Reassociate.cpp revision e5022fe4cd83eef91f5c3a21c943ca9b65507ab8
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Pass.h"
29#include "llvm/Type.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include <algorithm>
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  Statistic<> NumLinear ("reassociate","Number of insts linearized");
41  Statistic<> NumChanged("reassociate","Number of insts reassociated");
42  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
43  Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
44  Statistic<> NumFactor ("reassociate","Number of multiplies factored");
45
46  struct ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59  Module *M = I->getParent()->getParent()->getParent();
60  std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61  << *Ops[0].Op->getType();
62  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63    WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
64      << "," << Ops[i].Rank;
65}
66
67namespace {
68  class Reassociate : public FunctionPass {
69    std::map<BasicBlock*, unsigned> RankMap;
70    std::map<Value*, unsigned> ValueRankMap;
71    bool MadeChange;
72  public:
73    bool runOnFunction(Function &F);
74
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77    }
78  private:
79    void BuildRankMap(Function &F);
80    unsigned getRank(Value *V);
81    void RewriteExprTree(BinaryOperator *I, unsigned Idx,
82                         std::vector<ValueEntry> &Ops);
83    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
84    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
85    void LinearizeExpr(BinaryOperator *I);
86    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
87    void ReassociateBB(BasicBlock *BB);
88
89    void RemoveDeadBinaryOp(Value *V);
90  };
91
92  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
93}
94
95// Public interface to the Reassociate pass
96FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
97
98void Reassociate::RemoveDeadBinaryOp(Value *V) {
99  BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
100  if (!BOp || !BOp->use_empty()) return;
101
102  Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
103  RemoveDeadBinaryOp(LHS);
104  RemoveDeadBinaryOp(RHS);
105}
106
107
108static bool isUnmovableInstruction(Instruction *I) {
109  if (I->getOpcode() == Instruction::PHI ||
110      I->getOpcode() == Instruction::Alloca ||
111      I->getOpcode() == Instruction::Load ||
112      I->getOpcode() == Instruction::Malloc ||
113      I->getOpcode() == Instruction::Invoke ||
114      I->getOpcode() == Instruction::Call ||
115      I->getOpcode() == Instruction::Div ||
116      I->getOpcode() == Instruction::Rem)
117    return true;
118  return false;
119}
120
121void Reassociate::BuildRankMap(Function &F) {
122  unsigned i = 2;
123
124  // Assign distinct ranks to function arguments
125  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
126    ValueRankMap[I] = ++i;
127
128  ReversePostOrderTraversal<Function*> RPOT(&F);
129  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
130         E = RPOT.end(); I != E; ++I) {
131    BasicBlock *BB = *I;
132    unsigned BBRank = RankMap[BB] = ++i << 16;
133
134    // Walk the basic block, adding precomputed ranks for any instructions that
135    // we cannot move.  This ensures that the ranks for these instructions are
136    // all different in the block.
137    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
138      if (isUnmovableInstruction(I))
139        ValueRankMap[I] = ++BBRank;
140  }
141}
142
143unsigned Reassociate::getRank(Value *V) {
144  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
145
146  Instruction *I = dyn_cast<Instruction>(V);
147  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
148
149  unsigned &CachedRank = ValueRankMap[I];
150  if (CachedRank) return CachedRank;    // Rank already known?
151
152  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
153  // we can reassociate expressions for code motion!  Since we do not recurse
154  // for PHI nodes, we cannot have infinite recursion here, because there
155  // cannot be loops in the value graph that do not go through PHI nodes.
156  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
157  for (unsigned i = 0, e = I->getNumOperands();
158       i != e && Rank != MaxRank; ++i)
159    Rank = std::max(Rank, getRank(I->getOperand(i)));
160
161  // If this is a not or neg instruction, do not count it for rank.  This
162  // assures us that X and ~X will have the same rank.
163  if (!I->getType()->isIntegral() ||
164      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
165    ++Rank;
166
167  //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
168  //<< Rank << "\n");
169
170  return CachedRank = Rank;
171}
172
173/// isReassociableOp - Return true if V is an instruction of the specified
174/// opcode and if it only has one use.
175static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
176  if (V->hasOneUse() && isa<Instruction>(V) &&
177      cast<Instruction>(V)->getOpcode() == Opcode)
178    return cast<BinaryOperator>(V);
179  return 0;
180}
181
182/// LowerNegateToMultiply - Replace 0-X with X*-1.
183///
184static Instruction *LowerNegateToMultiply(Instruction *Neg) {
185  Constant *Cst;
186  if (Neg->getType()->isFloatingPoint())
187    Cst = ConstantFP::get(Neg->getType(), -1);
188  else
189    Cst = ConstantInt::getAllOnesValue(Neg->getType());
190
191  std::string NegName = Neg->getName(); Neg->setName("");
192  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
193                                               Neg);
194  Neg->replaceAllUsesWith(Res);
195  Neg->eraseFromParent();
196  return Res;
197}
198
199// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
200// Note that if D is also part of the expression tree that we recurse to
201// linearize it as well.  Besides that case, this does not recurse into A,B, or
202// C.
203void Reassociate::LinearizeExpr(BinaryOperator *I) {
204  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
205  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
206  assert(isReassociableOp(LHS, I->getOpcode()) &&
207         isReassociableOp(RHS, I->getOpcode()) &&
208         "Not an expression that needs linearization?");
209
210  DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
211
212  // Move the RHS instruction to live immediately before I, avoiding breaking
213  // dominator properties.
214  RHS->moveBefore(I);
215
216  // Move operands around to do the linearization.
217  I->setOperand(1, RHS->getOperand(0));
218  RHS->setOperand(0, LHS);
219  I->setOperand(0, RHS);
220
221  ++NumLinear;
222  MadeChange = true;
223  DEBUG(std::cerr << "Linearized: " << *I);
224
225  // If D is part of this expression tree, tail recurse.
226  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
227    LinearizeExpr(I);
228}
229
230
231/// LinearizeExprTree - Given an associative binary expression tree, traverse
232/// all of the uses putting it into canonical form.  This forces a left-linear
233/// form of the the expression (((a+b)+c)+d), and collects information about the
234/// rank of the non-tree operands.
235///
236void Reassociate::LinearizeExprTree(BinaryOperator *I,
237                                    std::vector<ValueEntry> &Ops) {
238  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
239  unsigned Opcode = I->getOpcode();
240
241  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
242  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
243  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
244
245  // If this is a multiply expression tree and it contains internal negations,
246  // transform them into multiplies by -1 so they can be reassociated.
247  if (I->getOpcode() == Instruction::Mul) {
248    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
249      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
250      LHSBO = isReassociableOp(LHS, Opcode);
251    }
252    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
253      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
254      RHSBO = isReassociableOp(RHS, Opcode);
255    }
256  }
257
258  if (!LHSBO) {
259    if (!RHSBO) {
260      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
261      // such, just remember these operands and their rank.
262      Ops.push_back(ValueEntry(getRank(LHS), LHS));
263      Ops.push_back(ValueEntry(getRank(RHS), RHS));
264      return;
265    } else {
266      // Turn X+(Y+Z) -> (Y+Z)+X
267      std::swap(LHSBO, RHSBO);
268      std::swap(LHS, RHS);
269      bool Success = !I->swapOperands();
270      assert(Success && "swapOperands failed");
271      MadeChange = true;
272    }
273  } else if (RHSBO) {
274    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
275    // part of the expression tree.
276    LinearizeExpr(I);
277    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
278    RHS = I->getOperand(1);
279    RHSBO = 0;
280  }
281
282  // Okay, now we know that the LHS is a nested expression and that the RHS is
283  // not.  Perform reassociation.
284  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
285
286  // Move LHS right before I to make sure that the tree expression dominates all
287  // values.
288  LHSBO->moveBefore(I);
289
290  // Linearize the expression tree on the LHS.
291  LinearizeExprTree(LHSBO, Ops);
292
293  // Remember the RHS operand and its rank.
294  Ops.push_back(ValueEntry(getRank(RHS), RHS));
295}
296
297// RewriteExprTree - Now that the operands for this expression tree are
298// linearized and optimized, emit them in-order.  This function is written to be
299// tail recursive.
300void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
301                                  std::vector<ValueEntry> &Ops) {
302  if (i+2 == Ops.size()) {
303    if (I->getOperand(0) != Ops[i].Op ||
304        I->getOperand(1) != Ops[i+1].Op) {
305      Value *OldLHS = I->getOperand(0);
306      DEBUG(std::cerr << "RA: " << *I);
307      I->setOperand(0, Ops[i].Op);
308      I->setOperand(1, Ops[i+1].Op);
309      DEBUG(std::cerr << "TO: " << *I);
310      MadeChange = true;
311      ++NumChanged;
312
313      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
314      // delete the extra, now dead, nodes.
315      RemoveDeadBinaryOp(OldLHS);
316    }
317    return;
318  }
319  assert(i+2 < Ops.size() && "Ops index out of range!");
320
321  if (I->getOperand(1) != Ops[i].Op) {
322    DEBUG(std::cerr << "RA: " << *I);
323    I->setOperand(1, Ops[i].Op);
324    DEBUG(std::cerr << "TO: " << *I);
325    MadeChange = true;
326    ++NumChanged;
327  }
328
329  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
330  assert(LHS->getOpcode() == I->getOpcode() &&
331         "Improper expression tree!");
332
333  // Compactify the tree instructions together with each other to guarantee
334  // that the expression tree is dominated by all of Ops.
335  LHS->moveBefore(I);
336  RewriteExprTree(LHS, i+1, Ops);
337}
338
339
340
341// NegateValue - Insert instructions before the instruction pointed to by BI,
342// that computes the negative version of the value specified.  The negative
343// version of the value is returned, and BI is left pointing at the instruction
344// that should be processed next by the reassociation pass.
345//
346static Value *NegateValue(Value *V, Instruction *BI) {
347  // We are trying to expose opportunity for reassociation.  One of the things
348  // that we want to do to achieve this is to push a negation as deep into an
349  // expression chain as possible, to expose the add instructions.  In practice,
350  // this means that we turn this:
351  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
352  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
353  // the constants.  We assume that instcombine will clean up the mess later if
354  // we introduce tons of unnecessary negation instructions...
355  //
356  if (Instruction *I = dyn_cast<Instruction>(V))
357    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
358      // Push the negates through the add.
359      I->setOperand(0, NegateValue(I->getOperand(0), BI));
360      I->setOperand(1, NegateValue(I->getOperand(1), BI));
361
362      // We must move the add instruction here, because the neg instructions do
363      // not dominate the old add instruction in general.  By moving it, we are
364      // assured that the neg instructions we just inserted dominate the
365      // instruction we are about to insert after them.
366      //
367      I->moveBefore(BI);
368      I->setName(I->getName()+".neg");
369      return I;
370    }
371
372  // Insert a 'neg' instruction that subtracts the value from zero to get the
373  // negation.
374  //
375  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
376}
377
378/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
379/// only used by an add, transform this into (X+(0-Y)) to promote better
380/// reassociation.
381static Instruction *BreakUpSubtract(Instruction *Sub) {
382  // Don't bother to break this up unless either the LHS is an associable add or
383  // if this is only used by one.
384  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
385      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
386      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
387    return 0;
388
389  // Convert a subtract into an add and a neg instruction... so that sub
390  // instructions can be commuted with other add instructions...
391  //
392  // Calculate the negative value of Operand 1 of the sub instruction...
393  // and set it as the RHS of the add instruction we just made...
394  //
395  std::string Name = Sub->getName();
396  Sub->setName("");
397  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
398  Instruction *New =
399    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
400
401  // Everyone now refers to the add instruction.
402  Sub->replaceAllUsesWith(New);
403  Sub->eraseFromParent();
404
405  DEBUG(std::cerr << "Negated: " << *New);
406  return New;
407}
408
409/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
410/// by one, change this into a multiply by a constant to assist with further
411/// reassociation.
412static Instruction *ConvertShiftToMul(Instruction *Shl) {
413  if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
414      !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
415    return 0;
416
417  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
418  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
419
420  std::string Name = Shl->getName();  Shl->setName("");
421  Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
422                                               Name, Shl);
423  Shl->replaceAllUsesWith(Mul);
424  Shl->eraseFromParent();
425  return Mul;
426}
427
428// Scan backwards and forwards among values with the same rank as element i to
429// see if X exists.  If X does not exist, return i.
430static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
431                                  Value *X) {
432  unsigned XRank = Ops[i].Rank;
433  unsigned e = Ops.size();
434  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
435    if (Ops[j].Op == X)
436      return j;
437  // Scan backwards
438  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
439    if (Ops[j].Op == X)
440      return j;
441  return i;
442}
443
444/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
445/// and returning the result.  Insert the tree before I.
446static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
447  if (Ops.size() == 1) return Ops.back();
448
449  Value *V1 = Ops.back();
450  Ops.pop_back();
451  Value *V2 = EmitAddTreeOfValues(I, Ops);
452  return BinaryOperator::createAdd(V2, V1, "tmp", I);
453}
454
455/// RemoveFactorFromExpression - If V is an expression tree that is a
456/// multiplication sequence, and if this sequence contains a multiply by Factor,
457/// remove Factor from the tree and return the new tree.
458Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
459  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
460  if (!BO) return 0;
461
462  std::vector<ValueEntry> Factors;
463  LinearizeExprTree(BO, Factors);
464
465  bool FoundFactor = false;
466  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
467    if (Factors[i].Op == Factor) {
468      FoundFactor = true;
469      Factors.erase(Factors.begin()+i);
470      break;
471    }
472  if (!FoundFactor) return 0;
473
474  if (Factors.size() == 1) return Factors[0].Op;
475
476  RewriteExprTree(BO, 0, Factors);
477  return BO;
478}
479
480
481Value *Reassociate::OptimizeExpression(BinaryOperator *I,
482                                       std::vector<ValueEntry> &Ops) {
483  // Now that we have the linearized expression tree, try to optimize it.
484  // Start by folding any constants that we found.
485  bool IterateOptimization = false;
486  if (Ops.size() == 1) return Ops[0].Op;
487
488  unsigned Opcode = I->getOpcode();
489
490  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
491    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
492      Ops.pop_back();
493      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
494      return OptimizeExpression(I, Ops);
495    }
496
497  // Check for destructive annihilation due to a constant being used.
498  if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
499    switch (Opcode) {
500    default: break;
501    case Instruction::And:
502      if (CstVal->isNullValue()) {           // ... & 0 -> 0
503        ++NumAnnihil;
504        return CstVal;
505      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
506        Ops.pop_back();
507      }
508      break;
509    case Instruction::Mul:
510      if (CstVal->isNullValue()) {           // ... * 0 -> 0
511        ++NumAnnihil;
512        return CstVal;
513      } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
514        Ops.pop_back();                      // ... * 1 -> ...
515      }
516      break;
517    case Instruction::Or:
518      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
519        ++NumAnnihil;
520        return CstVal;
521      }
522      // FALLTHROUGH!
523    case Instruction::Add:
524    case Instruction::Xor:
525      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
526        Ops.pop_back();
527      break;
528    }
529  if (Ops.size() == 1) return Ops[0].Op;
530
531  // Handle destructive annihilation do to identities between elements in the
532  // argument list here.
533  switch (Opcode) {
534  default: break;
535  case Instruction::And:
536  case Instruction::Or:
537  case Instruction::Xor:
538    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
539    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
540    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
541      // First, check for X and ~X in the operand list.
542      assert(i < Ops.size());
543      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
544        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
545        unsigned FoundX = FindInOperandList(Ops, i, X);
546        if (FoundX != i) {
547          if (Opcode == Instruction::And) {   // ...&X&~X = 0
548            ++NumAnnihil;
549            return Constant::getNullValue(X->getType());
550          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
551            ++NumAnnihil;
552            return ConstantIntegral::getAllOnesValue(X->getType());
553          }
554        }
555      }
556
557      // Next, check for duplicate pairs of values, which we assume are next to
558      // each other, due to our sorting criteria.
559      assert(i < Ops.size());
560      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
561        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
562          // Drop duplicate values.
563          Ops.erase(Ops.begin()+i);
564          --i; --e;
565          IterateOptimization = true;
566          ++NumAnnihil;
567        } else {
568          assert(Opcode == Instruction::Xor);
569          if (e == 2) {
570            ++NumAnnihil;
571            return Constant::getNullValue(Ops[0].Op->getType());
572          }
573          // ... X^X -> ...
574          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
575          i -= 1; e -= 2;
576          IterateOptimization = true;
577          ++NumAnnihil;
578        }
579      }
580    }
581    break;
582
583  case Instruction::Add:
584    // Scan the operand lists looking for X and -X pairs.  If we find any, we
585    // can simplify the expression. X+-X == 0.
586    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
587      assert(i < Ops.size());
588      // Check for X and -X in the operand list.
589      if (BinaryOperator::isNeg(Ops[i].Op)) {
590        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
591        unsigned FoundX = FindInOperandList(Ops, i, X);
592        if (FoundX != i) {
593          // Remove X and -X from the operand list.
594          if (Ops.size() == 2) {
595            ++NumAnnihil;
596            return Constant::getNullValue(X->getType());
597          } else {
598            Ops.erase(Ops.begin()+i);
599            if (i < FoundX)
600              --FoundX;
601            else
602              --i;   // Need to back up an extra one.
603            Ops.erase(Ops.begin()+FoundX);
604            IterateOptimization = true;
605            ++NumAnnihil;
606            --i;     // Revisit element.
607            e -= 2;  // Removed two elements.
608          }
609        }
610      }
611    }
612
613
614    // Scan the operand list, checking to see if there are any common factors
615    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
616    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
617    // To efficiently find this, we count the number of times a factor occurs
618    // for any ADD operands that are MULs.
619    std::map<Value*, unsigned> FactorOccurrences;
620    unsigned MaxOcc = 0;
621    Value *MaxOccVal = 0;
622    if (!I->getType()->isFloatingPoint()) {
623      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
624        if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
625          if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) {
626            // Compute all of the factors of this added value.
627            std::vector<ValueEntry> Factors;
628            LinearizeExprTree(BOp, Factors);
629            assert(Factors.size() > 1 && "Bad linearize!");
630
631            // Add one to FactorOccurrences for each unique factor in this op.
632            if (Factors.size() == 2) {
633              unsigned Occ = ++FactorOccurrences[Factors[0].Op];
634              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; }
635              if (Factors[0].Op != Factors[1].Op) {   // Don't double count A*A.
636                Occ = ++FactorOccurrences[Factors[1].Op];
637                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; }
638              }
639            } else {
640              std::set<Value*> Duplicates;
641              for (unsigned i = 0, e = Factors.size(); i != e; ++i)
642                if (Duplicates.insert(Factors[i].Op).second) {
643                  unsigned Occ = ++FactorOccurrences[Factors[i].Op];
644                  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; }
645                }
646            }
647          }
648      }
649    }
650
651    // If any factor occurred more than one time, we can pull it out.
652    if (MaxOcc > 1) {
653      DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
654                      << *MaxOccVal << "\n");
655
656      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
657      // this, we could otherwise run into situations where removing a factor
658      // from an expression will drop a use of maxocc, and this can cause
659      // RemoveFactorFromExpression on successive values to behave differently.
660      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
661      std::vector<Value*> NewMulOps;
662      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
664          NewMulOps.push_back(V);
665          Ops.erase(Ops.begin()+i);
666          --i; --e;
667        }
668      }
669
670      // No need for extra uses anymore.
671      delete DummyInst;
672
673      Value *V = EmitAddTreeOfValues(I, NewMulOps);
674      // FIXME: Must optimize V now, to handle this case:
675      // A*A*B + A*A*C -> A*(A*B+A*C)   -> A*(A*(B+C))
676      V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
677
678      ++NumFactor;
679
680      if (Ops.size() == 0)
681        return V;
682
683      // Add the new value to the list of things being added.
684      Ops.insert(Ops.begin(), ValueEntry(getRank(V), V));
685
686      // Rewrite the tree so that there is now a use of V.
687      RewriteExprTree(I, 0, Ops);
688      return OptimizeExpression(I, Ops);
689    }
690    break;
691  //case Instruction::Mul:
692  }
693
694  if (IterateOptimization)
695    return OptimizeExpression(I, Ops);
696  return 0;
697}
698
699
700/// ReassociateBB - Inspect all of the instructions in this basic block,
701/// reassociating them as we go.
702void Reassociate::ReassociateBB(BasicBlock *BB) {
703  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
704    Instruction *BI = BBI++;
705    if (BI->getOpcode() == Instruction::Shl &&
706        isa<ConstantInt>(BI->getOperand(1)))
707      if (Instruction *NI = ConvertShiftToMul(BI)) {
708        MadeChange = true;
709        BI = NI;
710      }
711
712    // Reject cases where it is pointless to do this.
713    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
714      continue;  // Floating point ops are not associative.
715
716    // If this is a subtract instruction which is not already in negate form,
717    // see if we can convert it to X+-Y.
718    if (BI->getOpcode() == Instruction::Sub) {
719      if (!BinaryOperator::isNeg(BI)) {
720        if (Instruction *NI = BreakUpSubtract(BI)) {
721          MadeChange = true;
722          BI = NI;
723        }
724      } else {
725        // Otherwise, this is a negation.  See if the operand is a multiply tree
726        // and if this is not an inner node of a multiply tree.
727        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
728            (!BI->hasOneUse() ||
729             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
730          BI = LowerNegateToMultiply(BI);
731          MadeChange = true;
732        }
733      }
734    }
735
736    // If this instruction is a commutative binary operator, process it.
737    if (!BI->isAssociative()) continue;
738    BinaryOperator *I = cast<BinaryOperator>(BI);
739
740    // If this is an interior node of a reassociable tree, ignore it until we
741    // get to the root of the tree, to avoid N^2 analysis.
742    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
743      continue;
744
745    // If this is an add tree that is used by a sub instruction, ignore it
746    // until we process the subtract.
747    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
748        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
749      continue;
750
751    // First, walk the expression tree, linearizing the tree, collecting
752    std::vector<ValueEntry> Ops;
753    LinearizeExprTree(I, Ops);
754
755    DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
756          std::cerr << "\n");
757
758    // Now that we have linearized the tree to a list and have gathered all of
759    // the operands and their ranks, sort the operands by their rank.  Use a
760    // stable_sort so that values with equal ranks will have their relative
761    // positions maintained (and so the compiler is deterministic).  Note that
762    // this sorts so that the highest ranking values end up at the beginning of
763    // the vector.
764    std::stable_sort(Ops.begin(), Ops.end());
765
766    // OptimizeExpression - Now that we have the expression tree in a convenient
767    // sorted form, optimize it globally if possible.
768    if (Value *V = OptimizeExpression(I, Ops)) {
769      // This expression tree simplified to something that isn't a tree,
770      // eliminate it.
771      DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
772      I->replaceAllUsesWith(V);
773      RemoveDeadBinaryOp(I);
774      continue;
775    }
776
777    // We want to sink immediates as deeply as possible except in the case where
778    // this is a multiply tree used only by an add, and the immediate is a -1.
779    // In this case we reassociate to put the negation on the outside so that we
780    // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
781    if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
782        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
783        isa<ConstantInt>(Ops.back().Op) &&
784        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
785      Ops.insert(Ops.begin(), Ops.back());
786      Ops.pop_back();
787    }
788
789    DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
790          std::cerr << "\n");
791
792    if (Ops.size() == 1) {
793      // This expression tree simplified to something that isn't a tree,
794      // eliminate it.
795      I->replaceAllUsesWith(Ops[0].Op);
796      RemoveDeadBinaryOp(I);
797    } else {
798      // Now that we ordered and optimized the expressions, splat them back into
799      // the expression tree, removing any unneeded nodes.
800      RewriteExprTree(I, 0, Ops);
801    }
802  }
803}
804
805
806bool Reassociate::runOnFunction(Function &F) {
807  // Recalculate the rank map for F
808  BuildRankMap(F);
809
810  MadeChange = false;
811  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
812    ReassociateBB(FI);
813
814  // We are done with the rank map...
815  RankMap.clear();
816  ValueRankMap.clear();
817  return MadeChange;
818}
819
820