Reassociate.cpp revision e96fda3002dd0769d3dd758ac5008ba8cda92349
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// This pass reassociates commutative expressions in an order that is designed
4// to promote better constant propagation, GCSE, LICM, PRE...
5//
6// For example: 4 + (x + 5) -> x + (4 + 5)
7//
8// Note that this pass works best if left shifts have been promoted to explicit
9// multiplies before this pass executes.
10//
11// In the implementation of this algorithm, constants are assigned rank = 0,
12// function arguments are rank = 1, and other values are assigned ranks
13// corresponding to the reverse post order traversal of current function
14// (starting at 2), which effectively gives values in deep loops higher rank
15// than values not in loops.
16//
17// This code was originally written by Chris Lattner, and was then cleaned up
18// and perfected by Casey Carter.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Function.h"
24#include "llvm/iOperators.h"
25#include "llvm/Type.h"
26#include "llvm/Pass.h"
27#include "llvm/Constant.h"
28#include "llvm/Support/CFG.h"
29#include "Support/PostOrderIterator.h"
30#include "Support/Statistic.h"
31
32namespace {
33  Statistic<> NumLinear ("reassociate","Number of insts linearized");
34  Statistic<> NumChanged("reassociate","Number of insts reassociated");
35  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
36
37  class Reassociate : public FunctionPass {
38    std::map<BasicBlock*, unsigned> RankMap;
39    std::map<Instruction*, unsigned> InstRankMap;
40  public:
41    bool runOnFunction(Function &F);
42
43    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
44      AU.setPreservesCFG();
45    }
46  private:
47    void BuildRankMap(Function &F);
48    unsigned getRank(Value *V);
49    bool ReassociateExpr(BinaryOperator *I);
50    bool ReassociateBB(BasicBlock *BB);
51  };
52
53  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
54}
55
56Pass *createReassociatePass() { return new Reassociate(); }
57
58void Reassociate::BuildRankMap(Function &F) {
59  unsigned i = 1;
60  ReversePostOrderTraversal<Function*> RPOT(&F);
61  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
62         E = RPOT.end(); I != E; ++I)
63    RankMap[*I] = ++i;
64}
65
66unsigned Reassociate::getRank(Value *V) {
67  if (isa<Argument>(V)) return 1;   // Function argument...
68  if (Instruction *I = dyn_cast<Instruction>(V)) {
69    // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
70    // can reassociate expressions for code motion!  Since we do not recurse for
71    // PHI nodes, we cannot have infinite recursion here, because there cannot
72    // be loops in the value graph that do not go through PHI nodes.
73    //
74    if (I->getOpcode() == Instruction::PHINode ||
75        I->getOpcode() == Instruction::Alloca ||
76        I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
77        I->mayWriteToMemory())  // Cannot move inst if it writes to memory!
78      return RankMap[I->getParent()];
79
80    unsigned &CachedRank = InstRankMap[I];
81    if (CachedRank) return CachedRank;    // Rank already known?
82
83    // If not, compute it!
84    unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
85    for (unsigned i = 0, e = I->getNumOperands();
86         i != e && Rank != MaxRank; ++i)
87      Rank = std::max(Rank, getRank(I->getOperand(i)));
88
89    return CachedRank = Rank;
90  }
91
92  // Otherwise it's a global or constant, rank 0.
93  return 0;
94}
95
96
97bool Reassociate::ReassociateExpr(BinaryOperator *I) {
98  Value *LHS = I->getOperand(0);
99  Value *RHS = I->getOperand(1);
100  unsigned LHSRank = getRank(LHS);
101  unsigned RHSRank = getRank(RHS);
102
103  bool Changed = false;
104
105  // Make sure the LHS of the operand always has the greater rank...
106  if (LHSRank < RHSRank) {
107    bool Success = !I->swapOperands();
108    assert(Success && "swapOperands failed");
109
110    std::swap(LHS, RHS);
111    std::swap(LHSRank, RHSRank);
112    Changed = true;
113    ++NumSwapped;
114    DEBUG(std::cerr << "Transposed: " << I
115          /* << " Result BB: " << I->getParent()*/);
116  }
117
118  // If the LHS is the same operator as the current one is, and if we are the
119  // only expression using it...
120  //
121  if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
122    if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
123      // If the rank of our current RHS is less than the rank of the LHS's LHS,
124      // then we reassociate the two instructions...
125      if (RHSRank < getRank(LHSI->getOperand(0))) {
126        unsigned TakeOp = 0;
127        if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
128          if (IOp->getOpcode() == LHSI->getOpcode())
129            TakeOp = 1;   // Hoist out non-tree portion
130
131        // Convert ((a + 12) + 10) into (a + (12 + 10))
132        I->setOperand(0, LHSI->getOperand(TakeOp));
133        LHSI->setOperand(TakeOp, RHS);
134        I->setOperand(1, LHSI);
135
136        // Move the LHS expression forward, to ensure that it is dominated by
137        // its operands.
138        LHSI->getParent()->getInstList().remove(LHSI);
139        I->getParent()->getInstList().insert(I, LHSI);
140
141        ++NumChanged;
142        DEBUG(std::cerr << "Reassociated: " << I/* << " Result BB: "
143                                                   << I->getParent()*/);
144
145        // Since we modified the RHS instruction, make sure that we recheck it.
146        ReassociateExpr(LHSI);
147        return true;
148      }
149    }
150
151  return Changed;
152}
153
154
155// NegateValue - Insert instructions before the instruction pointed to by BI,
156// that computes the negative version of the value specified.  The negative
157// version of the value is returned, and BI is left pointing at the instruction
158// that should be processed next by the reassociation pass.
159//
160static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
161  // We are trying to expose opportunity for reassociation.  One of the things
162  // that we want to do to achieve this is to push a negation as deep into an
163  // expression chain as possible, to expose the add instructions.  In practice,
164  // this means that we turn this:
165  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
166  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
167  // the constants.  We assume that instcombine will clean up the mess later if
168  // we introduce tons of unneccesary negation instructions...
169  //
170  if (Instruction *I = dyn_cast<Instruction>(V))
171    if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
172      Value *RHS = NegateValue(I->getOperand(1), BI);
173      Value *LHS = NegateValue(I->getOperand(0), BI);
174
175      // We must actually insert a new add instruction here, because the neg
176      // instructions do not dominate the old add instruction in general.  By
177      // adding it now, we are assured that the neg instructions we just
178      // inserted dominate the instruction we are about to insert after them.
179      //
180      return BinaryOperator::create(Instruction::Add, LHS, RHS,
181                                    I->getName()+".neg",
182                                    cast<Instruction>(RHS)->getNext());
183    }
184
185  // Insert a 'neg' instruction that subtracts the value from zero to get the
186  // negation.
187  //
188  return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
189}
190
191
192bool Reassociate::ReassociateBB(BasicBlock *BB) {
193  bool Changed = false;
194  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
195
196    DEBUG(std::cerr << "Processing: " << *BI);
197    if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
198      // Convert a subtract into an add and a neg instruction... so that sub
199      // instructions can be commuted with other add instructions...
200      //
201      // Calculate the negative value of Operand 1 of the sub instruction...
202      // and set it as the RHS of the add instruction we just made...
203      //
204      std::string Name = BI->getName();
205      BI->setName("");
206      Instruction *New =
207        BinaryOperator::create(Instruction::Add, BI->getOperand(0),
208                               BI->getOperand(1), Name, BI);
209
210      // Everyone now refers to the add instruction...
211      BI->replaceAllUsesWith(New);
212
213      // Put the new add in the place of the subtract... deleting the subtract
214      BB->getInstList().erase(BI);
215
216      BI = New;
217      New->setOperand(1, NegateValue(New->getOperand(1), BI));
218
219      Changed = true;
220      DEBUG(std::cerr << "Negated: " << New /*<< " Result BB: " << BB*/);
221    }
222
223    // If this instruction is a commutative binary operator, and the ranks of
224    // the two operands are sorted incorrectly, fix it now.
225    //
226    if (BI->isAssociative()) {
227      BinaryOperator *I = cast<BinaryOperator>(BI);
228      if (!I->use_empty()) {
229        // Make sure that we don't have a tree-shaped computation.  If we do,
230        // linearize it.  Convert (A+B)+(C+D) into ((A+B)+C)+D
231        //
232        Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
233        Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
234        if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
235            RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
236            RHSI->use_size() == 1) {
237          // Insert a new temporary instruction... (A+B)+C
238          BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
239                                                       RHSI->getOperand(0),
240                                                       RHSI->getName()+".ra",
241                                                       BI);
242          BI = Tmp;
243          I->setOperand(0, Tmp);
244          I->setOperand(1, RHSI->getOperand(1));
245
246          // Process the temporary instruction for reassociation now.
247          I = Tmp;
248          ++NumLinear;
249          Changed = true;
250          DEBUG(std::cerr << "Linearized: " << I/* << " Result BB: " << BB*/);
251        }
252
253        // Make sure that this expression is correctly reassociated with respect
254        // to it's used values...
255        //
256        Changed |= ReassociateExpr(I);
257      }
258    }
259  }
260
261  return Changed;
262}
263
264
265bool Reassociate::runOnFunction(Function &F) {
266  // Recalculate the rank map for F
267  BuildRankMap(F);
268
269  bool Changed = false;
270  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
271    Changed |= ReassociateBB(FI);
272
273  // We are done with the rank map...
274  RankMap.clear();
275  InstRankMap.clear();
276  return Changed;
277}
278