RHS = NegateValue(I->getOperand(1), BI);
191      Value *LHS = NegateValue(I->getOperand(0), BI);
192
193      // We must actually insert a new add instruction here, because the neg
194      // instructions do not dominate the old add instruction in general.  By
195      // adding it now, we are assured that the neg instructions we just
196      // inserted dominate the instruction we are about to insert after them.
197      //
198      return BinaryOperator::create(Instruction::Add, LHS, RHS,
199                                    I->getName()+".neg",
200                                    cast<Instruction>(RHS)->getNext());
201    }
202
203  // Insert a 'neg' instruction that subtracts the value from zero to get the
204  // negation.
205  //
206  return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
207}
208
209
210bool Reassociate::ReassociateBB(BasicBlock *BB) {
211  bool Changed = false;
212  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
213
214    DEBUG(std::cerr << "Reassociating: " << *BI);
215    if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
216      // Convert a subtract into an add and a neg instruction... so that sub
217      // instructions can be commuted with other add instructions...
218      //
219      // Calculate the negative value of Operand 1 of the sub instruction...
220      // and set it as the RHS of the add instruction we just made...
221      //
222      std::string Name = BI->getName();
223      BI->setName("");
224      Instruction *New =
225        BinaryOperator::create(Instruction::Add, BI->getOperand(0),
226                               BI->getOperand(1), Name, BI);
227
228      // Everyone now refers to the add instruction...
229      BI->replaceAllUsesWith(New);
230
231      // Put the new add in the place of the subtract... deleting the subtract
232      BB->getInstList().erase(BI);
233
234      BI = New;
235      New->setOperand(1, NegateValue(New->getOperand(1), BI));
236
237      Changed = true;
238      DEBUG(std::cerr << "Negated: " << *New /*<< " Result BB: " << BB*/);
239    }
240
241    // If this instruction is a commutative binary operator, and the ranks of
242    // the two operands are sorted incorrectly, fix it now.
243    //
244    if (BI->isAssociative()) {
245      BinaryOperator *I = cast<BinaryOperator>(BI);
246      if (!I->use_empty()) {
247        // Make sure that we don't have a tree-shaped computation.  If we do,
248        // linearize it.  Convert (A+B)+(C+D) into ((A+B)+C)+D
249        //
250        Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
251        Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
252        if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
253            RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
254            RHSI->hasOneUse()) {
255          // Insert a new temporary instruction... (A+B)+C
256          BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
257                                                       RHSI->getOperand(0),
258                                                       RHSI->getName()+".ra",
259                                                       BI);
260          BI = Tmp;
261          I->setOperand(0, Tmp);
262          I->setOperand(1, RHSI->getOperand(1));
263
264          // Process the temporary instruction for reassociation now.
265          I = Tmp;
266          ++NumLinear;
267          Changed = true;
268          DEBUG(std::cerr << "Linearized: " << *I/* << " Result BB: " << BB*/);
269        }
270
271        // Make sure that this expression is correctly reassociated with respect
272        // to it's used values...
273        //
274        Changed |= ReassociateExpr(I);
275      }
276    }
277  }
278
279  return Changed;
280}
281
282
283bool Reassociate::runOnFunction(Function &F) {
284  // Recalculate the rank map for F
285  BuildRankMap(F);
286
287  bool Changed = false;
288  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
289    Changed |= ReassociateBB(FI);
290
291  // We are done with the rank map...
292  RankMap.clear();
293  ValueRankMap.clear();
294  return Changed;
295}
296
297