Reassociate.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <algorithm>
42using namespace llvm;
43
44#define DEBUG_TYPE "reassociate"
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    Ops[i].Op->printAsOperand(dbgs(), false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113
114  /// Utility class representing a non-constant Xor-operand. We classify
115  /// non-constant Xor-Operands into two categories:
116  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117  ///  C2)
118  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119  ///          constant.
120  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121  ///          operand as "E | 0"
122  class XorOpnd {
123  public:
124    XorOpnd(Value *V);
125
126    bool isInvalid() const { return SymbolicPart == nullptr; }
127    bool isOrExpr() const { return isOr; }
128    Value *getValue() const { return OrigVal; }
129    Value *getSymbolicPart() const { return SymbolicPart; }
130    unsigned getSymbolicRank() const { return SymbolicRank; }
131    const APInt &getConstPart() const { return ConstPart; }
132
133    void Invalidate() { SymbolicPart = OrigVal = nullptr; }
134    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137    // The purpose is twofold:
138    // 1) Cluster together the operands sharing the same symbolic-value.
139    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140    //   could potentially shorten crital path, and expose more loop-invariants.
141    //   Note that values' rank are basically defined in RPO order (FIXME).
142    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144    //   "z" in the order of X-Y-Z is better than any other orders.
145    struct PtrSortFunctor {
146      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148      }
149    };
150  private:
151    Value *OrigVal;
152    Value *SymbolicPart;
153    APInt ConstPart;
154    unsigned SymbolicRank;
155    bool isOr;
156  };
157}
158
159namespace {
160  class Reassociate : public FunctionPass {
161    DenseMap<BasicBlock*, unsigned> RankMap;
162    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163    SetVector<AssertingVH<Instruction> > RedoInsts;
164    bool MadeChange;
165  public:
166    static char ID; // Pass identification, replacement for typeid
167    Reassociate() : FunctionPass(ID) {
168      initializeReassociatePass(*PassRegistry::getPassRegistry());
169    }
170
171    bool runOnFunction(Function &F) override;
172
173    void getAnalysisUsage(AnalysisUsage &AU) const override {
174      AU.setPreservesCFG();
175    }
176  private:
177    void BuildRankMap(Function &F);
178    unsigned getRank(Value *V);
179    void ReassociateExpression(BinaryOperator *I);
180    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
181    Value *OptimizeExpression(BinaryOperator *I,
182                              SmallVectorImpl<ValueEntry> &Ops);
183    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186                        Value *&Res);
187    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188                        APInt &ConstOpnd, Value *&Res);
189    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190                                SmallVectorImpl<Factor> &Factors);
191    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192                                   SmallVectorImpl<Factor> &Factors);
193    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
194    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
195    void EraseInst(Instruction *I);
196    void OptimizeInst(Instruction *I);
197  };
198}
199
200XorOpnd::XorOpnd(Value *V) {
201  assert(!isa<ConstantInt>(V) && "No ConstantInt");
202  OrigVal = V;
203  Instruction *I = dyn_cast<Instruction>(V);
204  SymbolicRank = 0;
205
206  if (I && (I->getOpcode() == Instruction::Or ||
207            I->getOpcode() == Instruction::And)) {
208    Value *V0 = I->getOperand(0);
209    Value *V1 = I->getOperand(1);
210    if (isa<ConstantInt>(V0))
211      std::swap(V0, V1);
212
213    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
214      ConstPart = C->getValue();
215      SymbolicPart = V0;
216      isOr = (I->getOpcode() == Instruction::Or);
217      return;
218    }
219  }
220
221  // view the operand as "V | 0"
222  SymbolicPart = V;
223  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
224  isOr = true;
225}
226
227char Reassociate::ID = 0;
228INITIALIZE_PASS(Reassociate, "reassociate",
229                "Reassociate expressions", false, false)
230
231// Public interface to the Reassociate pass
232FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
233
234/// isReassociableOp - Return true if V is an instruction of the specified
235/// opcode and if it only has one use.
236static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
237  if (V->hasOneUse() && isa<Instruction>(V) &&
238      cast<Instruction>(V)->getOpcode() == Opcode)
239    return cast<BinaryOperator>(V);
240  return nullptr;
241}
242
243static bool isUnmovableInstruction(Instruction *I) {
244  switch (I->getOpcode()) {
245  case Instruction::PHI:
246  case Instruction::LandingPad:
247  case Instruction::Alloca:
248  case Instruction::Load:
249  case Instruction::Invoke:
250  case Instruction::UDiv:
251  case Instruction::SDiv:
252  case Instruction::FDiv:
253  case Instruction::URem:
254  case Instruction::SRem:
255  case Instruction::FRem:
256    return true;
257  case Instruction::Call:
258    return !isa<DbgInfoIntrinsic>(I);
259  default:
260    return false;
261  }
262}
263
264void Reassociate::BuildRankMap(Function &F) {
265  unsigned i = 2;
266
267  // Assign distinct ranks to function arguments
268  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
269    ValueRankMap[&*I] = ++i;
270
271  ReversePostOrderTraversal<Function*> RPOT(&F);
272  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
273         E = RPOT.end(); I != E; ++I) {
274    BasicBlock *BB = *I;
275    unsigned BBRank = RankMap[BB] = ++i << 16;
276
277    // Walk the basic block, adding precomputed ranks for any instructions that
278    // we cannot move.  This ensures that the ranks for these instructions are
279    // all different in the block.
280    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
281      if (isUnmovableInstruction(I))
282        ValueRankMap[&*I] = ++BBRank;
283  }
284}
285
286unsigned Reassociate::getRank(Value *V) {
287  Instruction *I = dyn_cast<Instruction>(V);
288  if (!I) {
289    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
290    return 0;  // Otherwise it's a global or constant, rank 0.
291  }
292
293  if (unsigned Rank = ValueRankMap[I])
294    return Rank;    // Rank already known?
295
296  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
297  // we can reassociate expressions for code motion!  Since we do not recurse
298  // for PHI nodes, we cannot have infinite recursion here, because there
299  // cannot be loops in the value graph that do not go through PHI nodes.
300  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
301  for (unsigned i = 0, e = I->getNumOperands();
302       i != e && Rank != MaxRank; ++i)
303    Rank = std::max(Rank, getRank(I->getOperand(i)));
304
305  // If this is a not or neg instruction, do not count it for rank.  This
306  // assures us that X and ~X will have the same rank.
307  if (!I->getType()->isIntegerTy() ||
308      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
309    ++Rank;
310
311  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
312  //     << Rank << "\n");
313
314  return ValueRankMap[I] = Rank;
315}
316
317/// LowerNegateToMultiply - Replace 0-X with X*-1.
318///
319static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
320  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
321
322  BinaryOperator *Res =
323    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
324  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
325  Res->takeName(Neg);
326  Neg->replaceAllUsesWith(Res);
327  Res->setDebugLoc(Neg->getDebugLoc());
328  return Res;
329}
330
331/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
332/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
333/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
334/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
335/// even x in Bitwidth-bit arithmetic.
336static unsigned CarmichaelShift(unsigned Bitwidth) {
337  if (Bitwidth < 3)
338    return Bitwidth - 1;
339  return Bitwidth - 2;
340}
341
342/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
343/// reducing the combined weight using any special properties of the operation.
344/// The existing weight LHS represents the computation X op X op ... op X where
345/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
346/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
347/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
348/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
349static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
350  // If we were working with infinite precision arithmetic then the combined
351  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
352  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
353  // for nilpotent operations and addition, but not for idempotent operations
354  // and multiplication), so it is important to correctly reduce the combined
355  // weight back into range if wrapping would be wrong.
356
357  // If RHS is zero then the weight didn't change.
358  if (RHS.isMinValue())
359    return;
360  // If LHS is zero then the combined weight is RHS.
361  if (LHS.isMinValue()) {
362    LHS = RHS;
363    return;
364  }
365  // From this point on we know that neither LHS nor RHS is zero.
366
367  if (Instruction::isIdempotent(Opcode)) {
368    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
369    // weight of 1.  Keeping weights at zero or one also means that wrapping is
370    // not a problem.
371    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
372    return; // Return a weight of 1.
373  }
374  if (Instruction::isNilpotent(Opcode)) {
375    // Nilpotent means X op X === 0, so reduce weights modulo 2.
376    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
377    LHS = 0; // 1 + 1 === 0 modulo 2.
378    return;
379  }
380  if (Opcode == Instruction::Add) {
381    // TODO: Reduce the weight by exploiting nsw/nuw?
382    LHS += RHS;
383    return;
384  }
385
386  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
387  unsigned Bitwidth = LHS.getBitWidth();
388  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
389  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
390  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
391  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
392  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
393  // which by a happy accident means that they can always be represented using
394  // Bitwidth bits.
395  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
396  // the Carmichael number).
397  if (Bitwidth > 3) {
398    /// CM - The value of Carmichael's lambda function.
399    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
400    // Any weight W >= Threshold can be replaced with W - CM.
401    APInt Threshold = CM + Bitwidth;
402    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
403    // For Bitwidth 4 or more the following sum does not overflow.
404    LHS += RHS;
405    while (LHS.uge(Threshold))
406      LHS -= CM;
407  } else {
408    // To avoid problems with overflow do everything the same as above but using
409    // a larger type.
410    unsigned CM = 1U << CarmichaelShift(Bitwidth);
411    unsigned Threshold = CM + Bitwidth;
412    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
413           "Weights not reduced!");
414    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
415    while (Total >= Threshold)
416      Total -= CM;
417    LHS = Total;
418  }
419}
420
421typedef std::pair<Value*, APInt> RepeatedValue;
422
423/// LinearizeExprTree - Given an associative binary expression, return the leaf
424/// nodes in Ops along with their weights (how many times the leaf occurs).  The
425/// original expression is the same as
426///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
427/// op
428///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
429/// op
430///   ...
431/// op
432///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
433///
434/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
435///
436/// This routine may modify the function, in which case it returns 'true'.  The
437/// changes it makes may well be destructive, changing the value computed by 'I'
438/// to something completely different.  Thus if the routine returns 'true' then
439/// you MUST either replace I with a new expression computed from the Ops array,
440/// or use RewriteExprTree to put the values back in.
441///
442/// A leaf node is either not a binary operation of the same kind as the root
443/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
444/// opcode), or is the same kind of binary operator but has a use which either
445/// does not belong to the expression, or does belong to the expression but is
446/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
447/// of the expression, while for non-leaf nodes (except for the root 'I') every
448/// use is a non-leaf node of the expression.
449///
450/// For example:
451///           expression graph        node names
452///
453///                     +        |        I
454///                    / \       |
455///                   +   +      |      A,  B
456///                  / \ / \     |
457///                 *   +   *    |    C,  D,  E
458///                / \ / \ / \   |
459///                   +   *      |      F,  G
460///
461/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
462/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
463///
464/// The expression is maximal: if some instruction is a binary operator of the
465/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
466/// then the instruction also belongs to the expression, is not a leaf node of
467/// it, and its operands also belong to the expression (but may be leaf nodes).
468///
469/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
470/// order to ensure that every non-root node in the expression has *exactly one*
471/// use by a non-leaf node of the expression.  This destruction means that the
472/// caller MUST either replace 'I' with a new expression or use something like
473/// RewriteExprTree to put the values back in if the routine indicates that it
474/// made a change by returning 'true'.
475///
476/// In the above example either the right operand of A or the left operand of B
477/// will be replaced by undef.  If it is B's operand then this gives:
478///
479///                     +        |        I
480///                    / \       |
481///                   +   +      |      A,  B - operand of B replaced with undef
482///                  / \   \     |
483///                 *   +   *    |    C,  D,  E
484///                / \ / \ / \   |
485///                   +   *      |      F,  G
486///
487/// Note that such undef operands can only be reached by passing through 'I'.
488/// For example, if you visit operands recursively starting from a leaf node
489/// then you will never see such an undef operand unless you get back to 'I',
490/// which requires passing through a phi node.
491///
492/// Note that this routine may also mutate binary operators of the wrong type
493/// that have all uses inside the expression (i.e. only used by non-leaf nodes
494/// of the expression) if it can turn them into binary operators of the right
495/// type and thus make the expression bigger.
496
497static bool LinearizeExprTree(BinaryOperator *I,
498                              SmallVectorImpl<RepeatedValue> &Ops) {
499  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
500  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
501  unsigned Opcode = I->getOpcode();
502  assert(Instruction::isAssociative(Opcode) &&
503         Instruction::isCommutative(Opcode) &&
504         "Expected an associative and commutative operation!");
505
506  // Visit all operands of the expression, keeping track of their weight (the
507  // number of paths from the expression root to the operand, or if you like
508  // the number of times that operand occurs in the linearized expression).
509  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
510  // while A has weight two.
511
512  // Worklist of non-leaf nodes (their operands are in the expression too) along
513  // with their weights, representing a certain number of paths to the operator.
514  // If an operator occurs in the worklist multiple times then we found multiple
515  // ways to get to it.
516  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
517  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
518  bool MadeChange = false;
519
520  // Leaves of the expression are values that either aren't the right kind of
521  // operation (eg: a constant, or a multiply in an add tree), or are, but have
522  // some uses that are not inside the expression.  For example, in I = X + X,
523  // X = A + B, the value X has two uses (by I) that are in the expression.  If
524  // X has any other uses, for example in a return instruction, then we consider
525  // X to be a leaf, and won't analyze it further.  When we first visit a value,
526  // if it has more than one use then at first we conservatively consider it to
527  // be a leaf.  Later, as the expression is explored, we may discover some more
528  // uses of the value from inside the expression.  If all uses turn out to be
529  // from within the expression (and the value is a binary operator of the right
530  // kind) then the value is no longer considered to be a leaf, and its operands
531  // are explored.
532
533  // Leaves - Keeps track of the set of putative leaves as well as the number of
534  // paths to each leaf seen so far.
535  typedef DenseMap<Value*, APInt> LeafMap;
536  LeafMap Leaves; // Leaf -> Total weight so far.
537  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
538
539#ifndef NDEBUG
540  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
541#endif
542  while (!Worklist.empty()) {
543    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
544    I = P.first; // We examine the operands of this binary operator.
545
546    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
547      Value *Op = I->getOperand(OpIdx);
548      APInt Weight = P.second; // Number of paths to this operand.
549      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
550      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
551
552      // If this is a binary operation of the right kind with only one use then
553      // add its operands to the expression.
554      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
555        assert(Visited.insert(Op) && "Not first visit!");
556        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
557        Worklist.push_back(std::make_pair(BO, Weight));
558        continue;
559      }
560
561      // Appears to be a leaf.  Is the operand already in the set of leaves?
562      LeafMap::iterator It = Leaves.find(Op);
563      if (It == Leaves.end()) {
564        // Not in the leaf map.  Must be the first time we saw this operand.
565        assert(Visited.insert(Op) && "Not first visit!");
566        if (!Op->hasOneUse()) {
567          // This value has uses not accounted for by the expression, so it is
568          // not safe to modify.  Mark it as being a leaf.
569          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
570          LeafOrder.push_back(Op);
571          Leaves[Op] = Weight;
572          continue;
573        }
574        // No uses outside the expression, try morphing it.
575      } else if (It != Leaves.end()) {
576        // Already in the leaf map.
577        assert(Visited.count(Op) && "In leaf map but not visited!");
578
579        // Update the number of paths to the leaf.
580        IncorporateWeight(It->second, Weight, Opcode);
581
582#if 0   // TODO: Re-enable once PR13021 is fixed.
583        // The leaf already has one use from inside the expression.  As we want
584        // exactly one such use, drop this new use of the leaf.
585        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
586        I->setOperand(OpIdx, UndefValue::get(I->getType()));
587        MadeChange = true;
588
589        // If the leaf is a binary operation of the right kind and we now see
590        // that its multiple original uses were in fact all by nodes belonging
591        // to the expression, then no longer consider it to be a leaf and add
592        // its operands to the expression.
593        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
594          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
595          Worklist.push_back(std::make_pair(BO, It->second));
596          Leaves.erase(It);
597          continue;
598        }
599#endif
600
601        // If we still have uses that are not accounted for by the expression
602        // then it is not safe to modify the value.
603        if (!Op->hasOneUse())
604          continue;
605
606        // No uses outside the expression, try morphing it.
607        Weight = It->second;
608        Leaves.erase(It); // Since the value may be morphed below.
609      }
610
611      // At this point we have a value which, first of all, is not a binary
612      // expression of the right kind, and secondly, is only used inside the
613      // expression.  This means that it can safely be modified.  See if we
614      // can usefully morph it into an expression of the right kind.
615      assert((!isa<Instruction>(Op) ||
616              cast<Instruction>(Op)->getOpcode() != Opcode) &&
617             "Should have been handled above!");
618      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
619
620      // If this is a multiply expression, turn any internal negations into
621      // multiplies by -1 so they can be reassociated.
622      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
623      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
624        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
625        BO = LowerNegateToMultiply(BO);
626        DEBUG(dbgs() << *BO << 'n');
627        Worklist.push_back(std::make_pair(BO, Weight));
628        MadeChange = true;
629        continue;
630      }
631
632      // Failed to morph into an expression of the right type.  This really is
633      // a leaf.
634      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
635      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
636      LeafOrder.push_back(Op);
637      Leaves[Op] = Weight;
638    }
639  }
640
641  // The leaves, repeated according to their weights, represent the linearized
642  // form of the expression.
643  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
644    Value *V = LeafOrder[i];
645    LeafMap::iterator It = Leaves.find(V);
646    if (It == Leaves.end())
647      // Node initially thought to be a leaf wasn't.
648      continue;
649    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
650    APInt Weight = It->second;
651    if (Weight.isMinValue())
652      // Leaf already output or weight reduction eliminated it.
653      continue;
654    // Ensure the leaf is only output once.
655    It->second = 0;
656    Ops.push_back(std::make_pair(V, Weight));
657  }
658
659  // For nilpotent operations or addition there may be no operands, for example
660  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
661  // in both cases the weight reduces to 0 causing the value to be skipped.
662  if (Ops.empty()) {
663    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
664    assert(Identity && "Associative operation without identity!");
665    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
666  }
667
668  return MadeChange;
669}
670
671// RewriteExprTree - Now that the operands for this expression tree are
672// linearized and optimized, emit them in-order.
673void Reassociate::RewriteExprTree(BinaryOperator *I,
674                                  SmallVectorImpl<ValueEntry> &Ops) {
675  assert(Ops.size() > 1 && "Single values should be used directly!");
676
677  // Since our optimizations should never increase the number of operations, the
678  // new expression can usually be written reusing the existing binary operators
679  // from the original expression tree, without creating any new instructions,
680  // though the rewritten expression may have a completely different topology.
681  // We take care to not change anything if the new expression will be the same
682  // as the original.  If more than trivial changes (like commuting operands)
683  // were made then we are obliged to clear out any optional subclass data like
684  // nsw flags.
685
686  /// NodesToRewrite - Nodes from the original expression available for writing
687  /// the new expression into.
688  SmallVector<BinaryOperator*, 8> NodesToRewrite;
689  unsigned Opcode = I->getOpcode();
690  BinaryOperator *Op = I;
691
692  /// NotRewritable - The operands being written will be the leaves of the new
693  /// expression and must not be used as inner nodes (via NodesToRewrite) by
694  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
695  /// (if they were they would have been incorporated into the expression and so
696  /// would not be leaves), so most of the time there is no danger of this.  But
697  /// in rare cases a leaf may become reassociable if an optimization kills uses
698  /// of it, or it may momentarily become reassociable during rewriting (below)
699  /// due it being removed as an operand of one of its uses.  Ensure that misuse
700  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
701  /// leaves and refusing to reuse any of them as inner nodes.
702  SmallPtrSet<Value*, 8> NotRewritable;
703  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
704    NotRewritable.insert(Ops[i].Op);
705
706  // ExpressionChanged - Non-null if the rewritten expression differs from the
707  // original in some non-trivial way, requiring the clearing of optional flags.
708  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
709  BinaryOperator *ExpressionChanged = nullptr;
710  for (unsigned i = 0; ; ++i) {
711    // The last operation (which comes earliest in the IR) is special as both
712    // operands will come from Ops, rather than just one with the other being
713    // a subexpression.
714    if (i+2 == Ops.size()) {
715      Value *NewLHS = Ops[i].Op;
716      Value *NewRHS = Ops[i+1].Op;
717      Value *OldLHS = Op->getOperand(0);
718      Value *OldRHS = Op->getOperand(1);
719
720      if (NewLHS == OldLHS && NewRHS == OldRHS)
721        // Nothing changed, leave it alone.
722        break;
723
724      if (NewLHS == OldRHS && NewRHS == OldLHS) {
725        // The order of the operands was reversed.  Swap them.
726        DEBUG(dbgs() << "RA: " << *Op << '\n');
727        Op->swapOperands();
728        DEBUG(dbgs() << "TO: " << *Op << '\n');
729        MadeChange = true;
730        ++NumChanged;
731        break;
732      }
733
734      // The new operation differs non-trivially from the original. Overwrite
735      // the old operands with the new ones.
736      DEBUG(dbgs() << "RA: " << *Op << '\n');
737      if (NewLHS != OldLHS) {
738        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
739        if (BO && !NotRewritable.count(BO))
740          NodesToRewrite.push_back(BO);
741        Op->setOperand(0, NewLHS);
742      }
743      if (NewRHS != OldRHS) {
744        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
745        if (BO && !NotRewritable.count(BO))
746          NodesToRewrite.push_back(BO);
747        Op->setOperand(1, NewRHS);
748      }
749      DEBUG(dbgs() << "TO: " << *Op << '\n');
750
751      ExpressionChanged = Op;
752      MadeChange = true;
753      ++NumChanged;
754
755      break;
756    }
757
758    // Not the last operation.  The left-hand side will be a sub-expression
759    // while the right-hand side will be the current element of Ops.
760    Value *NewRHS = Ops[i].Op;
761    if (NewRHS != Op->getOperand(1)) {
762      DEBUG(dbgs() << "RA: " << *Op << '\n');
763      if (NewRHS == Op->getOperand(0)) {
764        // The new right-hand side was already present as the left operand.  If
765        // we are lucky then swapping the operands will sort out both of them.
766        Op->swapOperands();
767      } else {
768        // Overwrite with the new right-hand side.
769        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
770        if (BO && !NotRewritable.count(BO))
771          NodesToRewrite.push_back(BO);
772        Op->setOperand(1, NewRHS);
773        ExpressionChanged = Op;
774      }
775      DEBUG(dbgs() << "TO: " << *Op << '\n');
776      MadeChange = true;
777      ++NumChanged;
778    }
779
780    // Now deal with the left-hand side.  If this is already an operation node
781    // from the original expression then just rewrite the rest of the expression
782    // into it.
783    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
784    if (BO && !NotRewritable.count(BO)) {
785      Op = BO;
786      continue;
787    }
788
789    // Otherwise, grab a spare node from the original expression and use that as
790    // the left-hand side.  If there are no nodes left then the optimizers made
791    // an expression with more nodes than the original!  This usually means that
792    // they did something stupid but it might mean that the problem was just too
793    // hard (finding the mimimal number of multiplications needed to realize a
794    // multiplication expression is NP-complete).  Whatever the reason, smart or
795    // stupid, create a new node if there are none left.
796    BinaryOperator *NewOp;
797    if (NodesToRewrite.empty()) {
798      Constant *Undef = UndefValue::get(I->getType());
799      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
800                                     Undef, Undef, "", I);
801    } else {
802      NewOp = NodesToRewrite.pop_back_val();
803    }
804
805    DEBUG(dbgs() << "RA: " << *Op << '\n');
806    Op->setOperand(0, NewOp);
807    DEBUG(dbgs() << "TO: " << *Op << '\n');
808    ExpressionChanged = Op;
809    MadeChange = true;
810    ++NumChanged;
811    Op = NewOp;
812  }
813
814  // If the expression changed non-trivially then clear out all subclass data
815  // starting from the operator specified in ExpressionChanged, and compactify
816  // the operators to just before the expression root to guarantee that the
817  // expression tree is dominated by all of Ops.
818  if (ExpressionChanged)
819    do {
820      ExpressionChanged->clearSubclassOptionalData();
821      if (ExpressionChanged == I)
822        break;
823      ExpressionChanged->moveBefore(I);
824      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
825    } while (1);
826
827  // Throw away any left over nodes from the original expression.
828  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
829    RedoInsts.insert(NodesToRewrite[i]);
830}
831
832/// NegateValue - Insert instructions before the instruction pointed to by BI,
833/// that computes the negative version of the value specified.  The negative
834/// version of the value is returned, and BI is left pointing at the instruction
835/// that should be processed next by the reassociation pass.
836static Value *NegateValue(Value *V, Instruction *BI) {
837  if (Constant *C = dyn_cast<Constant>(V))
838    return ConstantExpr::getNeg(C);
839
840  // We are trying to expose opportunity for reassociation.  One of the things
841  // that we want to do to achieve this is to push a negation as deep into an
842  // expression chain as possible, to expose the add instructions.  In practice,
843  // this means that we turn this:
844  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
845  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
846  // the constants.  We assume that instcombine will clean up the mess later if
847  // we introduce tons of unnecessary negation instructions.
848  //
849  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
850    // Push the negates through the add.
851    I->setOperand(0, NegateValue(I->getOperand(0), BI));
852    I->setOperand(1, NegateValue(I->getOperand(1), BI));
853
854    // We must move the add instruction here, because the neg instructions do
855    // not dominate the old add instruction in general.  By moving it, we are
856    // assured that the neg instructions we just inserted dominate the
857    // instruction we are about to insert after them.
858    //
859    I->moveBefore(BI);
860    I->setName(I->getName()+".neg");
861    return I;
862  }
863
864  // Okay, we need to materialize a negated version of V with an instruction.
865  // Scan the use lists of V to see if we have one already.
866  for (User *U : V->users()) {
867    if (!BinaryOperator::isNeg(U)) continue;
868
869    // We found one!  Now we have to make sure that the definition dominates
870    // this use.  We do this by moving it to the entry block (if it is a
871    // non-instruction value) or right after the definition.  These negates will
872    // be zapped by reassociate later, so we don't need much finesse here.
873    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
874
875    // Verify that the negate is in this function, V might be a constant expr.
876    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
877      continue;
878
879    BasicBlock::iterator InsertPt;
880    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
881      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
882        InsertPt = II->getNormalDest()->begin();
883      } else {
884        InsertPt = InstInput;
885        ++InsertPt;
886      }
887      while (isa<PHINode>(InsertPt)) ++InsertPt;
888    } else {
889      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
890    }
891    TheNeg->moveBefore(InsertPt);
892    return TheNeg;
893  }
894
895  // Insert a 'neg' instruction that subtracts the value from zero to get the
896  // negation.
897  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
898}
899
900/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
901/// X-Y into (X + -Y).
902static bool ShouldBreakUpSubtract(Instruction *Sub) {
903  // If this is a negation, we can't split it up!
904  if (BinaryOperator::isNeg(Sub))
905    return false;
906
907  // Don't bother to break this up unless either the LHS is an associable add or
908  // subtract or if this is only used by one.
909  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
910      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
911    return true;
912  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
913      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
914    return true;
915  if (Sub->hasOneUse() &&
916      (isReassociableOp(Sub->user_back(), Instruction::Add) ||
917       isReassociableOp(Sub->user_back(), Instruction::Sub)))
918    return true;
919
920  return false;
921}
922
923/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
924/// only used by an add, transform this into (X+(0-Y)) to promote better
925/// reassociation.
926static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
927  // Convert a subtract into an add and a neg instruction. This allows sub
928  // instructions to be commuted with other add instructions.
929  //
930  // Calculate the negative value of Operand 1 of the sub instruction,
931  // and set it as the RHS of the add instruction we just made.
932  //
933  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
934  BinaryOperator *New =
935    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
936  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
937  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
938  New->takeName(Sub);
939
940  // Everyone now refers to the add instruction.
941  Sub->replaceAllUsesWith(New);
942  New->setDebugLoc(Sub->getDebugLoc());
943
944  DEBUG(dbgs() << "Negated: " << *New << '\n');
945  return New;
946}
947
948/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
949/// by one, change this into a multiply by a constant to assist with further
950/// reassociation.
951static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
952  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
953  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
954
955  BinaryOperator *Mul =
956    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
957  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
958  Mul->takeName(Shl);
959  Shl->replaceAllUsesWith(Mul);
960  Mul->setDebugLoc(Shl->getDebugLoc());
961  return Mul;
962}
963
964/// FindInOperandList - Scan backwards and forwards among values with the same
965/// rank as element i to see if X exists.  If X does not exist, return i.  This
966/// is useful when scanning for 'x' when we see '-x' because they both get the
967/// same rank.
968static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
969                                  Value *X) {
970  unsigned XRank = Ops[i].Rank;
971  unsigned e = Ops.size();
972  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
973    if (Ops[j].Op == X)
974      return j;
975  // Scan backwards.
976  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
977    if (Ops[j].Op == X)
978      return j;
979  return i;
980}
981
982/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
983/// and returning the result.  Insert the tree before I.
984static Value *EmitAddTreeOfValues(Instruction *I,
985                                  SmallVectorImpl<WeakVH> &Ops){
986  if (Ops.size() == 1) return Ops.back();
987
988  Value *V1 = Ops.back();
989  Ops.pop_back();
990  Value *V2 = EmitAddTreeOfValues(I, Ops);
991  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
992}
993
994/// RemoveFactorFromExpression - If V is an expression tree that is a
995/// multiplication sequence, and if this sequence contains a multiply by Factor,
996/// remove Factor from the tree and return the new tree.
997Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
998  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
999  if (!BO) return nullptr;
1000
1001  SmallVector<RepeatedValue, 8> Tree;
1002  MadeChange |= LinearizeExprTree(BO, Tree);
1003  SmallVector<ValueEntry, 8> Factors;
1004  Factors.reserve(Tree.size());
1005  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1006    RepeatedValue E = Tree[i];
1007    Factors.append(E.second.getZExtValue(),
1008                   ValueEntry(getRank(E.first), E.first));
1009  }
1010
1011  bool FoundFactor = false;
1012  bool NeedsNegate = false;
1013  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1014    if (Factors[i].Op == Factor) {
1015      FoundFactor = true;
1016      Factors.erase(Factors.begin()+i);
1017      break;
1018    }
1019
1020    // If this is a negative version of this factor, remove it.
1021    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1022      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1023        if (FC1->getValue() == -FC2->getValue()) {
1024          FoundFactor = NeedsNegate = true;
1025          Factors.erase(Factors.begin()+i);
1026          break;
1027        }
1028  }
1029
1030  if (!FoundFactor) {
1031    // Make sure to restore the operands to the expression tree.
1032    RewriteExprTree(BO, Factors);
1033    return nullptr;
1034  }
1035
1036  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1037
1038  // If this was just a single multiply, remove the multiply and return the only
1039  // remaining operand.
1040  if (Factors.size() == 1) {
1041    RedoInsts.insert(BO);
1042    V = Factors[0].Op;
1043  } else {
1044    RewriteExprTree(BO, Factors);
1045    V = BO;
1046  }
1047
1048  if (NeedsNegate)
1049    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1050
1051  return V;
1052}
1053
1054/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1055/// add its operands as factors, otherwise add V to the list of factors.
1056///
1057/// Ops is the top-level list of add operands we're trying to factor.
1058static void FindSingleUseMultiplyFactors(Value *V,
1059                                         SmallVectorImpl<Value*> &Factors,
1060                                       const SmallVectorImpl<ValueEntry> &Ops) {
1061  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1062  if (!BO) {
1063    Factors.push_back(V);
1064    return;
1065  }
1066
1067  // Otherwise, add the LHS and RHS to the list of factors.
1068  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1069  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1070}
1071
1072/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1073/// instruction.  This optimizes based on identities.  If it can be reduced to
1074/// a single Value, it is returned, otherwise the Ops list is mutated as
1075/// necessary.
1076static Value *OptimizeAndOrXor(unsigned Opcode,
1077                               SmallVectorImpl<ValueEntry> &Ops) {
1078  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1079  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1080  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1081    // First, check for X and ~X in the operand list.
1082    assert(i < Ops.size());
1083    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1084      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1085      unsigned FoundX = FindInOperandList(Ops, i, X);
1086      if (FoundX != i) {
1087        if (Opcode == Instruction::And)   // ...&X&~X = 0
1088          return Constant::getNullValue(X->getType());
1089
1090        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1091          return Constant::getAllOnesValue(X->getType());
1092      }
1093    }
1094
1095    // Next, check for duplicate pairs of values, which we assume are next to
1096    // each other, due to our sorting criteria.
1097    assert(i < Ops.size());
1098    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1099      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1100        // Drop duplicate values for And and Or.
1101        Ops.erase(Ops.begin()+i);
1102        --i; --e;
1103        ++NumAnnihil;
1104        continue;
1105      }
1106
1107      // Drop pairs of values for Xor.
1108      assert(Opcode == Instruction::Xor);
1109      if (e == 2)
1110        return Constant::getNullValue(Ops[0].Op->getType());
1111
1112      // Y ^ X^X -> Y
1113      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1114      i -= 1; e -= 2;
1115      ++NumAnnihil;
1116    }
1117  }
1118  return nullptr;
1119}
1120
1121/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1122/// instruction with the given two operands, and return the resulting
1123/// instruction. There are two special cases: 1) if the constant operand is 0,
1124/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1125/// be returned.
1126static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1127                             const APInt &ConstOpnd) {
1128  if (ConstOpnd != 0) {
1129    if (!ConstOpnd.isAllOnesValue()) {
1130      LLVMContext &Ctx = Opnd->getType()->getContext();
1131      Instruction *I;
1132      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1133                                    "and.ra", InsertBefore);
1134      I->setDebugLoc(InsertBefore->getDebugLoc());
1135      return I;
1136    }
1137    return Opnd;
1138  }
1139  return nullptr;
1140}
1141
1142// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1143// into "R ^ C", where C would be 0, and R is a symbolic value.
1144//
1145// If it was successful, true is returned, and the "R" and "C" is returned
1146// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1147// and both "Res" and "ConstOpnd" remain unchanged.
1148//
1149bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1150                                 APInt &ConstOpnd, Value *&Res) {
1151  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1152  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1153  //                       = (x & ~c1) ^ (c1 ^ c2)
1154  // It is useful only when c1 == c2.
1155  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1156    if (!Opnd1->getValue()->hasOneUse())
1157      return false;
1158
1159    const APInt &C1 = Opnd1->getConstPart();
1160    if (C1 != ConstOpnd)
1161      return false;
1162
1163    Value *X = Opnd1->getSymbolicPart();
1164    Res = createAndInstr(I, X, ~C1);
1165    // ConstOpnd was C2, now C1 ^ C2.
1166    ConstOpnd ^= C1;
1167
1168    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1169      RedoInsts.insert(T);
1170    return true;
1171  }
1172  return false;
1173}
1174
1175
1176// Helper function of OptimizeXor(). It tries to simplify
1177// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1178// symbolic value.
1179//
1180// If it was successful, true is returned, and the "R" and "C" is returned
1181// via "Res" and "ConstOpnd", respectively (If the entire expression is
1182// evaluated to a constant, the Res is set to NULL); otherwise, false is
1183// returned, and both "Res" and "ConstOpnd" remain unchanged.
1184bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1185                                 APInt &ConstOpnd, Value *&Res) {
1186  Value *X = Opnd1->getSymbolicPart();
1187  if (X != Opnd2->getSymbolicPart())
1188    return false;
1189
1190  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1191  int DeadInstNum = 1;
1192  if (Opnd1->getValue()->hasOneUse())
1193    DeadInstNum++;
1194  if (Opnd2->getValue()->hasOneUse())
1195    DeadInstNum++;
1196
1197  // Xor-Rule 2:
1198  //  (x | c1) ^ (x & c2)
1199  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1200  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1201  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1202  //
1203  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1204    if (Opnd2->isOrExpr())
1205      std::swap(Opnd1, Opnd2);
1206
1207    const APInt &C1 = Opnd1->getConstPart();
1208    const APInt &C2 = Opnd2->getConstPart();
1209    APInt C3((~C1) ^ C2);
1210
1211    // Do not increase code size!
1212    if (C3 != 0 && !C3.isAllOnesValue()) {
1213      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1214      if (NewInstNum > DeadInstNum)
1215        return false;
1216    }
1217
1218    Res = createAndInstr(I, X, C3);
1219    ConstOpnd ^= C1;
1220
1221  } else if (Opnd1->isOrExpr()) {
1222    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1223    //
1224    const APInt &C1 = Opnd1->getConstPart();
1225    const APInt &C2 = Opnd2->getConstPart();
1226    APInt C3 = C1 ^ C2;
1227
1228    // Do not increase code size
1229    if (C3 != 0 && !C3.isAllOnesValue()) {
1230      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1231      if (NewInstNum > DeadInstNum)
1232        return false;
1233    }
1234
1235    Res = createAndInstr(I, X, C3);
1236    ConstOpnd ^= C3;
1237  } else {
1238    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1239    //
1240    const APInt &C1 = Opnd1->getConstPart();
1241    const APInt &C2 = Opnd2->getConstPart();
1242    APInt C3 = C1 ^ C2;
1243    Res = createAndInstr(I, X, C3);
1244  }
1245
1246  // Put the original operands in the Redo list; hope they will be deleted
1247  // as dead code.
1248  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1249    RedoInsts.insert(T);
1250  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1251    RedoInsts.insert(T);
1252
1253  return true;
1254}
1255
1256/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1257/// to a single Value, it is returned, otherwise the Ops list is mutated as
1258/// necessary.
1259Value *Reassociate::OptimizeXor(Instruction *I,
1260                                SmallVectorImpl<ValueEntry> &Ops) {
1261  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1262    return V;
1263
1264  if (Ops.size() == 1)
1265    return nullptr;
1266
1267  SmallVector<XorOpnd, 8> Opnds;
1268  SmallVector<XorOpnd*, 8> OpndPtrs;
1269  Type *Ty = Ops[0].Op->getType();
1270  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1271
1272  // Step 1: Convert ValueEntry to XorOpnd
1273  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1274    Value *V = Ops[i].Op;
1275    if (!isa<ConstantInt>(V)) {
1276      XorOpnd O(V);
1277      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1278      Opnds.push_back(O);
1279    } else
1280      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1281  }
1282
1283  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1284  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1285  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1286  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1287  //  when new elements are added to the vector.
1288  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1289    OpndPtrs.push_back(&Opnds[i]);
1290
1291  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1292  //  the same symbolic value cluster together. For instance, the input operand
1293  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1294  //  ("x | 123", "x & 789", "y & 456").
1295  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1296
1297  // Step 3: Combine adjacent operands
1298  XorOpnd *PrevOpnd = nullptr;
1299  bool Changed = false;
1300  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1301    XorOpnd *CurrOpnd = OpndPtrs[i];
1302    // The combined value
1303    Value *CV;
1304
1305    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1306    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1307      Changed = true;
1308      if (CV)
1309        *CurrOpnd = XorOpnd(CV);
1310      else {
1311        CurrOpnd->Invalidate();
1312        continue;
1313      }
1314    }
1315
1316    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1317      PrevOpnd = CurrOpnd;
1318      continue;
1319    }
1320
1321    // step 3.2: When previous and current operands share the same symbolic
1322    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1323    //
1324    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1325      // Remove previous operand
1326      PrevOpnd->Invalidate();
1327      if (CV) {
1328        *CurrOpnd = XorOpnd(CV);
1329        PrevOpnd = CurrOpnd;
1330      } else {
1331        CurrOpnd->Invalidate();
1332        PrevOpnd = nullptr;
1333      }
1334      Changed = true;
1335    }
1336  }
1337
1338  // Step 4: Reassemble the Ops
1339  if (Changed) {
1340    Ops.clear();
1341    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1342      XorOpnd &O = Opnds[i];
1343      if (O.isInvalid())
1344        continue;
1345      ValueEntry VE(getRank(O.getValue()), O.getValue());
1346      Ops.push_back(VE);
1347    }
1348    if (ConstOpnd != 0) {
1349      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1350      ValueEntry VE(getRank(C), C);
1351      Ops.push_back(VE);
1352    }
1353    int Sz = Ops.size();
1354    if (Sz == 1)
1355      return Ops.back().Op;
1356    else if (Sz == 0) {
1357      assert(ConstOpnd == 0);
1358      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1359    }
1360  }
1361
1362  return nullptr;
1363}
1364
1365/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1366/// optimizes based on identities.  If it can be reduced to a single Value, it
1367/// is returned, otherwise the Ops list is mutated as necessary.
1368Value *Reassociate::OptimizeAdd(Instruction *I,
1369                                SmallVectorImpl<ValueEntry> &Ops) {
1370  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1371  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1372  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1373  //
1374  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1375  //
1376  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1377    Value *TheOp = Ops[i].Op;
1378    // Check to see if we've seen this operand before.  If so, we factor all
1379    // instances of the operand together.  Due to our sorting criteria, we know
1380    // that these need to be next to each other in the vector.
1381    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1382      // Rescan the list, remove all instances of this operand from the expr.
1383      unsigned NumFound = 0;
1384      do {
1385        Ops.erase(Ops.begin()+i);
1386        ++NumFound;
1387      } while (i != Ops.size() && Ops[i].Op == TheOp);
1388
1389      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1390      ++NumFactor;
1391
1392      // Insert a new multiply.
1393      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1394      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1395
1396      // Now that we have inserted a multiply, optimize it. This allows us to
1397      // handle cases that require multiple factoring steps, such as this:
1398      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1399      RedoInsts.insert(cast<Instruction>(Mul));
1400
1401      // If every add operand was a duplicate, return the multiply.
1402      if (Ops.empty())
1403        return Mul;
1404
1405      // Otherwise, we had some input that didn't have the dupe, such as
1406      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1407      // things being added by this operation.
1408      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1409
1410      --i;
1411      e = Ops.size();
1412      continue;
1413    }
1414
1415    // Check for X and -X in the operand list.
1416    if (!BinaryOperator::isNeg(TheOp))
1417      continue;
1418
1419    Value *X = BinaryOperator::getNegArgument(TheOp);
1420    unsigned FoundX = FindInOperandList(Ops, i, X);
1421    if (FoundX == i)
1422      continue;
1423
1424    // Remove X and -X from the operand list.
1425    if (Ops.size() == 2)
1426      return Constant::getNullValue(X->getType());
1427
1428    Ops.erase(Ops.begin()+i);
1429    if (i < FoundX)
1430      --FoundX;
1431    else
1432      --i;   // Need to back up an extra one.
1433    Ops.erase(Ops.begin()+FoundX);
1434    ++NumAnnihil;
1435    --i;     // Revisit element.
1436    e -= 2;  // Removed two elements.
1437  }
1438
1439  // Scan the operand list, checking to see if there are any common factors
1440  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1441  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1442  // To efficiently find this, we count the number of times a factor occurs
1443  // for any ADD operands that are MULs.
1444  DenseMap<Value*, unsigned> FactorOccurrences;
1445
1446  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1447  // where they are actually the same multiply.
1448  unsigned MaxOcc = 0;
1449  Value *MaxOccVal = nullptr;
1450  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1451    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1452    if (!BOp)
1453      continue;
1454
1455    // Compute all of the factors of this added value.
1456    SmallVector<Value*, 8> Factors;
1457    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1458    assert(Factors.size() > 1 && "Bad linearize!");
1459
1460    // Add one to FactorOccurrences for each unique factor in this op.
1461    SmallPtrSet<Value*, 8> Duplicates;
1462    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1463      Value *Factor = Factors[i];
1464      if (!Duplicates.insert(Factor)) continue;
1465
1466      unsigned Occ = ++FactorOccurrences[Factor];
1467      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1468
1469      // If Factor is a negative constant, add the negated value as a factor
1470      // because we can percolate the negate out.  Watch for minint, which
1471      // cannot be positivified.
1472      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1473        if (CI->isNegative() && !CI->isMinValue(true)) {
1474          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1475          assert(!Duplicates.count(Factor) &&
1476                 "Shouldn't have two constant factors, missed a canonicalize");
1477
1478          unsigned Occ = ++FactorOccurrences[Factor];
1479          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1480        }
1481    }
1482  }
1483
1484  // If any factor occurred more than one time, we can pull it out.
1485  if (MaxOcc > 1) {
1486    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1487    ++NumFactor;
1488
1489    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1490    // this, we could otherwise run into situations where removing a factor
1491    // from an expression will drop a use of maxocc, and this can cause
1492    // RemoveFactorFromExpression on successive values to behave differently.
1493    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1494    SmallVector<WeakVH, 4> NewMulOps;
1495    for (unsigned i = 0; i != Ops.size(); ++i) {
1496      // Only try to remove factors from expressions we're allowed to.
1497      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1498      if (!BOp)
1499        continue;
1500
1501      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1502        // The factorized operand may occur several times.  Convert them all in
1503        // one fell swoop.
1504        for (unsigned j = Ops.size(); j != i;) {
1505          --j;
1506          if (Ops[j].Op == Ops[i].Op) {
1507            NewMulOps.push_back(V);
1508            Ops.erase(Ops.begin()+j);
1509          }
1510        }
1511        --i;
1512      }
1513    }
1514
1515    // No need for extra uses anymore.
1516    delete DummyInst;
1517
1518    unsigned NumAddedValues = NewMulOps.size();
1519    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1520
1521    // Now that we have inserted the add tree, optimize it. This allows us to
1522    // handle cases that require multiple factoring steps, such as this:
1523    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1524    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1525    (void)NumAddedValues;
1526    if (Instruction *VI = dyn_cast<Instruction>(V))
1527      RedoInsts.insert(VI);
1528
1529    // Create the multiply.
1530    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1531
1532    // Rerun associate on the multiply in case the inner expression turned into
1533    // a multiply.  We want to make sure that we keep things in canonical form.
1534    RedoInsts.insert(V2);
1535
1536    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1537    // entire result expression is just the multiply "A*(B+C)".
1538    if (Ops.empty())
1539      return V2;
1540
1541    // Otherwise, we had some input that didn't have the factor, such as
1542    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1543    // things being added by this operation.
1544    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1545  }
1546
1547  return nullptr;
1548}
1549
1550/// \brief Build up a vector of value/power pairs factoring a product.
1551///
1552/// Given a series of multiplication operands, build a vector of factors and
1553/// the powers each is raised to when forming the final product. Sort them in
1554/// the order of descending power.
1555///
1556///      (x*x)          -> [(x, 2)]
1557///     ((x*x)*x)       -> [(x, 3)]
1558///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1559///
1560/// \returns Whether any factors have a power greater than one.
1561bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1562                                         SmallVectorImpl<Factor> &Factors) {
1563  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1564  // Compute the sum of powers of simplifiable factors.
1565  unsigned FactorPowerSum = 0;
1566  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1567    Value *Op = Ops[Idx-1].Op;
1568
1569    // Count the number of occurrences of this value.
1570    unsigned Count = 1;
1571    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1572      ++Count;
1573    // Track for simplification all factors which occur 2 or more times.
1574    if (Count > 1)
1575      FactorPowerSum += Count;
1576  }
1577
1578  // We can only simplify factors if the sum of the powers of our simplifiable
1579  // factors is 4 or higher. When that is the case, we will *always* have
1580  // a simplification. This is an important invariant to prevent cyclicly
1581  // trying to simplify already minimal formations.
1582  if (FactorPowerSum < 4)
1583    return false;
1584
1585  // Now gather the simplifiable factors, removing them from Ops.
1586  FactorPowerSum = 0;
1587  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1588    Value *Op = Ops[Idx-1].Op;
1589
1590    // Count the number of occurrences of this value.
1591    unsigned Count = 1;
1592    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1593      ++Count;
1594    if (Count == 1)
1595      continue;
1596    // Move an even number of occurrences to Factors.
1597    Count &= ~1U;
1598    Idx -= Count;
1599    FactorPowerSum += Count;
1600    Factors.push_back(Factor(Op, Count));
1601    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1602  }
1603
1604  // None of the adjustments above should have reduced the sum of factor powers
1605  // below our mininum of '4'.
1606  assert(FactorPowerSum >= 4);
1607
1608  std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1609  return true;
1610}
1611
1612/// \brief Build a tree of multiplies, computing the product of Ops.
1613static Value *buildMultiplyTree(IRBuilder<> &Builder,
1614                                SmallVectorImpl<Value*> &Ops) {
1615  if (Ops.size() == 1)
1616    return Ops.back();
1617
1618  Value *LHS = Ops.pop_back_val();
1619  do {
1620    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1621  } while (!Ops.empty());
1622
1623  return LHS;
1624}
1625
1626/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1627///
1628/// Given a vector of values raised to various powers, where no two values are
1629/// equal and the powers are sorted in decreasing order, compute the minimal
1630/// DAG of multiplies to compute the final product, and return that product
1631/// value.
1632Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1633                                            SmallVectorImpl<Factor> &Factors) {
1634  assert(Factors[0].Power);
1635  SmallVector<Value *, 4> OuterProduct;
1636  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1637       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1638    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1639      LastIdx = Idx;
1640      continue;
1641    }
1642
1643    // We want to multiply across all the factors with the same power so that
1644    // we can raise them to that power as a single entity. Build a mini tree
1645    // for that.
1646    SmallVector<Value *, 4> InnerProduct;
1647    InnerProduct.push_back(Factors[LastIdx].Base);
1648    do {
1649      InnerProduct.push_back(Factors[Idx].Base);
1650      ++Idx;
1651    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1652
1653    // Reset the base value of the first factor to the new expression tree.
1654    // We'll remove all the factors with the same power in a second pass.
1655    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1656    if (Instruction *MI = dyn_cast<Instruction>(M))
1657      RedoInsts.insert(MI);
1658
1659    LastIdx = Idx;
1660  }
1661  // Unique factors with equal powers -- we've folded them into the first one's
1662  // base.
1663  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1664                            Factor::PowerEqual()),
1665                Factors.end());
1666
1667  // Iteratively collect the base of each factor with an add power into the
1668  // outer product, and halve each power in preparation for squaring the
1669  // expression.
1670  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1671    if (Factors[Idx].Power & 1)
1672      OuterProduct.push_back(Factors[Idx].Base);
1673    Factors[Idx].Power >>= 1;
1674  }
1675  if (Factors[0].Power) {
1676    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1677    OuterProduct.push_back(SquareRoot);
1678    OuterProduct.push_back(SquareRoot);
1679  }
1680  if (OuterProduct.size() == 1)
1681    return OuterProduct.front();
1682
1683  Value *V = buildMultiplyTree(Builder, OuterProduct);
1684  return V;
1685}
1686
1687Value *Reassociate::OptimizeMul(BinaryOperator *I,
1688                                SmallVectorImpl<ValueEntry> &Ops) {
1689  // We can only optimize the multiplies when there is a chain of more than
1690  // three, such that a balanced tree might require fewer total multiplies.
1691  if (Ops.size() < 4)
1692    return nullptr;
1693
1694  // Try to turn linear trees of multiplies without other uses of the
1695  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1696  // re-use.
1697  SmallVector<Factor, 4> Factors;
1698  if (!collectMultiplyFactors(Ops, Factors))
1699    return nullptr; // All distinct factors, so nothing left for us to do.
1700
1701  IRBuilder<> Builder(I);
1702  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1703  if (Ops.empty())
1704    return V;
1705
1706  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1707  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1708  return nullptr;
1709}
1710
1711Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1712                                       SmallVectorImpl<ValueEntry> &Ops) {
1713  // Now that we have the linearized expression tree, try to optimize it.
1714  // Start by folding any constants that we found.
1715  Constant *Cst = nullptr;
1716  unsigned Opcode = I->getOpcode();
1717  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1718    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1719    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1720  }
1721  // If there was nothing but constants then we are done.
1722  if (Ops.empty())
1723    return Cst;
1724
1725  // Put the combined constant back at the end of the operand list, except if
1726  // there is no point.  For example, an add of 0 gets dropped here, while a
1727  // multiplication by zero turns the whole expression into zero.
1728  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1729    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1730      return Cst;
1731    Ops.push_back(ValueEntry(0, Cst));
1732  }
1733
1734  if (Ops.size() == 1) return Ops[0].Op;
1735
1736  // Handle destructive annihilation due to identities between elements in the
1737  // argument list here.
1738  unsigned NumOps = Ops.size();
1739  switch (Opcode) {
1740  default: break;
1741  case Instruction::And:
1742  case Instruction::Or:
1743    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1744      return Result;
1745    break;
1746
1747  case Instruction::Xor:
1748    if (Value *Result = OptimizeXor(I, Ops))
1749      return Result;
1750    break;
1751
1752  case Instruction::Add:
1753    if (Value *Result = OptimizeAdd(I, Ops))
1754      return Result;
1755    break;
1756
1757  case Instruction::Mul:
1758    if (Value *Result = OptimizeMul(I, Ops))
1759      return Result;
1760    break;
1761  }
1762
1763  if (Ops.size() != NumOps)
1764    return OptimizeExpression(I, Ops);
1765  return nullptr;
1766}
1767
1768/// EraseInst - Zap the given instruction, adding interesting operands to the
1769/// work list.
1770void Reassociate::EraseInst(Instruction *I) {
1771  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1772  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1773  // Erase the dead instruction.
1774  ValueRankMap.erase(I);
1775  RedoInsts.remove(I);
1776  I->eraseFromParent();
1777  // Optimize its operands.
1778  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1779  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1780    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1781      // If this is a node in an expression tree, climb to the expression root
1782      // and add that since that's where optimization actually happens.
1783      unsigned Opcode = Op->getOpcode();
1784      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1785             Visited.insert(Op))
1786        Op = Op->user_back();
1787      RedoInsts.insert(Op);
1788    }
1789}
1790
1791/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1792/// instructions is not allowed.
1793void Reassociate::OptimizeInst(Instruction *I) {
1794  // Only consider operations that we understand.
1795  if (!isa<BinaryOperator>(I))
1796    return;
1797
1798  if (I->getOpcode() == Instruction::Shl &&
1799      isa<ConstantInt>(I->getOperand(1)))
1800    // If an operand of this shift is a reassociable multiply, or if the shift
1801    // is used by a reassociable multiply or add, turn into a multiply.
1802    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1803        (I->hasOneUse() &&
1804         (isReassociableOp(I->user_back(), Instruction::Mul) ||
1805          isReassociableOp(I->user_back(), Instruction::Add)))) {
1806      Instruction *NI = ConvertShiftToMul(I);
1807      RedoInsts.insert(I);
1808      MadeChange = true;
1809      I = NI;
1810    }
1811
1812  // Floating point binary operators are not associative, but we can still
1813  // commute (some) of them, to canonicalize the order of their operands.
1814  // This can potentially expose more CSE opportunities, and makes writing
1815  // other transformations simpler.
1816  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1817    // FAdd and FMul can be commuted.
1818    if (I->getOpcode() != Instruction::FMul &&
1819        I->getOpcode() != Instruction::FAdd)
1820      return;
1821
1822    Value *LHS = I->getOperand(0);
1823    Value *RHS = I->getOperand(1);
1824    unsigned LHSRank = getRank(LHS);
1825    unsigned RHSRank = getRank(RHS);
1826
1827    // Sort the operands by rank.
1828    if (RHSRank < LHSRank) {
1829      I->setOperand(0, RHS);
1830      I->setOperand(1, LHS);
1831    }
1832
1833    return;
1834  }
1835
1836  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1837  // original order of evaluation for short-circuited comparisons that
1838  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1839  // is not further optimized, it is likely to be transformed back to a
1840  // short-circuited form for code gen, and the source order may have been
1841  // optimized for the most likely conditions.
1842  if (I->getType()->isIntegerTy(1))
1843    return;
1844
1845  // If this is a subtract instruction which is not already in negate form,
1846  // see if we can convert it to X+-Y.
1847  if (I->getOpcode() == Instruction::Sub) {
1848    if (ShouldBreakUpSubtract(I)) {
1849      Instruction *NI = BreakUpSubtract(I);
1850      RedoInsts.insert(I);
1851      MadeChange = true;
1852      I = NI;
1853    } else if (BinaryOperator::isNeg(I)) {
1854      // Otherwise, this is a negation.  See if the operand is a multiply tree
1855      // and if this is not an inner node of a multiply tree.
1856      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1857          (!I->hasOneUse() ||
1858           !isReassociableOp(I->user_back(), Instruction::Mul))) {
1859        Instruction *NI = LowerNegateToMultiply(I);
1860        RedoInsts.insert(I);
1861        MadeChange = true;
1862        I = NI;
1863      }
1864    }
1865  }
1866
1867  // If this instruction is an associative binary operator, process it.
1868  if (!I->isAssociative()) return;
1869  BinaryOperator *BO = cast<BinaryOperator>(I);
1870
1871  // If this is an interior node of a reassociable tree, ignore it until we
1872  // get to the root of the tree, to avoid N^2 analysis.
1873  unsigned Opcode = BO->getOpcode();
1874  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
1875    return;
1876
1877  // If this is an add tree that is used by a sub instruction, ignore it
1878  // until we process the subtract.
1879  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1880      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
1881    return;
1882
1883  ReassociateExpression(BO);
1884}
1885
1886void Reassociate::ReassociateExpression(BinaryOperator *I) {
1887
1888  // First, walk the expression tree, linearizing the tree, collecting the
1889  // operand information.
1890  SmallVector<RepeatedValue, 8> Tree;
1891  MadeChange |= LinearizeExprTree(I, Tree);
1892  SmallVector<ValueEntry, 8> Ops;
1893  Ops.reserve(Tree.size());
1894  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1895    RepeatedValue E = Tree[i];
1896    Ops.append(E.second.getZExtValue(),
1897               ValueEntry(getRank(E.first), E.first));
1898  }
1899
1900  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1901
1902  // Now that we have linearized the tree to a list and have gathered all of
1903  // the operands and their ranks, sort the operands by their rank.  Use a
1904  // stable_sort so that values with equal ranks will have their relative
1905  // positions maintained (and so the compiler is deterministic).  Note that
1906  // this sorts so that the highest ranking values end up at the beginning of
1907  // the vector.
1908  std::stable_sort(Ops.begin(), Ops.end());
1909
1910  // OptimizeExpression - Now that we have the expression tree in a convenient
1911  // sorted form, optimize it globally if possible.
1912  if (Value *V = OptimizeExpression(I, Ops)) {
1913    if (V == I)
1914      // Self-referential expression in unreachable code.
1915      return;
1916    // This expression tree simplified to something that isn't a tree,
1917    // eliminate it.
1918    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1919    I->replaceAllUsesWith(V);
1920    if (Instruction *VI = dyn_cast<Instruction>(V))
1921      VI->setDebugLoc(I->getDebugLoc());
1922    RedoInsts.insert(I);
1923    ++NumAnnihil;
1924    return;
1925  }
1926
1927  // We want to sink immediates as deeply as possible except in the case where
1928  // this is a multiply tree used only by an add, and the immediate is a -1.
1929  // In this case we reassociate to put the negation on the outside so that we
1930  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1931  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1932      cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
1933      isa<ConstantInt>(Ops.back().Op) &&
1934      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1935    ValueEntry Tmp = Ops.pop_back_val();
1936    Ops.insert(Ops.begin(), Tmp);
1937  }
1938
1939  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1940
1941  if (Ops.size() == 1) {
1942    if (Ops[0].Op == I)
1943      // Self-referential expression in unreachable code.
1944      return;
1945
1946    // This expression tree simplified to something that isn't a tree,
1947    // eliminate it.
1948    I->replaceAllUsesWith(Ops[0].Op);
1949    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1950      OI->setDebugLoc(I->getDebugLoc());
1951    RedoInsts.insert(I);
1952    return;
1953  }
1954
1955  // Now that we ordered and optimized the expressions, splat them back into
1956  // the expression tree, removing any unneeded nodes.
1957  RewriteExprTree(I, Ops);
1958}
1959
1960bool Reassociate::runOnFunction(Function &F) {
1961  if (skipOptnoneFunction(F))
1962    return false;
1963
1964  // Calculate the rank map for F
1965  BuildRankMap(F);
1966
1967  MadeChange = false;
1968  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1969    // Optimize every instruction in the basic block.
1970    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1971      if (isInstructionTriviallyDead(II)) {
1972        EraseInst(II++);
1973      } else {
1974        OptimizeInst(II);
1975        assert(II->getParent() == BI && "Moved to a different block!");
1976        ++II;
1977      }
1978
1979    // If this produced extra instructions to optimize, handle them now.
1980    while (!RedoInsts.empty()) {
1981      Instruction *I = RedoInsts.pop_back_val();
1982      if (isInstructionTriviallyDead(I))
1983        EraseInst(I);
1984      else
1985        OptimizeInst(I);
1986    }
1987  }
1988
1989  // We are done with the rank map.
1990  RankMap.clear();
1991  ValueRankMap.clear();
1992
1993  return MadeChange;
1994}
1995