Reassociate.cpp revision dac5dbadeb840ddded4665d144f31c5f88494d6e
145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//                     The LLVM Compiler Infrastructure
445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// This file is distributed under the University of Illinois Open Source
645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// License. See LICENSE.TXT for details.
745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//===----------------------------------------------------------------------===//
945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
1045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// This pass reassociates commutative expressions in an order that is designed
1145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// to promote better constant propagation, GCSE, LICM, PRE, etc.
1245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
1345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// For example: 4 + (x + 5) -> x + (4 + 5)
1445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
1545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// In the implementation of this algorithm, constants are assigned rank = 0,
1645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// function arguments are rank = 1, and other values are assigned ranks
1745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// corresponding to the reverse post order traversal of current function
1845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// (starting at 2), which effectively gives values in deep loops higher rank
1945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// than values not in loops.
2045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//
2145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org//===----------------------------------------------------------------------===//
2245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
2345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#define DEBUG_TYPE "reassociate"
2445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Transforms/Scalar.h"
2545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Transforms/Utils/Local.h"
2645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Constants.h"
2745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/DerivedTypes.h"
2845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Function.h"
2945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Instructions.h"
3045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/IntrinsicInst.h"
3145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Pass.h"
3245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Assembly/Writer.h"
3345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Support/CFG.h"
3445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Support/Debug.h"
3545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Support/ValueHandle.h"
3645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/Support/raw_ostream.h"
3745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/ADT/PostOrderIterator.h"
3845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/ADT/Statistic.h"
3945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include "llvm/ADT/DenseMap.h"
4045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#include <algorithm>
4145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgusing namespace llvm;
4245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
4345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgSTATISTIC(NumLinear , "Number of insts linearized");
4445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgSTATISTIC(NumChanged, "Number of insts reassociated");
4545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgSTATISTIC(NumAnnihil, "Number of expr tree annihilated");
4645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgSTATISTIC(NumFactor , "Number of multiplies factored");
4745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
4845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgnamespace {
4945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  struct ValueEntry {
5045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    unsigned Rank;
5145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Value *Op;
5245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
5345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  };
5445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
5545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
5645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  }
5745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org}
5845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
5945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#ifndef NDEBUG
6045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org/// PrintOps - Print out the expression identified in the Ops list.
6145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org///
6245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgstatic void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
6345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  Module *M = I->getParent()->getParent()->getParent();
6445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
6545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org       << *Ops[0].Op->getType() << '\t';
6645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    dbgs() << "[ ";
6845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
6945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    dbgs() << ", #" << Ops[i].Rank << "] ";
7045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  }
7145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org}
7245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org#endif
7345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
7445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgnamespace {
7545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  class Reassociate : public FunctionPass {
7645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    DenseMap<BasicBlock*, unsigned> RankMap;
7745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
7845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    SmallVector<WeakVH, 8> RedoInsts;
7945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    SmallVector<WeakVH, 8> DeadInsts;
8045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    bool MadeChange;
8145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  public:
8245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    static char ID; // Pass identification, replacement for typeid
8345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Reassociate() : FunctionPass(ID) {
8445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      initializeReassociatePass(*PassRegistry::getPassRegistry());
8545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    }
8645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
8745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    bool runOnFunction(Function &F);
8845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
8945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
9045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      AU.setPreservesCFG();
9145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    }
9245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  private:
9345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void BuildRankMap(Function &F);
9445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    unsigned getRank(Value *V);
9545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Value *ReassociateExpression(BinaryOperator *I);
9645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
9745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org                         unsigned Idx = 0);
9845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Value *OptimizeExpression(BinaryOperator *I,
9945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org                              SmallVectorImpl<ValueEntry> &Ops);
10045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
10145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
10245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void LinearizeExpr(BinaryOperator *I);
10345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
10445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void ReassociateInst(BasicBlock::iterator &BBI);
10545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
10645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    void RemoveDeadBinaryOp(Value *V);
10745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  };
10845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org}
10945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
11045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgchar Reassociate::ID = 0;
11145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgINITIALIZE_PASS(Reassociate, "reassociate",
11245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org                "Reassociate expressions", false, false)
11345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
11445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org// Public interface to the Reassociate pass
11545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgFunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
11645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
11745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgvoid Reassociate::RemoveDeadBinaryOp(Value *V) {
11845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  Instruction *Op = dyn_cast<Instruction>(V);
11945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  if (!Op || !isa<BinaryOperator>(Op))
12045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org    return;
12145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
12245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
12345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
12445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  ValueRankMap.erase(Op);
12545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  DeadInsts.push_back(Op);
12645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  RemoveDeadBinaryOp(LHS);
12745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  RemoveDeadBinaryOp(RHS);
12845afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org}
12945afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
13045afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org
13145afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.orgstatic bool isUnmovableInstruction(Instruction *I) {
13245afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org  if (I->getOpcode() == Instruction::PHI ||
13345afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      I->getOpcode() == Instruction::Alloca ||
13445afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      I->getOpcode() == Instruction::Load ||
13545afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      I->getOpcode() == Instruction::Invoke ||
13645afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org      (I->getOpcode() == Instruction::Call &&
13745afe016bed87b9c6946184709058b39ede3f77ajwong@chromium.org       !isa<DbgInfoIntrinsic>(I)) ||
138      I->getOpcode() == Instruction::UDiv ||
139      I->getOpcode() == Instruction::SDiv ||
140      I->getOpcode() == Instruction::FDiv ||
141      I->getOpcode() == Instruction::URem ||
142      I->getOpcode() == Instruction::SRem ||
143      I->getOpcode() == Instruction::FRem)
144    return true;
145  return false;
146}
147
148void Reassociate::BuildRankMap(Function &F) {
149  unsigned i = 2;
150
151  // Assign distinct ranks to function arguments
152  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
153    ValueRankMap[&*I] = ++i;
154
155  ReversePostOrderTraversal<Function*> RPOT(&F);
156  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
157         E = RPOT.end(); I != E; ++I) {
158    BasicBlock *BB = *I;
159    unsigned BBRank = RankMap[BB] = ++i << 16;
160
161    // Walk the basic block, adding precomputed ranks for any instructions that
162    // we cannot move.  This ensures that the ranks for these instructions are
163    // all different in the block.
164    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
165      if (isUnmovableInstruction(I))
166        ValueRankMap[&*I] = ++BBRank;
167  }
168}
169
170unsigned Reassociate::getRank(Value *V) {
171  Instruction *I = dyn_cast<Instruction>(V);
172  if (I == 0) {
173    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
174    return 0;  // Otherwise it's a global or constant, rank 0.
175  }
176
177  if (unsigned Rank = ValueRankMap[I])
178    return Rank;    // Rank already known?
179
180  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181  // we can reassociate expressions for code motion!  Since we do not recurse
182  // for PHI nodes, we cannot have infinite recursion here, because there
183  // cannot be loops in the value graph that do not go through PHI nodes.
184  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185  for (unsigned i = 0, e = I->getNumOperands();
186       i != e && Rank != MaxRank; ++i)
187    Rank = std::max(Rank, getRank(I->getOperand(i)));
188
189  // If this is a not or neg instruction, do not count it for rank.  This
190  // assures us that X and ~X will have the same rank.
191  if (!I->getType()->isIntegerTy() ||
192      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
193    ++Rank;
194
195  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
196  //     << Rank << "\n");
197
198  return ValueRankMap[I] = Rank;
199}
200
201/// isReassociableOp - Return true if V is an instruction of the specified
202/// opcode and if it only has one use.
203static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
204  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
205      cast<Instruction>(V)->getOpcode() == Opcode)
206    return cast<BinaryOperator>(V);
207  return 0;
208}
209
210/// LowerNegateToMultiply - Replace 0-X with X*-1.
211///
212static Instruction *LowerNegateToMultiply(Instruction *Neg,
213                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
214  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
215
216  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
217  ValueRankMap.erase(Neg);
218  Res->takeName(Neg);
219  Neg->replaceAllUsesWith(Res);
220  Neg->eraseFromParent();
221  return Res;
222}
223
224// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
225// Note that if D is also part of the expression tree that we recurse to
226// linearize it as well.  Besides that case, this does not recurse into A,B, or
227// C.
228void Reassociate::LinearizeExpr(BinaryOperator *I) {
229  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
230  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
231  assert(isReassociableOp(LHS, I->getOpcode()) &&
232         isReassociableOp(RHS, I->getOpcode()) &&
233         "Not an expression that needs linearization?");
234
235  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
236
237  // Move the RHS instruction to live immediately before I, avoiding breaking
238  // dominator properties.
239  RHS->moveBefore(I);
240
241  // Move operands around to do the linearization.
242  I->setOperand(1, RHS->getOperand(0));
243  RHS->setOperand(0, LHS);
244  I->setOperand(0, RHS);
245
246  // Conservatively clear all the optional flags, which may not hold
247  // after the reassociation.
248  I->clearSubclassOptionalData();
249  LHS->clearSubclassOptionalData();
250  RHS->clearSubclassOptionalData();
251
252  ++NumLinear;
253  MadeChange = true;
254  DEBUG(dbgs() << "Linearized: " << *I << '\n');
255
256  // If D is part of this expression tree, tail recurse.
257  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
258    LinearizeExpr(I);
259}
260
261
262/// LinearizeExprTree - Given an associative binary expression tree, traverse
263/// all of the uses putting it into canonical form.  This forces a left-linear
264/// form of the expression (((a+b)+c)+d), and collects information about the
265/// rank of the non-tree operands.
266///
267/// NOTE: These intentionally destroys the expression tree operands (turning
268/// them into undef values) to reduce #uses of the values.  This means that the
269/// caller MUST use something like RewriteExprTree to put the values back in.
270///
271void Reassociate::LinearizeExprTree(BinaryOperator *I,
272                                    SmallVectorImpl<ValueEntry> &Ops) {
273  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
274  unsigned Opcode = I->getOpcode();
275
276  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
277  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
278  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
279
280  // If this is a multiply expression tree and it contains internal negations,
281  // transform them into multiplies by -1 so they can be reassociated.
282  if (I->getOpcode() == Instruction::Mul) {
283    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
284      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
285      LHSBO = isReassociableOp(LHS, Opcode);
286    }
287    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
288      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
289      RHSBO = isReassociableOp(RHS, Opcode);
290    }
291  }
292
293  if (!LHSBO) {
294    if (!RHSBO) {
295      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
296      // such, just remember these operands and their rank.
297      Ops.push_back(ValueEntry(getRank(LHS), LHS));
298      Ops.push_back(ValueEntry(getRank(RHS), RHS));
299
300      // Clear the leaves out.
301      I->setOperand(0, UndefValue::get(I->getType()));
302      I->setOperand(1, UndefValue::get(I->getType()));
303      return;
304    }
305
306    // Turn X+(Y+Z) -> (Y+Z)+X
307    std::swap(LHSBO, RHSBO);
308    std::swap(LHS, RHS);
309    bool Success = !I->swapOperands();
310    assert(Success && "swapOperands failed");
311    Success = false;
312    MadeChange = true;
313  } else if (RHSBO) {
314    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
315    // part of the expression tree.
316    LinearizeExpr(I);
317    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
318    RHS = I->getOperand(1);
319    RHSBO = 0;
320  }
321
322  // Okay, now we know that the LHS is a nested expression and that the RHS is
323  // not.  Perform reassociation.
324  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
325
326  // Move LHS right before I to make sure that the tree expression dominates all
327  // values.
328  LHSBO->moveBefore(I);
329
330  // Linearize the expression tree on the LHS.
331  LinearizeExprTree(LHSBO, Ops);
332
333  // Remember the RHS operand and its rank.
334  Ops.push_back(ValueEntry(getRank(RHS), RHS));
335
336  // Clear the RHS leaf out.
337  I->setOperand(1, UndefValue::get(I->getType()));
338}
339
340// RewriteExprTree - Now that the operands for this expression tree are
341// linearized and optimized, emit them in-order.  This function is written to be
342// tail recursive.
343void Reassociate::RewriteExprTree(BinaryOperator *I,
344                                  SmallVectorImpl<ValueEntry> &Ops,
345                                  unsigned i) {
346  if (i+2 == Ops.size()) {
347    if (I->getOperand(0) != Ops[i].Op ||
348        I->getOperand(1) != Ops[i+1].Op) {
349      Value *OldLHS = I->getOperand(0);
350      DEBUG(dbgs() << "RA: " << *I << '\n');
351      I->setOperand(0, Ops[i].Op);
352      I->setOperand(1, Ops[i+1].Op);
353
354      // Clear all the optional flags, which may not hold after the
355      // reassociation if the expression involved more than just this operation.
356      if (Ops.size() != 2)
357        I->clearSubclassOptionalData();
358
359      DEBUG(dbgs() << "TO: " << *I << '\n');
360      MadeChange = true;
361      ++NumChanged;
362
363      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
364      // delete the extra, now dead, nodes.
365      RemoveDeadBinaryOp(OldLHS);
366    }
367    return;
368  }
369  assert(i+2 < Ops.size() && "Ops index out of range!");
370
371  if (I->getOperand(1) != Ops[i].Op) {
372    DEBUG(dbgs() << "RA: " << *I << '\n');
373    I->setOperand(1, Ops[i].Op);
374
375    // Conservatively clear all the optional flags, which may not hold
376    // after the reassociation.
377    I->clearSubclassOptionalData();
378
379    DEBUG(dbgs() << "TO: " << *I << '\n');
380    MadeChange = true;
381    ++NumChanged;
382  }
383
384  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
385  assert(LHS->getOpcode() == I->getOpcode() &&
386         "Improper expression tree!");
387
388  // Compactify the tree instructions together with each other to guarantee
389  // that the expression tree is dominated by all of Ops.
390  LHS->moveBefore(I);
391  RewriteExprTree(LHS, Ops, i+1);
392}
393
394
395
396// NegateValue - Insert instructions before the instruction pointed to by BI,
397// that computes the negative version of the value specified.  The negative
398// version of the value is returned, and BI is left pointing at the instruction
399// that should be processed next by the reassociation pass.
400//
401static Value *NegateValue(Value *V, Instruction *BI) {
402  if (Constant *C = dyn_cast<Constant>(V))
403    return ConstantExpr::getNeg(C);
404
405  // We are trying to expose opportunity for reassociation.  One of the things
406  // that we want to do to achieve this is to push a negation as deep into an
407  // expression chain as possible, to expose the add instructions.  In practice,
408  // this means that we turn this:
409  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
410  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
411  // the constants.  We assume that instcombine will clean up the mess later if
412  // we introduce tons of unnecessary negation instructions.
413  //
414  if (Instruction *I = dyn_cast<Instruction>(V))
415    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
416      // Push the negates through the add.
417      I->setOperand(0, NegateValue(I->getOperand(0), BI));
418      I->setOperand(1, NegateValue(I->getOperand(1), BI));
419
420      // We must move the add instruction here, because the neg instructions do
421      // not dominate the old add instruction in general.  By moving it, we are
422      // assured that the neg instructions we just inserted dominate the
423      // instruction we are about to insert after them.
424      //
425      I->moveBefore(BI);
426      I->setName(I->getName()+".neg");
427      return I;
428    }
429
430  // Okay, we need to materialize a negated version of V with an instruction.
431  // Scan the use lists of V to see if we have one already.
432  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
433    User *U = *UI;
434    if (!BinaryOperator::isNeg(U)) continue;
435
436    // We found one!  Now we have to make sure that the definition dominates
437    // this use.  We do this by moving it to the entry block (if it is a
438    // non-instruction value) or right after the definition.  These negates will
439    // be zapped by reassociate later, so we don't need much finesse here.
440    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
441
442    // Verify that the negate is in this function, V might be a constant expr.
443    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
444      continue;
445
446    BasicBlock::iterator InsertPt;
447    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
448      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
449        InsertPt = II->getNormalDest()->begin();
450      } else {
451        InsertPt = InstInput;
452        ++InsertPt;
453      }
454      while (isa<PHINode>(InsertPt)) ++InsertPt;
455    } else {
456      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
457    }
458    TheNeg->moveBefore(InsertPt);
459    return TheNeg;
460  }
461
462  // Insert a 'neg' instruction that subtracts the value from zero to get the
463  // negation.
464  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
465}
466
467/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
468/// X-Y into (X + -Y).
469static bool ShouldBreakUpSubtract(Instruction *Sub) {
470  // If this is a negation, we can't split it up!
471  if (BinaryOperator::isNeg(Sub))
472    return false;
473
474  // Don't bother to break this up unless either the LHS is an associable add or
475  // subtract or if this is only used by one.
476  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
477      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
478    return true;
479  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
480      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
481    return true;
482  if (Sub->hasOneUse() &&
483      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
484       isReassociableOp(Sub->use_back(), Instruction::Sub)))
485    return true;
486
487  return false;
488}
489
490/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
491/// only used by an add, transform this into (X+(0-Y)) to promote better
492/// reassociation.
493static Instruction *BreakUpSubtract(Instruction *Sub,
494                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
495  // Convert a subtract into an add and a neg instruction. This allows sub
496  // instructions to be commuted with other add instructions.
497  //
498  // Calculate the negative value of Operand 1 of the sub instruction,
499  // and set it as the RHS of the add instruction we just made.
500  //
501  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
502  Instruction *New =
503    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
504  New->takeName(Sub);
505
506  // Everyone now refers to the add instruction.
507  ValueRankMap.erase(Sub);
508  Sub->replaceAllUsesWith(New);
509  Sub->eraseFromParent();
510
511  DEBUG(dbgs() << "Negated: " << *New << '\n');
512  return New;
513}
514
515/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
516/// by one, change this into a multiply by a constant to assist with further
517/// reassociation.
518static Instruction *ConvertShiftToMul(Instruction *Shl,
519                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
520  // If an operand of this shift is a reassociable multiply, or if the shift
521  // is used by a reassociable multiply or add, turn into a multiply.
522  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
523      (Shl->hasOneUse() &&
524       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
525        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
526    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
527    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
528
529    Instruction *Mul =
530      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
531    ValueRankMap.erase(Shl);
532    Mul->takeName(Shl);
533    Shl->replaceAllUsesWith(Mul);
534    Shl->eraseFromParent();
535    return Mul;
536  }
537  return 0;
538}
539
540// Scan backwards and forwards among values with the same rank as element i to
541// see if X exists.  If X does not exist, return i.  This is useful when
542// scanning for 'x' when we see '-x' because they both get the same rank.
543static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
544                                  Value *X) {
545  unsigned XRank = Ops[i].Rank;
546  unsigned e = Ops.size();
547  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
548    if (Ops[j].Op == X)
549      return j;
550  // Scan backwards.
551  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
552    if (Ops[j].Op == X)
553      return j;
554  return i;
555}
556
557/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
558/// and returning the result.  Insert the tree before I.
559static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
560  if (Ops.size() == 1) return Ops.back();
561
562  Value *V1 = Ops.back();
563  Ops.pop_back();
564  Value *V2 = EmitAddTreeOfValues(I, Ops);
565  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
566}
567
568/// RemoveFactorFromExpression - If V is an expression tree that is a
569/// multiplication sequence, and if this sequence contains a multiply by Factor,
570/// remove Factor from the tree and return the new tree.
571Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
572  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
573  if (!BO) return 0;
574
575  SmallVector<ValueEntry, 8> Factors;
576  LinearizeExprTree(BO, Factors);
577
578  bool FoundFactor = false;
579  bool NeedsNegate = false;
580  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
581    if (Factors[i].Op == Factor) {
582      FoundFactor = true;
583      Factors.erase(Factors.begin()+i);
584      break;
585    }
586
587    // If this is a negative version of this factor, remove it.
588    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
589      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
590        if (FC1->getValue() == -FC2->getValue()) {
591          FoundFactor = NeedsNegate = true;
592          Factors.erase(Factors.begin()+i);
593          break;
594        }
595  }
596
597  if (!FoundFactor) {
598    // Make sure to restore the operands to the expression tree.
599    RewriteExprTree(BO, Factors);
600    return 0;
601  }
602
603  BasicBlock::iterator InsertPt = BO; ++InsertPt;
604
605  // If this was just a single multiply, remove the multiply and return the only
606  // remaining operand.
607  if (Factors.size() == 1) {
608    ValueRankMap.erase(BO);
609    DeadInsts.push_back(BO);
610    V = Factors[0].Op;
611  } else {
612    RewriteExprTree(BO, Factors);
613    V = BO;
614  }
615
616  if (NeedsNegate)
617    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
618
619  return V;
620}
621
622/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
623/// add its operands as factors, otherwise add V to the list of factors.
624///
625/// Ops is the top-level list of add operands we're trying to factor.
626static void FindSingleUseMultiplyFactors(Value *V,
627                                         SmallVectorImpl<Value*> &Factors,
628                                       const SmallVectorImpl<ValueEntry> &Ops,
629                                         bool IsRoot) {
630  BinaryOperator *BO;
631  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
632      !(BO = dyn_cast<BinaryOperator>(V)) ||
633      BO->getOpcode() != Instruction::Mul) {
634    Factors.push_back(V);
635    return;
636  }
637
638  // If this value has a single use because it is another input to the add
639  // tree we're reassociating and we dropped its use, it actually has two
640  // uses and we can't factor it.
641  if (!IsRoot) {
642    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
643      if (Ops[i].Op == V) {
644        Factors.push_back(V);
645        return;
646      }
647  }
648
649
650  // Otherwise, add the LHS and RHS to the list of factors.
651  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
652  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
653}
654
655/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
656/// instruction.  This optimizes based on identities.  If it can be reduced to
657/// a single Value, it is returned, otherwise the Ops list is mutated as
658/// necessary.
659static Value *OptimizeAndOrXor(unsigned Opcode,
660                               SmallVectorImpl<ValueEntry> &Ops) {
661  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
662  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
663  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
664    // First, check for X and ~X in the operand list.
665    assert(i < Ops.size());
666    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
667      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
668      unsigned FoundX = FindInOperandList(Ops, i, X);
669      if (FoundX != i) {
670        if (Opcode == Instruction::And)   // ...&X&~X = 0
671          return Constant::getNullValue(X->getType());
672
673        if (Opcode == Instruction::Or)    // ...|X|~X = -1
674          return Constant::getAllOnesValue(X->getType());
675      }
676    }
677
678    // Next, check for duplicate pairs of values, which we assume are next to
679    // each other, due to our sorting criteria.
680    assert(i < Ops.size());
681    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
682      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
683        // Drop duplicate values for And and Or.
684        Ops.erase(Ops.begin()+i);
685        --i; --e;
686        ++NumAnnihil;
687        continue;
688      }
689
690      // Drop pairs of values for Xor.
691      assert(Opcode == Instruction::Xor);
692      if (e == 2)
693        return Constant::getNullValue(Ops[0].Op->getType());
694
695      // Y ^ X^X -> Y
696      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
697      i -= 1; e -= 2;
698      ++NumAnnihil;
699    }
700  }
701  return 0;
702}
703
704/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
705/// optimizes based on identities.  If it can be reduced to a single Value, it
706/// is returned, otherwise the Ops list is mutated as necessary.
707Value *Reassociate::OptimizeAdd(Instruction *I,
708                                SmallVectorImpl<ValueEntry> &Ops) {
709  // Scan the operand lists looking for X and -X pairs.  If we find any, we
710  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
711  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
712  //
713  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
714  //
715  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
716    Value *TheOp = Ops[i].Op;
717    // Check to see if we've seen this operand before.  If so, we factor all
718    // instances of the operand together.  Due to our sorting criteria, we know
719    // that these need to be next to each other in the vector.
720    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
721      // Rescan the list, remove all instances of this operand from the expr.
722      unsigned NumFound = 0;
723      do {
724        Ops.erase(Ops.begin()+i);
725        ++NumFound;
726      } while (i != Ops.size() && Ops[i].Op == TheOp);
727
728      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
729      ++NumFactor;
730
731      // Insert a new multiply.
732      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
733      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
734
735      // Now that we have inserted a multiply, optimize it. This allows us to
736      // handle cases that require multiple factoring steps, such as this:
737      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
738      RedoInsts.push_back(Mul);
739
740      // If every add operand was a duplicate, return the multiply.
741      if (Ops.empty())
742        return Mul;
743
744      // Otherwise, we had some input that didn't have the dupe, such as
745      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
746      // things being added by this operation.
747      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
748
749      --i;
750      e = Ops.size();
751      continue;
752    }
753
754    // Check for X and -X in the operand list.
755    if (!BinaryOperator::isNeg(TheOp))
756      continue;
757
758    Value *X = BinaryOperator::getNegArgument(TheOp);
759    unsigned FoundX = FindInOperandList(Ops, i, X);
760    if (FoundX == i)
761      continue;
762
763    // Remove X and -X from the operand list.
764    if (Ops.size() == 2)
765      return Constant::getNullValue(X->getType());
766
767    Ops.erase(Ops.begin()+i);
768    if (i < FoundX)
769      --FoundX;
770    else
771      --i;   // Need to back up an extra one.
772    Ops.erase(Ops.begin()+FoundX);
773    ++NumAnnihil;
774    --i;     // Revisit element.
775    e -= 2;  // Removed two elements.
776  }
777
778  // Scan the operand list, checking to see if there are any common factors
779  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
780  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
781  // To efficiently find this, we count the number of times a factor occurs
782  // for any ADD operands that are MULs.
783  DenseMap<Value*, unsigned> FactorOccurrences;
784
785  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
786  // where they are actually the same multiply.
787  unsigned MaxOcc = 0;
788  Value *MaxOccVal = 0;
789  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
790    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
791    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
792      continue;
793
794    // Compute all of the factors of this added value.
795    SmallVector<Value*, 8> Factors;
796    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
797    assert(Factors.size() > 1 && "Bad linearize!");
798
799    // Add one to FactorOccurrences for each unique factor in this op.
800    SmallPtrSet<Value*, 8> Duplicates;
801    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
802      Value *Factor = Factors[i];
803      if (!Duplicates.insert(Factor)) continue;
804
805      unsigned Occ = ++FactorOccurrences[Factor];
806      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
807
808      // If Factor is a negative constant, add the negated value as a factor
809      // because we can percolate the negate out.  Watch for minint, which
810      // cannot be positivified.
811      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
812        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
813          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
814          assert(!Duplicates.count(Factor) &&
815                 "Shouldn't have two constant factors, missed a canonicalize");
816
817          unsigned Occ = ++FactorOccurrences[Factor];
818          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
819        }
820    }
821  }
822
823  // If any factor occurred more than one time, we can pull it out.
824  if (MaxOcc > 1) {
825    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
826    ++NumFactor;
827
828    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
829    // this, we could otherwise run into situations where removing a factor
830    // from an expression will drop a use of maxocc, and this can cause
831    // RemoveFactorFromExpression on successive values to behave differently.
832    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
833    SmallVector<Value*, 4> NewMulOps;
834    for (unsigned i = 0; i != Ops.size(); ++i) {
835      // Only try to remove factors from expressions we're allowed to.
836      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
837      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
838        continue;
839
840      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
841        // The factorized operand may occur several times.  Convert them all in
842        // one fell swoop.
843        for (unsigned j = Ops.size(); j != i;) {
844          --j;
845          if (Ops[j].Op == Ops[i].Op) {
846            NewMulOps.push_back(V);
847            Ops.erase(Ops.begin()+j);
848          }
849        }
850        --i;
851      }
852    }
853
854    // No need for extra uses anymore.
855    delete DummyInst;
856
857    unsigned NumAddedValues = NewMulOps.size();
858    Value *V = EmitAddTreeOfValues(I, NewMulOps);
859
860    // Now that we have inserted the add tree, optimize it. This allows us to
861    // handle cases that require multiple factoring steps, such as this:
862    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
863    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
864    (void)NumAddedValues;
865    V = ReassociateExpression(cast<BinaryOperator>(V));
866
867    // Create the multiply.
868    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
869
870    // Rerun associate on the multiply in case the inner expression turned into
871    // a multiply.  We want to make sure that we keep things in canonical form.
872    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
873
874    // If every add operand included the factor (e.g. "A*B + A*C"), then the
875    // entire result expression is just the multiply "A*(B+C)".
876    if (Ops.empty())
877      return V2;
878
879    // Otherwise, we had some input that didn't have the factor, such as
880    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
881    // things being added by this operation.
882    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
883  }
884
885  return 0;
886}
887
888Value *Reassociate::OptimizeExpression(BinaryOperator *I,
889                                       SmallVectorImpl<ValueEntry> &Ops) {
890  // Now that we have the linearized expression tree, try to optimize it.
891  // Start by folding any constants that we found.
892  bool IterateOptimization = false;
893  if (Ops.size() == 1) return Ops[0].Op;
894
895  unsigned Opcode = I->getOpcode();
896
897  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
898    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
899      Ops.pop_back();
900      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
901      return OptimizeExpression(I, Ops);
902    }
903
904  // Check for destructive annihilation due to a constant being used.
905  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
906    switch (Opcode) {
907    default: break;
908    case Instruction::And:
909      if (CstVal->isZero())                  // X & 0 -> 0
910        return CstVal;
911      if (CstVal->isAllOnesValue())          // X & -1 -> X
912        Ops.pop_back();
913      break;
914    case Instruction::Mul:
915      if (CstVal->isZero()) {                // X * 0 -> 0
916        ++NumAnnihil;
917        return CstVal;
918      }
919
920      if (cast<ConstantInt>(CstVal)->isOne())
921        Ops.pop_back();                      // X * 1 -> X
922      break;
923    case Instruction::Or:
924      if (CstVal->isAllOnesValue())          // X | -1 -> -1
925        return CstVal;
926      // FALLTHROUGH!
927    case Instruction::Add:
928    case Instruction::Xor:
929      if (CstVal->isZero())                  // X [|^+] 0 -> X
930        Ops.pop_back();
931      break;
932    }
933  if (Ops.size() == 1) return Ops[0].Op;
934
935  // Handle destructive annihilation due to identities between elements in the
936  // argument list here.
937  switch (Opcode) {
938  default: break;
939  case Instruction::And:
940  case Instruction::Or:
941  case Instruction::Xor: {
942    unsigned NumOps = Ops.size();
943    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
944      return Result;
945    IterateOptimization |= Ops.size() != NumOps;
946    break;
947  }
948
949  case Instruction::Add: {
950    unsigned NumOps = Ops.size();
951    if (Value *Result = OptimizeAdd(I, Ops))
952      return Result;
953    IterateOptimization |= Ops.size() != NumOps;
954  }
955
956    break;
957  //case Instruction::Mul:
958  }
959
960  if (IterateOptimization)
961    return OptimizeExpression(I, Ops);
962  return 0;
963}
964
965
966/// ReassociateInst - Inspect and reassociate the instruction at the
967/// given position, post-incrementing the position.
968void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
969  Instruction *BI = BBI++;
970  if (BI->getOpcode() == Instruction::Shl &&
971      isa<ConstantInt>(BI->getOperand(1)))
972    if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
973      MadeChange = true;
974      BI = NI;
975    }
976
977  // Reject cases where it is pointless to do this.
978  if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
979      BI->getType()->isVectorTy())
980    return;  // Floating point ops are not associative.
981
982  // Do not reassociate boolean (i1) expressions.  We want to preserve the
983  // original order of evaluation for short-circuited comparisons that
984  // SimplifyCFG has folded to AND/OR expressions.  If the expression
985  // is not further optimized, it is likely to be transformed back to a
986  // short-circuited form for code gen, and the source order may have been
987  // optimized for the most likely conditions.
988  if (BI->getType()->isIntegerTy(1))
989    return;
990
991  // If this is a subtract instruction which is not already in negate form,
992  // see if we can convert it to X+-Y.
993  if (BI->getOpcode() == Instruction::Sub) {
994    if (ShouldBreakUpSubtract(BI)) {
995      BI = BreakUpSubtract(BI, ValueRankMap);
996      // Reset the BBI iterator in case BreakUpSubtract changed the
997      // instruction it points to.
998      BBI = BI;
999      ++BBI;
1000      MadeChange = true;
1001    } else if (BinaryOperator::isNeg(BI)) {
1002      // Otherwise, this is a negation.  See if the operand is a multiply tree
1003      // and if this is not an inner node of a multiply tree.
1004      if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1005          (!BI->hasOneUse() ||
1006           !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1007        BI = LowerNegateToMultiply(BI, ValueRankMap);
1008        MadeChange = true;
1009      }
1010    }
1011  }
1012
1013  // If this instruction is a commutative binary operator, process it.
1014  if (!BI->isAssociative()) return;
1015  BinaryOperator *I = cast<BinaryOperator>(BI);
1016
1017  // If this is an interior node of a reassociable tree, ignore it until we
1018  // get to the root of the tree, to avoid N^2 analysis.
1019  if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1020    return;
1021
1022  // If this is an add tree that is used by a sub instruction, ignore it
1023  // until we process the subtract.
1024  if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1025      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1026    return;
1027
1028  ReassociateExpression(I);
1029}
1030
1031Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1032
1033  // First, walk the expression tree, linearizing the tree, collecting the
1034  // operand information.
1035  SmallVector<ValueEntry, 8> Ops;
1036  LinearizeExprTree(I, Ops);
1037
1038  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1039
1040  // Now that we have linearized the tree to a list and have gathered all of
1041  // the operands and their ranks, sort the operands by their rank.  Use a
1042  // stable_sort so that values with equal ranks will have their relative
1043  // positions maintained (and so the compiler is deterministic).  Note that
1044  // this sorts so that the highest ranking values end up at the beginning of
1045  // the vector.
1046  std::stable_sort(Ops.begin(), Ops.end());
1047
1048  // OptimizeExpression - Now that we have the expression tree in a convenient
1049  // sorted form, optimize it globally if possible.
1050  if (Value *V = OptimizeExpression(I, Ops)) {
1051    // This expression tree simplified to something that isn't a tree,
1052    // eliminate it.
1053    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1054    I->replaceAllUsesWith(V);
1055    RemoveDeadBinaryOp(I);
1056    ++NumAnnihil;
1057    return V;
1058  }
1059
1060  // We want to sink immediates as deeply as possible except in the case where
1061  // this is a multiply tree used only by an add, and the immediate is a -1.
1062  // In this case we reassociate to put the negation on the outside so that we
1063  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1064  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1065      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1066      isa<ConstantInt>(Ops.back().Op) &&
1067      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1068    ValueEntry Tmp = Ops.pop_back_val();
1069    Ops.insert(Ops.begin(), Tmp);
1070  }
1071
1072  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1073
1074  if (Ops.size() == 1) {
1075    // This expression tree simplified to something that isn't a tree,
1076    // eliminate it.
1077    I->replaceAllUsesWith(Ops[0].Op);
1078    RemoveDeadBinaryOp(I);
1079    return Ops[0].Op;
1080  }
1081
1082  // Now that we ordered and optimized the expressions, splat them back into
1083  // the expression tree, removing any unneeded nodes.
1084  RewriteExprTree(I, Ops);
1085  return I;
1086}
1087
1088
1089bool Reassociate::runOnFunction(Function &F) {
1090  // Recalculate the rank map for F
1091  BuildRankMap(F);
1092
1093  MadeChange = false;
1094  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1095    for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1096      ReassociateInst(BBI);
1097
1098  // Now that we're done, revisit any instructions which are likely to
1099  // have secondary reassociation opportunities.
1100  while (!RedoInsts.empty())
1101    if (Value *V = RedoInsts.pop_back_val()) {
1102      BasicBlock::iterator BBI = cast<Instruction>(V);
1103      ReassociateInst(BBI);
1104    }
1105
1106  // Now that we're done, delete any instructions which are no longer used.
1107  while (!DeadInsts.empty())
1108    if (Value *V = DeadInsts.pop_back_val())
1109      RecursivelyDeleteTriviallyDeadInstructions(V);
1110
1111  // We are done with the rank map.
1112  RankMap.clear();
1113  ValueRankMap.clear();
1114  return MadeChange;
1115}
1116
1117