Reassociate.cpp revision de1d8a544c1398cc34d4c865c5afa8b91f96316c
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType() << '\t';
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    dbgs() << "[ ";
67    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68    dbgs() << ", #" << Ops[i].Rank << "] ";
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    DenseMap<BasicBlock*, unsigned> RankMap;
76    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(ID) {
81      initializeReassociatePass(*PassRegistry::getPassRegistry());
82    }
83
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88    }
89  private:
90    void BuildRankMap(Function &F);
91    unsigned getRank(Value *V);
92    Value *ReassociateExpression(BinaryOperator *I);
93    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
94                         unsigned Idx = 0);
95    Value *OptimizeExpression(BinaryOperator *I,
96                              SmallVectorImpl<ValueEntry> &Ops);
97    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
98    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
99    void LinearizeExpr(BinaryOperator *I);
100    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
101    void ReassociateBB(BasicBlock *BB);
102
103    void RemoveDeadBinaryOp(Value *V);
104  };
105}
106
107char Reassociate::ID = 0;
108INITIALIZE_PASS(Reassociate, "reassociate",
109                "Reassociate expressions", false, false)
110
111// Public interface to the Reassociate pass
112FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
113
114void Reassociate::RemoveDeadBinaryOp(Value *V) {
115  Instruction *Op = dyn_cast<Instruction>(V);
116  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
117    return;
118
119  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
120
121  ValueRankMap.erase(Op);
122  Op->eraseFromParent();
123  RemoveDeadBinaryOp(LHS);
124  RemoveDeadBinaryOp(RHS);
125}
126
127
128static bool isUnmovableInstruction(Instruction *I) {
129  if (I->getOpcode() == Instruction::PHI ||
130      I->getOpcode() == Instruction::Alloca ||
131      I->getOpcode() == Instruction::Load ||
132      I->getOpcode() == Instruction::Invoke ||
133      (I->getOpcode() == Instruction::Call &&
134       !isa<DbgInfoIntrinsic>(I)) ||
135      I->getOpcode() == Instruction::UDiv ||
136      I->getOpcode() == Instruction::SDiv ||
137      I->getOpcode() == Instruction::FDiv ||
138      I->getOpcode() == Instruction::URem ||
139      I->getOpcode() == Instruction::SRem ||
140      I->getOpcode() == Instruction::FRem)
141    return true;
142  return false;
143}
144
145void Reassociate::BuildRankMap(Function &F) {
146  unsigned i = 2;
147
148  // Assign distinct ranks to function arguments
149  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
150    ValueRankMap[&*I] = ++i;
151
152  ReversePostOrderTraversal<Function*> RPOT(&F);
153  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
154         E = RPOT.end(); I != E; ++I) {
155    BasicBlock *BB = *I;
156    unsigned BBRank = RankMap[BB] = ++i << 16;
157
158    // Walk the basic block, adding precomputed ranks for any instructions that
159    // we cannot move.  This ensures that the ranks for these instructions are
160    // all different in the block.
161    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
162      if (isUnmovableInstruction(I))
163        ValueRankMap[&*I] = ++BBRank;
164  }
165}
166
167unsigned Reassociate::getRank(Value *V) {
168  Instruction *I = dyn_cast<Instruction>(V);
169  if (I == 0) {
170    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
171    return 0;  // Otherwise it's a global or constant, rank 0.
172  }
173
174  if (unsigned Rank = ValueRankMap[I])
175    return Rank;    // Rank already known?
176
177  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
178  // we can reassociate expressions for code motion!  Since we do not recurse
179  // for PHI nodes, we cannot have infinite recursion here, because there
180  // cannot be loops in the value graph that do not go through PHI nodes.
181  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
182  for (unsigned i = 0, e = I->getNumOperands();
183       i != e && Rank != MaxRank; ++i)
184    Rank = std::max(Rank, getRank(I->getOperand(i)));
185
186  // If this is a not or neg instruction, do not count it for rank.  This
187  // assures us that X and ~X will have the same rank.
188  if (!I->getType()->isIntegerTy() ||
189      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
190    ++Rank;
191
192  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
193  //     << Rank << "\n");
194
195  return ValueRankMap[I] = Rank;
196}
197
198/// isReassociableOp - Return true if V is an instruction of the specified
199/// opcode and if it only has one use.
200static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
201  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
202      cast<Instruction>(V)->getOpcode() == Opcode)
203    return cast<BinaryOperator>(V);
204  return 0;
205}
206
207/// LowerNegateToMultiply - Replace 0-X with X*-1.
208///
209static Instruction *LowerNegateToMultiply(Instruction *Neg,
210                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
211  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
212
213  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
214  ValueRankMap.erase(Neg);
215  Res->takeName(Neg);
216  Neg->replaceAllUsesWith(Res);
217  Neg->eraseFromParent();
218  return Res;
219}
220
221// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
222// Note that if D is also part of the expression tree that we recurse to
223// linearize it as well.  Besides that case, this does not recurse into A,B, or
224// C.
225void Reassociate::LinearizeExpr(BinaryOperator *I) {
226  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
227  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
228  assert(isReassociableOp(LHS, I->getOpcode()) &&
229         isReassociableOp(RHS, I->getOpcode()) &&
230         "Not an expression that needs linearization?");
231
232  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
233
234  // Move the RHS instruction to live immediately before I, avoiding breaking
235  // dominator properties.
236  RHS->moveBefore(I);
237
238  // Move operands around to do the linearization.
239  I->setOperand(1, RHS->getOperand(0));
240  RHS->setOperand(0, LHS);
241  I->setOperand(0, RHS);
242
243  // Conservatively clear all the optional flags, which may not hold
244  // after the reassociation.
245  I->clearSubclassOptionalData();
246  LHS->clearSubclassOptionalData();
247  RHS->clearSubclassOptionalData();
248
249  ++NumLinear;
250  MadeChange = true;
251  DEBUG(dbgs() << "Linearized: " << *I << '\n');
252
253  // If D is part of this expression tree, tail recurse.
254  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
255    LinearizeExpr(I);
256}
257
258
259/// LinearizeExprTree - Given an associative binary expression tree, traverse
260/// all of the uses putting it into canonical form.  This forces a left-linear
261/// form of the expression (((a+b)+c)+d), and collects information about the
262/// rank of the non-tree operands.
263///
264/// NOTE: These intentionally destroys the expression tree operands (turning
265/// them into undef values) to reduce #uses of the values.  This means that the
266/// caller MUST use something like RewriteExprTree to put the values back in.
267///
268void Reassociate::LinearizeExprTree(BinaryOperator *I,
269                                    SmallVectorImpl<ValueEntry> &Ops) {
270  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
271  unsigned Opcode = I->getOpcode();
272
273  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
274  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
275  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
276
277  // If this is a multiply expression tree and it contains internal negations,
278  // transform them into multiplies by -1 so they can be reassociated.
279  if (I->getOpcode() == Instruction::Mul) {
280    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
281      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
282      LHSBO = isReassociableOp(LHS, Opcode);
283    }
284    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
285      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
286      RHSBO = isReassociableOp(RHS, Opcode);
287    }
288  }
289
290  if (!LHSBO) {
291    if (!RHSBO) {
292      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
293      // such, just remember these operands and their rank.
294      Ops.push_back(ValueEntry(getRank(LHS), LHS));
295      Ops.push_back(ValueEntry(getRank(RHS), RHS));
296
297      // Clear the leaves out.
298      I->setOperand(0, UndefValue::get(I->getType()));
299      I->setOperand(1, UndefValue::get(I->getType()));
300      return;
301    }
302
303    // Turn X+(Y+Z) -> (Y+Z)+X
304    std::swap(LHSBO, RHSBO);
305    std::swap(LHS, RHS);
306    bool Success = !I->swapOperands();
307    assert(Success && "swapOperands failed");
308    Success = false;
309    MadeChange = true;
310  } else if (RHSBO) {
311    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
312    // part of the expression tree.
313    LinearizeExpr(I);
314    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
315    RHS = I->getOperand(1);
316    RHSBO = 0;
317  }
318
319  // Okay, now we know that the LHS is a nested expression and that the RHS is
320  // not.  Perform reassociation.
321  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
322
323  // Move LHS right before I to make sure that the tree expression dominates all
324  // values.
325  LHSBO->moveBefore(I);
326
327  // Linearize the expression tree on the LHS.
328  LinearizeExprTree(LHSBO, Ops);
329
330  // Remember the RHS operand and its rank.
331  Ops.push_back(ValueEntry(getRank(RHS), RHS));
332
333  // Clear the RHS leaf out.
334  I->setOperand(1, UndefValue::get(I->getType()));
335}
336
337// RewriteExprTree - Now that the operands for this expression tree are
338// linearized and optimized, emit them in-order.  This function is written to be
339// tail recursive.
340void Reassociate::RewriteExprTree(BinaryOperator *I,
341                                  SmallVectorImpl<ValueEntry> &Ops,
342                                  unsigned i) {
343  if (i+2 == Ops.size()) {
344    if (I->getOperand(0) != Ops[i].Op ||
345        I->getOperand(1) != Ops[i+1].Op) {
346      Value *OldLHS = I->getOperand(0);
347      DEBUG(dbgs() << "RA: " << *I << '\n');
348      I->setOperand(0, Ops[i].Op);
349      I->setOperand(1, Ops[i+1].Op);
350
351      // Clear all the optional flags, which may not hold after the
352      // reassociation if the expression involved more than just this operation.
353      if (Ops.size() != 2)
354        I->clearSubclassOptionalData();
355
356      DEBUG(dbgs() << "TO: " << *I << '\n');
357      MadeChange = true;
358      ++NumChanged;
359
360      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
361      // delete the extra, now dead, nodes.
362      RemoveDeadBinaryOp(OldLHS);
363    }
364    return;
365  }
366  assert(i+2 < Ops.size() && "Ops index out of range!");
367
368  if (I->getOperand(1) != Ops[i].Op) {
369    DEBUG(dbgs() << "RA: " << *I << '\n');
370    I->setOperand(1, Ops[i].Op);
371
372    // Conservatively clear all the optional flags, which may not hold
373    // after the reassociation.
374    I->clearSubclassOptionalData();
375
376    DEBUG(dbgs() << "TO: " << *I << '\n');
377    MadeChange = true;
378    ++NumChanged;
379  }
380
381  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
382  assert(LHS->getOpcode() == I->getOpcode() &&
383         "Improper expression tree!");
384
385  // Compactify the tree instructions together with each other to guarantee
386  // that the expression tree is dominated by all of Ops.
387  LHS->moveBefore(I);
388  RewriteExprTree(LHS, Ops, i+1);
389}
390
391
392
393// NegateValue - Insert instructions before the instruction pointed to by BI,
394// that computes the negative version of the value specified.  The negative
395// version of the value is returned, and BI is left pointing at the instruction
396// that should be processed next by the reassociation pass.
397//
398static Value *NegateValue(Value *V, Instruction *BI) {
399  if (Constant *C = dyn_cast<Constant>(V))
400    return ConstantExpr::getNeg(C);
401
402  // We are trying to expose opportunity for reassociation.  One of the things
403  // that we want to do to achieve this is to push a negation as deep into an
404  // expression chain as possible, to expose the add instructions.  In practice,
405  // this means that we turn this:
406  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
407  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
408  // the constants.  We assume that instcombine will clean up the mess later if
409  // we introduce tons of unnecessary negation instructions.
410  //
411  if (Instruction *I = dyn_cast<Instruction>(V))
412    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
413      // Push the negates through the add.
414      I->setOperand(0, NegateValue(I->getOperand(0), BI));
415      I->setOperand(1, NegateValue(I->getOperand(1), BI));
416
417      // We must move the add instruction here, because the neg instructions do
418      // not dominate the old add instruction in general.  By moving it, we are
419      // assured that the neg instructions we just inserted dominate the
420      // instruction we are about to insert after them.
421      //
422      I->moveBefore(BI);
423      I->setName(I->getName()+".neg");
424      return I;
425    }
426
427  // Okay, we need to materialize a negated version of V with an instruction.
428  // Scan the use lists of V to see if we have one already.
429  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
430    User *U = *UI;
431    if (!BinaryOperator::isNeg(U)) continue;
432
433    // We found one!  Now we have to make sure that the definition dominates
434    // this use.  We do this by moving it to the entry block (if it is a
435    // non-instruction value) or right after the definition.  These negates will
436    // be zapped by reassociate later, so we don't need much finesse here.
437    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
438
439    // Verify that the negate is in this function, V might be a constant expr.
440    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
441      continue;
442
443    BasicBlock::iterator InsertPt;
444    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
445      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
446        InsertPt = II->getNormalDest()->begin();
447      } else {
448        InsertPt = InstInput;
449        ++InsertPt;
450      }
451      while (isa<PHINode>(InsertPt)) ++InsertPt;
452    } else {
453      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
454    }
455    TheNeg->moveBefore(InsertPt);
456    return TheNeg;
457  }
458
459  // Insert a 'neg' instruction that subtracts the value from zero to get the
460  // negation.
461  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
462}
463
464/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
465/// X-Y into (X + -Y).
466static bool ShouldBreakUpSubtract(Instruction *Sub) {
467  // If this is a negation, we can't split it up!
468  if (BinaryOperator::isNeg(Sub))
469    return false;
470
471  // Don't bother to break this up unless either the LHS is an associable add or
472  // subtract or if this is only used by one.
473  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
474      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
475    return true;
476  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
477      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
478    return true;
479  if (Sub->hasOneUse() &&
480      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
481       isReassociableOp(Sub->use_back(), Instruction::Sub)))
482    return true;
483
484  return false;
485}
486
487/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
488/// only used by an add, transform this into (X+(0-Y)) to promote better
489/// reassociation.
490static Instruction *BreakUpSubtract(Instruction *Sub,
491                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
492  // Convert a subtract into an add and a neg instruction. This allows sub
493  // instructions to be commuted with other add instructions.
494  //
495  // Calculate the negative value of Operand 1 of the sub instruction,
496  // and set it as the RHS of the add instruction we just made.
497  //
498  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
499  Instruction *New =
500    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
501  New->takeName(Sub);
502
503  // Everyone now refers to the add instruction.
504  ValueRankMap.erase(Sub);
505  Sub->replaceAllUsesWith(New);
506  Sub->eraseFromParent();
507
508  DEBUG(dbgs() << "Negated: " << *New << '\n');
509  return New;
510}
511
512/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
513/// by one, change this into a multiply by a constant to assist with further
514/// reassociation.
515static Instruction *ConvertShiftToMul(Instruction *Shl,
516                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
517  // If an operand of this shift is a reassociable multiply, or if the shift
518  // is used by a reassociable multiply or add, turn into a multiply.
519  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
520      (Shl->hasOneUse() &&
521       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
522        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
523    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
524    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
525
526    Instruction *Mul =
527      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
528    ValueRankMap.erase(Shl);
529    Mul->takeName(Shl);
530    Shl->replaceAllUsesWith(Mul);
531    Shl->eraseFromParent();
532    return Mul;
533  }
534  return 0;
535}
536
537// Scan backwards and forwards among values with the same rank as element i to
538// see if X exists.  If X does not exist, return i.  This is useful when
539// scanning for 'x' when we see '-x' because they both get the same rank.
540static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
541                                  Value *X) {
542  unsigned XRank = Ops[i].Rank;
543  unsigned e = Ops.size();
544  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
545    if (Ops[j].Op == X)
546      return j;
547  // Scan backwards.
548  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
549    if (Ops[j].Op == X)
550      return j;
551  return i;
552}
553
554/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
555/// and returning the result.  Insert the tree before I.
556static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
557  if (Ops.size() == 1) return Ops.back();
558
559  Value *V1 = Ops.back();
560  Ops.pop_back();
561  Value *V2 = EmitAddTreeOfValues(I, Ops);
562  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
563}
564
565/// RemoveFactorFromExpression - If V is an expression tree that is a
566/// multiplication sequence, and if this sequence contains a multiply by Factor,
567/// remove Factor from the tree and return the new tree.
568Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
569  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
570  if (!BO) return 0;
571
572  SmallVector<ValueEntry, 8> Factors;
573  LinearizeExprTree(BO, Factors);
574
575  bool FoundFactor = false;
576  bool NeedsNegate = false;
577  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
578    if (Factors[i].Op == Factor) {
579      FoundFactor = true;
580      Factors.erase(Factors.begin()+i);
581      break;
582    }
583
584    // If this is a negative version of this factor, remove it.
585    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
586      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
587        if (FC1->getValue() == -FC2->getValue()) {
588          FoundFactor = NeedsNegate = true;
589          Factors.erase(Factors.begin()+i);
590          break;
591        }
592  }
593
594  if (!FoundFactor) {
595    // Make sure to restore the operands to the expression tree.
596    RewriteExprTree(BO, Factors);
597    return 0;
598  }
599
600  BasicBlock::iterator InsertPt = BO; ++InsertPt;
601
602  // If this was just a single multiply, remove the multiply and return the only
603  // remaining operand.
604  if (Factors.size() == 1) {
605    ValueRankMap.erase(BO);
606    BO->eraseFromParent();
607    V = Factors[0].Op;
608  } else {
609    RewriteExprTree(BO, Factors);
610    V = BO;
611  }
612
613  if (NeedsNegate)
614    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
615
616  return V;
617}
618
619/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
620/// add its operands as factors, otherwise add V to the list of factors.
621///
622/// Ops is the top-level list of add operands we're trying to factor.
623static void FindSingleUseMultiplyFactors(Value *V,
624                                         SmallVectorImpl<Value*> &Factors,
625                                       const SmallVectorImpl<ValueEntry> &Ops,
626                                         bool IsRoot) {
627  BinaryOperator *BO;
628  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
629      !(BO = dyn_cast<BinaryOperator>(V)) ||
630      BO->getOpcode() != Instruction::Mul) {
631    Factors.push_back(V);
632    return;
633  }
634
635  // If this value has a single use because it is another input to the add
636  // tree we're reassociating and we dropped its use, it actually has two
637  // uses and we can't factor it.
638  if (!IsRoot) {
639    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
640      if (Ops[i].Op == V) {
641        Factors.push_back(V);
642        return;
643      }
644  }
645
646
647  // Otherwise, add the LHS and RHS to the list of factors.
648  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
649  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
650}
651
652/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
653/// instruction.  This optimizes based on identities.  If it can be reduced to
654/// a single Value, it is returned, otherwise the Ops list is mutated as
655/// necessary.
656static Value *OptimizeAndOrXor(unsigned Opcode,
657                               SmallVectorImpl<ValueEntry> &Ops) {
658  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
659  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
660  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
661    // First, check for X and ~X in the operand list.
662    assert(i < Ops.size());
663    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
664      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
665      unsigned FoundX = FindInOperandList(Ops, i, X);
666      if (FoundX != i) {
667        if (Opcode == Instruction::And)   // ...&X&~X = 0
668          return Constant::getNullValue(X->getType());
669
670        if (Opcode == Instruction::Or)    // ...|X|~X = -1
671          return Constant::getAllOnesValue(X->getType());
672      }
673    }
674
675    // Next, check for duplicate pairs of values, which we assume are next to
676    // each other, due to our sorting criteria.
677    assert(i < Ops.size());
678    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
679      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
680        // Drop duplicate values for And and Or.
681        Ops.erase(Ops.begin()+i);
682        --i; --e;
683        ++NumAnnihil;
684        continue;
685      }
686
687      // Drop pairs of values for Xor.
688      assert(Opcode == Instruction::Xor);
689      if (e == 2)
690        return Constant::getNullValue(Ops[0].Op->getType());
691
692      // Y ^ X^X -> Y
693      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
694      i -= 1; e -= 2;
695      ++NumAnnihil;
696    }
697  }
698  return 0;
699}
700
701/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
702/// optimizes based on identities.  If it can be reduced to a single Value, it
703/// is returned, otherwise the Ops list is mutated as necessary.
704Value *Reassociate::OptimizeAdd(Instruction *I,
705                                SmallVectorImpl<ValueEntry> &Ops) {
706  // Scan the operand lists looking for X and -X pairs.  If we find any, we
707  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
708  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
709  //
710  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
711  //
712  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
713    Value *TheOp = Ops[i].Op;
714    // Check to see if we've seen this operand before.  If so, we factor all
715    // instances of the operand together.  Due to our sorting criteria, we know
716    // that these need to be next to each other in the vector.
717    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
718      // Rescan the list, remove all instances of this operand from the expr.
719      unsigned NumFound = 0;
720      do {
721        Ops.erase(Ops.begin()+i);
722        ++NumFound;
723      } while (i != Ops.size() && Ops[i].Op == TheOp);
724
725      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
726      ++NumFactor;
727
728      // Insert a new multiply.
729      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
730      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
731
732      // Now that we have inserted a multiply, optimize it. This allows us to
733      // handle cases that require multiple factoring steps, such as this:
734      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
735      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
736
737      // If every add operand was a duplicate, return the multiply.
738      if (Ops.empty())
739        return Mul;
740
741      // Otherwise, we had some input that didn't have the dupe, such as
742      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
743      // things being added by this operation.
744      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
745
746      --i;
747      e = Ops.size();
748      continue;
749    }
750
751    // Check for X and -X in the operand list.
752    if (!BinaryOperator::isNeg(TheOp))
753      continue;
754
755    Value *X = BinaryOperator::getNegArgument(TheOp);
756    unsigned FoundX = FindInOperandList(Ops, i, X);
757    if (FoundX == i)
758      continue;
759
760    // Remove X and -X from the operand list.
761    if (Ops.size() == 2)
762      return Constant::getNullValue(X->getType());
763
764    Ops.erase(Ops.begin()+i);
765    if (i < FoundX)
766      --FoundX;
767    else
768      --i;   // Need to back up an extra one.
769    Ops.erase(Ops.begin()+FoundX);
770    ++NumAnnihil;
771    --i;     // Revisit element.
772    e -= 2;  // Removed two elements.
773  }
774
775  // Scan the operand list, checking to see if there are any common factors
776  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
777  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
778  // To efficiently find this, we count the number of times a factor occurs
779  // for any ADD operands that are MULs.
780  DenseMap<Value*, unsigned> FactorOccurrences;
781
782  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
783  // where they are actually the same multiply.
784  unsigned MaxOcc = 0;
785  Value *MaxOccVal = 0;
786  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
787    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
788    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
789      continue;
790
791    // Compute all of the factors of this added value.
792    SmallVector<Value*, 8> Factors;
793    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
794    assert(Factors.size() > 1 && "Bad linearize!");
795
796    // Add one to FactorOccurrences for each unique factor in this op.
797    SmallPtrSet<Value*, 8> Duplicates;
798    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
799      Value *Factor = Factors[i];
800      if (!Duplicates.insert(Factor)) continue;
801
802      unsigned Occ = ++FactorOccurrences[Factor];
803      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
804
805      // If Factor is a negative constant, add the negated value as a factor
806      // because we can percolate the negate out.  Watch for minint, which
807      // cannot be positivified.
808      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
809        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
810          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
811          assert(!Duplicates.count(Factor) &&
812                 "Shouldn't have two constant factors, missed a canonicalize");
813
814          unsigned Occ = ++FactorOccurrences[Factor];
815          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
816        }
817    }
818  }
819
820  // If any factor occurred more than one time, we can pull it out.
821  if (MaxOcc > 1) {
822    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
823    ++NumFactor;
824
825    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
826    // this, we could otherwise run into situations where removing a factor
827    // from an expression will drop a use of maxocc, and this can cause
828    // RemoveFactorFromExpression on successive values to behave differently.
829    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
830    SmallVector<Value*, 4> NewMulOps;
831    for (unsigned i = 0; i != Ops.size(); ++i) {
832      // Only try to remove factors from expressions we're allowed to.
833      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
834      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
835        continue;
836
837      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
838        // The factorized operand may occur several times.  Convert them all in
839        // one fell swoop.
840        for (unsigned j = Ops.size(); j != i;) {
841          --j;
842          if (Ops[j].Op == Ops[i].Op) {
843            NewMulOps.push_back(V);
844            Ops.erase(Ops.begin()+j);
845          }
846        }
847        --i;
848      }
849    }
850
851    // No need for extra uses anymore.
852    delete DummyInst;
853
854    unsigned NumAddedValues = NewMulOps.size();
855    Value *V = EmitAddTreeOfValues(I, NewMulOps);
856
857    // Now that we have inserted the add tree, optimize it. This allows us to
858    // handle cases that require multiple factoring steps, such as this:
859    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
860    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
861    (void)NumAddedValues;
862    V = ReassociateExpression(cast<BinaryOperator>(V));
863
864    // Create the multiply.
865    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
866
867    // Rerun associate on the multiply in case the inner expression turned into
868    // a multiply.  We want to make sure that we keep things in canonical form.
869    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
870
871    // If every add operand included the factor (e.g. "A*B + A*C"), then the
872    // entire result expression is just the multiply "A*(B+C)".
873    if (Ops.empty())
874      return V2;
875
876    // Otherwise, we had some input that didn't have the factor, such as
877    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
878    // things being added by this operation.
879    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
880  }
881
882  return 0;
883}
884
885Value *Reassociate::OptimizeExpression(BinaryOperator *I,
886                                       SmallVectorImpl<ValueEntry> &Ops) {
887  // Now that we have the linearized expression tree, try to optimize it.
888  // Start by folding any constants that we found.
889  bool IterateOptimization = false;
890  if (Ops.size() == 1) return Ops[0].Op;
891
892  unsigned Opcode = I->getOpcode();
893
894  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
895    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
896      Ops.pop_back();
897      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
898      return OptimizeExpression(I, Ops);
899    }
900
901  // Check for destructive annihilation due to a constant being used.
902  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
903    switch (Opcode) {
904    default: break;
905    case Instruction::And:
906      if (CstVal->isZero())                  // X & 0 -> 0
907        return CstVal;
908      if (CstVal->isAllOnesValue())          // X & -1 -> X
909        Ops.pop_back();
910      break;
911    case Instruction::Mul:
912      if (CstVal->isZero()) {                // X * 0 -> 0
913        ++NumAnnihil;
914        return CstVal;
915      }
916
917      if (cast<ConstantInt>(CstVal)->isOne())
918        Ops.pop_back();                      // X * 1 -> X
919      break;
920    case Instruction::Or:
921      if (CstVal->isAllOnesValue())          // X | -1 -> -1
922        return CstVal;
923      // FALLTHROUGH!
924    case Instruction::Add:
925    case Instruction::Xor:
926      if (CstVal->isZero())                  // X [|^+] 0 -> X
927        Ops.pop_back();
928      break;
929    }
930  if (Ops.size() == 1) return Ops[0].Op;
931
932  // Handle destructive annihilation due to identities between elements in the
933  // argument list here.
934  switch (Opcode) {
935  default: break;
936  case Instruction::And:
937  case Instruction::Or:
938  case Instruction::Xor: {
939    unsigned NumOps = Ops.size();
940    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
941      return Result;
942    IterateOptimization |= Ops.size() != NumOps;
943    break;
944  }
945
946  case Instruction::Add: {
947    unsigned NumOps = Ops.size();
948    if (Value *Result = OptimizeAdd(I, Ops))
949      return Result;
950    IterateOptimization |= Ops.size() != NumOps;
951  }
952
953    break;
954  //case Instruction::Mul:
955  }
956
957  if (IterateOptimization)
958    return OptimizeExpression(I, Ops);
959  return 0;
960}
961
962
963/// ReassociateBB - Inspect all of the instructions in this basic block,
964/// reassociating them as we go.
965void Reassociate::ReassociateBB(BasicBlock *BB) {
966  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
967    Instruction *BI = BBI++;
968    if (BI->getOpcode() == Instruction::Shl &&
969        isa<ConstantInt>(BI->getOperand(1)))
970      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
971        MadeChange = true;
972        BI = NI;
973      }
974
975    // Reject cases where it is pointless to do this.
976    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
977        BI->getType()->isVectorTy())
978      continue;  // Floating point ops are not associative.
979
980    // Do not reassociate boolean (i1) expressions.  We want to preserve the
981    // original order of evaluation for short-circuited comparisons that
982    // SimplifyCFG has folded to AND/OR expressions.  If the expression
983    // is not further optimized, it is likely to be transformed back to a
984    // short-circuited form for code gen, and the source order may have been
985    // optimized for the most likely conditions.
986    if (BI->getType()->isIntegerTy(1))
987      continue;
988
989    // If this is a subtract instruction which is not already in negate form,
990    // see if we can convert it to X+-Y.
991    if (BI->getOpcode() == Instruction::Sub) {
992      if (ShouldBreakUpSubtract(BI)) {
993        BI = BreakUpSubtract(BI, ValueRankMap);
994        // Reset the BBI iterator in case BreakUpSubtract changed the
995        // instruction it points to.
996        BBI = BI;
997        ++BBI;
998        MadeChange = true;
999      } else if (BinaryOperator::isNeg(BI)) {
1000        // Otherwise, this is a negation.  See if the operand is a multiply tree
1001        // and if this is not an inner node of a multiply tree.
1002        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1003            (!BI->hasOneUse() ||
1004             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1005          BI = LowerNegateToMultiply(BI, ValueRankMap);
1006          MadeChange = true;
1007        }
1008      }
1009    }
1010
1011    // If this instruction is a commutative binary operator, process it.
1012    if (!BI->isAssociative()) continue;
1013    BinaryOperator *I = cast<BinaryOperator>(BI);
1014
1015    // If this is an interior node of a reassociable tree, ignore it until we
1016    // get to the root of the tree, to avoid N^2 analysis.
1017    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1018      continue;
1019
1020    // If this is an add tree that is used by a sub instruction, ignore it
1021    // until we process the subtract.
1022    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1023        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1024      continue;
1025
1026    ReassociateExpression(I);
1027  }
1028}
1029
1030Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1031
1032  // First, walk the expression tree, linearizing the tree, collecting the
1033  // operand information.
1034  SmallVector<ValueEntry, 8> Ops;
1035  LinearizeExprTree(I, Ops);
1036
1037  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1038
1039  // Now that we have linearized the tree to a list and have gathered all of
1040  // the operands and their ranks, sort the operands by their rank.  Use a
1041  // stable_sort so that values with equal ranks will have their relative
1042  // positions maintained (and so the compiler is deterministic).  Note that
1043  // this sorts so that the highest ranking values end up at the beginning of
1044  // the vector.
1045  std::stable_sort(Ops.begin(), Ops.end());
1046
1047  // OptimizeExpression - Now that we have the expression tree in a convenient
1048  // sorted form, optimize it globally if possible.
1049  if (Value *V = OptimizeExpression(I, Ops)) {
1050    // This expression tree simplified to something that isn't a tree,
1051    // eliminate it.
1052    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1053    I->replaceAllUsesWith(V);
1054    RemoveDeadBinaryOp(I);
1055    ++NumAnnihil;
1056    return V;
1057  }
1058
1059  // We want to sink immediates as deeply as possible except in the case where
1060  // this is a multiply tree used only by an add, and the immediate is a -1.
1061  // In this case we reassociate to put the negation on the outside so that we
1062  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1063  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1064      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1065      isa<ConstantInt>(Ops.back().Op) &&
1066      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1067    ValueEntry Tmp = Ops.pop_back_val();
1068    Ops.insert(Ops.begin(), Tmp);
1069  }
1070
1071  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1072
1073  if (Ops.size() == 1) {
1074    // This expression tree simplified to something that isn't a tree,
1075    // eliminate it.
1076    I->replaceAllUsesWith(Ops[0].Op);
1077    RemoveDeadBinaryOp(I);
1078    return Ops[0].Op;
1079  }
1080
1081  // Now that we ordered and optimized the expressions, splat them back into
1082  // the expression tree, removing any unneeded nodes.
1083  RewriteExprTree(I, Ops);
1084  return I;
1085}
1086
1087
1088bool Reassociate::runOnFunction(Function &F) {
1089  // Recalculate the rank map for F
1090  BuildRankMap(F);
1091
1092  MadeChange = false;
1093  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1094    ReassociateBB(FI);
1095
1096  // We are done with the rank map.
1097  RankMap.clear();
1098  ValueRankMap.clear();
1099  return MadeChange;
1100}
1101
1102