Reassociate.cpp revision ec531233a16605756a84d175178e1ee0fac4791c
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40#include <map>
41using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
49  struct ValueEntry {
50    unsigned Rank;
51    Value *Op;
52    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53  };
54  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
56  }
57}
58
59#ifndef NDEBUG
60/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63  Module *M = I->getParent()->getParent()->getParent();
64  errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65       << *Ops[0].Op->getType() << '\t';
66  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67    errs() << "[ ";
68    WriteAsOperand(errs(), Ops[i].Op, false, M);
69    errs() << ", #" << Ops[i].Rank << "] ";
70  }
71}
72#endif
73
74namespace {
75  class Reassociate : public FunctionPass {
76    std::map<BasicBlock*, unsigned> RankMap;
77    std::map<AssertingVH<>, unsigned> ValueRankMap;
78    bool MadeChange;
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    Reassociate() : FunctionPass(&ID) {}
82
83    bool runOnFunction(Function &F);
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87    }
88  private:
89    void BuildRankMap(Function &F);
90    unsigned getRank(Value *V);
91    void ReassociateExpression(BinaryOperator *I);
92    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
93                         unsigned Idx = 0);
94    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
96    void LinearizeExpr(BinaryOperator *I);
97    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
98    void ReassociateBB(BasicBlock *BB);
99
100    void RemoveDeadBinaryOp(Value *V);
101  };
102}
103
104char Reassociate::ID = 0;
105static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
106
107// Public interface to the Reassociate pass
108FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
109
110void Reassociate::RemoveDeadBinaryOp(Value *V) {
111  Instruction *Op = dyn_cast<Instruction>(V);
112  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
113    return;
114
115  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
116  RemoveDeadBinaryOp(LHS);
117  RemoveDeadBinaryOp(RHS);
118}
119
120
121static bool isUnmovableInstruction(Instruction *I) {
122  if (I->getOpcode() == Instruction::PHI ||
123      I->getOpcode() == Instruction::Alloca ||
124      I->getOpcode() == Instruction::Load ||
125      I->getOpcode() == Instruction::Invoke ||
126      (I->getOpcode() == Instruction::Call &&
127       !isa<DbgInfoIntrinsic>(I)) ||
128      I->getOpcode() == Instruction::UDiv ||
129      I->getOpcode() == Instruction::SDiv ||
130      I->getOpcode() == Instruction::FDiv ||
131      I->getOpcode() == Instruction::URem ||
132      I->getOpcode() == Instruction::SRem ||
133      I->getOpcode() == Instruction::FRem)
134    return true;
135  return false;
136}
137
138void Reassociate::BuildRankMap(Function &F) {
139  unsigned i = 2;
140
141  // Assign distinct ranks to function arguments
142  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
143    ValueRankMap[&*I] = ++i;
144
145  ReversePostOrderTraversal<Function*> RPOT(&F);
146  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
147         E = RPOT.end(); I != E; ++I) {
148    BasicBlock *BB = *I;
149    unsigned BBRank = RankMap[BB] = ++i << 16;
150
151    // Walk the basic block, adding precomputed ranks for any instructions that
152    // we cannot move.  This ensures that the ranks for these instructions are
153    // all different in the block.
154    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
155      if (isUnmovableInstruction(I))
156        ValueRankMap[&*I] = ++BBRank;
157  }
158}
159
160unsigned Reassociate::getRank(Value *V) {
161  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
162
163  Instruction *I = dyn_cast<Instruction>(V);
164  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
165
166  unsigned &CachedRank = ValueRankMap[I];
167  if (CachedRank) return CachedRank;    // Rank already known?
168
169  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
170  // we can reassociate expressions for code motion!  Since we do not recurse
171  // for PHI nodes, we cannot have infinite recursion here, because there
172  // cannot be loops in the value graph that do not go through PHI nodes.
173  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
174  for (unsigned i = 0, e = I->getNumOperands();
175       i != e && Rank != MaxRank; ++i)
176    Rank = std::max(Rank, getRank(I->getOperand(i)));
177
178  // If this is a not or neg instruction, do not count it for rank.  This
179  // assures us that X and ~X will have the same rank.
180  if (!I->getType()->isInteger() ||
181      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
182    ++Rank;
183
184  //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
185  //     << Rank << "\n");
186
187  return CachedRank = Rank;
188}
189
190/// isReassociableOp - Return true if V is an instruction of the specified
191/// opcode and if it only has one use.
192static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
193  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
194      cast<Instruction>(V)->getOpcode() == Opcode)
195    return cast<BinaryOperator>(V);
196  return 0;
197}
198
199/// LowerNegateToMultiply - Replace 0-X with X*-1.
200///
201static Instruction *LowerNegateToMultiply(Instruction *Neg,
202                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
203  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
204
205  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
206  ValueRankMap.erase(Neg);
207  Res->takeName(Neg);
208  Neg->replaceAllUsesWith(Res);
209  Neg->eraseFromParent();
210  return Res;
211}
212
213// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
214// Note that if D is also part of the expression tree that we recurse to
215// linearize it as well.  Besides that case, this does not recurse into A,B, or
216// C.
217void Reassociate::LinearizeExpr(BinaryOperator *I) {
218  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
219  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
220  assert(isReassociableOp(LHS, I->getOpcode()) &&
221         isReassociableOp(RHS, I->getOpcode()) &&
222         "Not an expression that needs linearization?");
223
224  DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
225
226  // Move the RHS instruction to live immediately before I, avoiding breaking
227  // dominator properties.
228  RHS->moveBefore(I);
229
230  // Move operands around to do the linearization.
231  I->setOperand(1, RHS->getOperand(0));
232  RHS->setOperand(0, LHS);
233  I->setOperand(0, RHS);
234
235  ++NumLinear;
236  MadeChange = true;
237  DEBUG(errs() << "Linearized: " << *I << '\n');
238
239  // If D is part of this expression tree, tail recurse.
240  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
241    LinearizeExpr(I);
242}
243
244
245/// LinearizeExprTree - Given an associative binary expression tree, traverse
246/// all of the uses putting it into canonical form.  This forces a left-linear
247/// form of the the expression (((a+b)+c)+d), and collects information about the
248/// rank of the non-tree operands.
249///
250/// NOTE: These intentionally destroys the expression tree operands (turning
251/// them into undef values) to reduce #uses of the values.  This means that the
252/// caller MUST use something like RewriteExprTree to put the values back in.
253///
254void Reassociate::LinearizeExprTree(BinaryOperator *I,
255                                    std::vector<ValueEntry> &Ops) {
256  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
257  unsigned Opcode = I->getOpcode();
258
259  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
260  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
261  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
262
263  // If this is a multiply expression tree and it contains internal negations,
264  // transform them into multiplies by -1 so they can be reassociated.
265  if (I->getOpcode() == Instruction::Mul) {
266    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
267      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
268      LHSBO = isReassociableOp(LHS, Opcode);
269    }
270    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
271      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
272      RHSBO = isReassociableOp(RHS, Opcode);
273    }
274  }
275
276  if (!LHSBO) {
277    if (!RHSBO) {
278      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
279      // such, just remember these operands and their rank.
280      Ops.push_back(ValueEntry(getRank(LHS), LHS));
281      Ops.push_back(ValueEntry(getRank(RHS), RHS));
282
283      // Clear the leaves out.
284      I->setOperand(0, UndefValue::get(I->getType()));
285      I->setOperand(1, UndefValue::get(I->getType()));
286      return;
287    } else {
288      // Turn X+(Y+Z) -> (Y+Z)+X
289      std::swap(LHSBO, RHSBO);
290      std::swap(LHS, RHS);
291      bool Success = !I->swapOperands();
292      assert(Success && "swapOperands failed");
293      Success = false;
294      MadeChange = true;
295    }
296  } else if (RHSBO) {
297    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
298    // part of the expression tree.
299    LinearizeExpr(I);
300    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
301    RHS = I->getOperand(1);
302    RHSBO = 0;
303  }
304
305  // Okay, now we know that the LHS is a nested expression and that the RHS is
306  // not.  Perform reassociation.
307  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
308
309  // Move LHS right before I to make sure that the tree expression dominates all
310  // values.
311  LHSBO->moveBefore(I);
312
313  // Linearize the expression tree on the LHS.
314  LinearizeExprTree(LHSBO, Ops);
315
316  // Remember the RHS operand and its rank.
317  Ops.push_back(ValueEntry(getRank(RHS), RHS));
318
319  // Clear the RHS leaf out.
320  I->setOperand(1, UndefValue::get(I->getType()));
321}
322
323// RewriteExprTree - Now that the operands for this expression tree are
324// linearized and optimized, emit them in-order.  This function is written to be
325// tail recursive.
326void Reassociate::RewriteExprTree(BinaryOperator *I,
327                                  std::vector<ValueEntry> &Ops,
328                                  unsigned i) {
329  if (i+2 == Ops.size()) {
330    if (I->getOperand(0) != Ops[i].Op ||
331        I->getOperand(1) != Ops[i+1].Op) {
332      Value *OldLHS = I->getOperand(0);
333      DEBUG(errs() << "RA: " << *I << '\n');
334      I->setOperand(0, Ops[i].Op);
335      I->setOperand(1, Ops[i+1].Op);
336      DEBUG(errs() << "TO: " << *I << '\n');
337      MadeChange = true;
338      ++NumChanged;
339
340      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
341      // delete the extra, now dead, nodes.
342      RemoveDeadBinaryOp(OldLHS);
343    }
344    return;
345  }
346  assert(i+2 < Ops.size() && "Ops index out of range!");
347
348  if (I->getOperand(1) != Ops[i].Op) {
349    DEBUG(errs() << "RA: " << *I << '\n');
350    I->setOperand(1, Ops[i].Op);
351    DEBUG(errs() << "TO: " << *I << '\n');
352    MadeChange = true;
353    ++NumChanged;
354  }
355
356  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
357  assert(LHS->getOpcode() == I->getOpcode() &&
358         "Improper expression tree!");
359
360  // Compactify the tree instructions together with each other to guarantee
361  // that the expression tree is dominated by all of Ops.
362  LHS->moveBefore(I);
363  RewriteExprTree(LHS, Ops, i+1);
364}
365
366
367
368// NegateValue - Insert instructions before the instruction pointed to by BI,
369// that computes the negative version of the value specified.  The negative
370// version of the value is returned, and BI is left pointing at the instruction
371// that should be processed next by the reassociation pass.
372//
373static Value *NegateValue(Value *V, Instruction *BI) {
374  // We are trying to expose opportunity for reassociation.  One of the things
375  // that we want to do to achieve this is to push a negation as deep into an
376  // expression chain as possible, to expose the add instructions.  In practice,
377  // this means that we turn this:
378  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
379  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
380  // the constants.  We assume that instcombine will clean up the mess later if
381  // we introduce tons of unnecessary negation instructions...
382  //
383  if (Instruction *I = dyn_cast<Instruction>(V))
384    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
385      // Push the negates through the add.
386      I->setOperand(0, NegateValue(I->getOperand(0), BI));
387      I->setOperand(1, NegateValue(I->getOperand(1), BI));
388
389      // We must move the add instruction here, because the neg instructions do
390      // not dominate the old add instruction in general.  By moving it, we are
391      // assured that the neg instructions we just inserted dominate the
392      // instruction we are about to insert after them.
393      //
394      I->moveBefore(BI);
395      I->setName(I->getName()+".neg");
396      return I;
397    }
398
399  // Insert a 'neg' instruction that subtracts the value from zero to get the
400  // negation.
401  //
402  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
403}
404
405/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
406/// X-Y into (X + -Y).
407static bool ShouldBreakUpSubtract(Instruction *Sub) {
408  // If this is a negation, we can't split it up!
409  if (BinaryOperator::isNeg(Sub))
410    return false;
411
412  // Don't bother to break this up unless either the LHS is an associable add or
413  // subtract or if this is only used by one.
414  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
415      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
416    return true;
417  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
418      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
419    return true;
420  if (Sub->hasOneUse() &&
421      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
422       isReassociableOp(Sub->use_back(), Instruction::Sub)))
423    return true;
424
425  return false;
426}
427
428/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
429/// only used by an add, transform this into (X+(0-Y)) to promote better
430/// reassociation.
431static Instruction *BreakUpSubtract(Instruction *Sub,
432                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
433  // Convert a subtract into an add and a neg instruction... so that sub
434  // instructions can be commuted with other add instructions...
435  //
436  // Calculate the negative value of Operand 1 of the sub instruction...
437  // and set it as the RHS of the add instruction we just made...
438  //
439  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
440  Instruction *New =
441    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
442  New->takeName(Sub);
443
444  // Everyone now refers to the add instruction.
445  ValueRankMap.erase(Sub);
446  Sub->replaceAllUsesWith(New);
447  Sub->eraseFromParent();
448
449  DEBUG(errs() << "Negated: " << *New << '\n');
450  return New;
451}
452
453/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
454/// by one, change this into a multiply by a constant to assist with further
455/// reassociation.
456static Instruction *ConvertShiftToMul(Instruction *Shl,
457                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
458  // If an operand of this shift is a reassociable multiply, or if the shift
459  // is used by a reassociable multiply or add, turn into a multiply.
460  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
461      (Shl->hasOneUse() &&
462       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
463        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
464    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
465    MulCst =
466        ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
467
468    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
469                                                 "", Shl);
470    ValueRankMap.erase(Shl);
471    Mul->takeName(Shl);
472    Shl->replaceAllUsesWith(Mul);
473    Shl->eraseFromParent();
474    return Mul;
475  }
476  return 0;
477}
478
479// Scan backwards and forwards among values with the same rank as element i to
480// see if X exists.  If X does not exist, return i.
481static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
482                                  Value *X) {
483  unsigned XRank = Ops[i].Rank;
484  unsigned e = Ops.size();
485  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
486    if (Ops[j].Op == X)
487      return j;
488  // Scan backwards
489  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
490    if (Ops[j].Op == X)
491      return j;
492  return i;
493}
494
495/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
496/// and returning the result.  Insert the tree before I.
497static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
498  if (Ops.size() == 1) return Ops.back();
499
500  Value *V1 = Ops.back();
501  Ops.pop_back();
502  Value *V2 = EmitAddTreeOfValues(I, Ops);
503  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
504}
505
506/// RemoveFactorFromExpression - If V is an expression tree that is a
507/// multiplication sequence, and if this sequence contains a multiply by Factor,
508/// remove Factor from the tree and return the new tree.
509Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
510  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
511  if (!BO) return 0;
512
513  std::vector<ValueEntry> Factors;
514  LinearizeExprTree(BO, Factors);
515
516  bool FoundFactor = false;
517  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
518    if (Factors[i].Op == Factor) {
519      FoundFactor = true;
520      Factors.erase(Factors.begin()+i);
521      break;
522    }
523  if (!FoundFactor) {
524    // Make sure to restore the operands to the expression tree.
525    RewriteExprTree(BO, Factors);
526    return 0;
527  }
528
529  if (Factors.size() == 1) return Factors[0].Op;
530
531  RewriteExprTree(BO, Factors);
532  return BO;
533}
534
535/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
536/// add its operands as factors, otherwise add V to the list of factors.
537static void FindSingleUseMultiplyFactors(Value *V,
538                                         std::vector<Value*> &Factors) {
539  BinaryOperator *BO;
540  if ((!V->hasOneUse() && !V->use_empty()) ||
541      !(BO = dyn_cast<BinaryOperator>(V)) ||
542      BO->getOpcode() != Instruction::Mul) {
543    Factors.push_back(V);
544    return;
545  }
546
547  // Otherwise, add the LHS and RHS to the list of factors.
548  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
549  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
550}
551
552
553
554Value *Reassociate::OptimizeExpression(BinaryOperator *I,
555                                       std::vector<ValueEntry> &Ops) {
556  // Now that we have the linearized expression tree, try to optimize it.
557  // Start by folding any constants that we found.
558  bool IterateOptimization = false;
559  if (Ops.size() == 1) return Ops[0].Op;
560
561  unsigned Opcode = I->getOpcode();
562
563  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
564    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
565      Ops.pop_back();
566      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
567      return OptimizeExpression(I, Ops);
568    }
569
570  // Check for destructive annihilation due to a constant being used.
571  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
572    switch (Opcode) {
573    default: break;
574    case Instruction::And:
575      if (CstVal->isZero()) {                // ... & 0 -> 0
576        ++NumAnnihil;
577        return CstVal;
578      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
579        Ops.pop_back();
580      }
581      break;
582    case Instruction::Mul:
583      if (CstVal->isZero()) {                // ... * 0 -> 0
584        ++NumAnnihil;
585        return CstVal;
586      } else if (cast<ConstantInt>(CstVal)->isOne()) {
587        Ops.pop_back();                      // ... * 1 -> ...
588      }
589      break;
590    case Instruction::Or:
591      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
592        ++NumAnnihil;
593        return CstVal;
594      }
595      // FALLTHROUGH!
596    case Instruction::Add:
597    case Instruction::Xor:
598      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
599        Ops.pop_back();
600      break;
601    }
602  if (Ops.size() == 1) return Ops[0].Op;
603
604  // Handle destructive annihilation due to identities between elements in the
605  // argument list here.
606  switch (Opcode) {
607  default: break;
608  case Instruction::And:
609  case Instruction::Or:
610  case Instruction::Xor:
611    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
612    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
613    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
614      // First, check for X and ~X in the operand list.
615      assert(i < Ops.size());
616      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
617        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
618        unsigned FoundX = FindInOperandList(Ops, i, X);
619        if (FoundX != i) {
620          if (Opcode == Instruction::And) {   // ...&X&~X = 0
621            ++NumAnnihil;
622            return Constant::getNullValue(X->getType());
623          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
624            ++NumAnnihil;
625            return Constant::getAllOnesValue(X->getType());
626          }
627        }
628      }
629
630      // Next, check for duplicate pairs of values, which we assume are next to
631      // each other, due to our sorting criteria.
632      assert(i < Ops.size());
633      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
634        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
635          // Drop duplicate values.
636          Ops.erase(Ops.begin()+i);
637          --i; --e;
638          IterateOptimization = true;
639          ++NumAnnihil;
640        } else {
641          assert(Opcode == Instruction::Xor);
642          if (e == 2) {
643            ++NumAnnihil;
644            return Constant::getNullValue(Ops[0].Op->getType());
645          }
646          // ... X^X -> ...
647          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
648          i -= 1; e -= 2;
649          IterateOptimization = true;
650          ++NumAnnihil;
651        }
652      }
653    }
654    break;
655
656  case Instruction::Add:
657    // Scan the operand lists looking for X and -X pairs.  If we find any, we
658    // can simplify the expression. X+-X == 0.
659    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
660      assert(i < Ops.size());
661      // Check for X and -X in the operand list.
662      if (BinaryOperator::isNeg(Ops[i].Op)) {
663        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
664        unsigned FoundX = FindInOperandList(Ops, i, X);
665        if (FoundX != i) {
666          // Remove X and -X from the operand list.
667          if (Ops.size() == 2) {
668            ++NumAnnihil;
669            return Constant::getNullValue(X->getType());
670          } else {
671            Ops.erase(Ops.begin()+i);
672            if (i < FoundX)
673              --FoundX;
674            else
675              --i;   // Need to back up an extra one.
676            Ops.erase(Ops.begin()+FoundX);
677            IterateOptimization = true;
678            ++NumAnnihil;
679            --i;     // Revisit element.
680            e -= 2;  // Removed two elements.
681          }
682        }
683      }
684    }
685
686
687    // Scan the operand list, checking to see if there are any common factors
688    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
689    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
690    // To efficiently find this, we count the number of times a factor occurs
691    // for any ADD operands that are MULs.
692    DenseMap<Value*, unsigned> FactorOccurrences;
693    unsigned MaxOcc = 0;
694    Value *MaxOccVal = 0;
695    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
696      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
697        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
698          // Compute all of the factors of this added value.
699          std::vector<Value*> Factors;
700          FindSingleUseMultiplyFactors(BOp, Factors);
701          assert(Factors.size() > 1 && "Bad linearize!");
702
703          // Add one to FactorOccurrences for each unique factor in this op.
704          if (Factors.size() == 2) {
705            unsigned Occ = ++FactorOccurrences[Factors[0]];
706            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
707            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
708              Occ = ++FactorOccurrences[Factors[1]];
709              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
710            }
711          } else {
712            SmallPtrSet<Value*, 4> Duplicates;
713            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
714              if (Duplicates.insert(Factors[i])) {
715                unsigned Occ = ++FactorOccurrences[Factors[i]];
716                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
717              }
718            }
719          }
720        }
721      }
722    }
723
724    // If any factor occurred more than one time, we can pull it out.
725    if (MaxOcc > 1) {
726      DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
727
728      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
729      // this, we could otherwise run into situations where removing a factor
730      // from an expression will drop a use of maxocc, and this can cause
731      // RemoveFactorFromExpression on successive values to behave differently.
732      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
733      std::vector<Value*> NewMulOps;
734      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
735        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
736          NewMulOps.push_back(V);
737          Ops.erase(Ops.begin()+i);
738          --i; --e;
739        }
740      }
741
742      // No need for extra uses anymore.
743      delete DummyInst;
744
745      unsigned NumAddedValues = NewMulOps.size();
746      Value *V = EmitAddTreeOfValues(I, NewMulOps);
747      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
748
749      // Now that we have inserted V and its sole use, optimize it. This allows
750      // us to handle cases that require multiple factoring steps, such as this:
751      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
752      if (NumAddedValues > 1)
753        ReassociateExpression(cast<BinaryOperator>(V));
754
755      ++NumFactor;
756
757      if (Ops.empty())
758        return V2;
759
760      // Add the new value to the list of things being added.
761      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
762
763      // Rewrite the tree so that there is now a use of V.
764      RewriteExprTree(I, Ops);
765      return OptimizeExpression(I, Ops);
766    }
767    break;
768  //case Instruction::Mul:
769  }
770
771  if (IterateOptimization)
772    return OptimizeExpression(I, Ops);
773  return 0;
774}
775
776
777/// ReassociateBB - Inspect all of the instructions in this basic block,
778/// reassociating them as we go.
779void Reassociate::ReassociateBB(BasicBlock *BB) {
780  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
781    Instruction *BI = BBI++;
782    if (BI->getOpcode() == Instruction::Shl &&
783        isa<ConstantInt>(BI->getOperand(1)))
784      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
785        MadeChange = true;
786        BI = NI;
787      }
788
789    // Reject cases where it is pointless to do this.
790    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
791        isa<VectorType>(BI->getType()))
792      continue;  // Floating point ops are not associative.
793
794    // If this is a subtract instruction which is not already in negate form,
795    // see if we can convert it to X+-Y.
796    if (BI->getOpcode() == Instruction::Sub) {
797      if (ShouldBreakUpSubtract(BI)) {
798        BI = BreakUpSubtract(BI, ValueRankMap);
799        MadeChange = true;
800      } else if (BinaryOperator::isNeg(BI)) {
801        // Otherwise, this is a negation.  See if the operand is a multiply tree
802        // and if this is not an inner node of a multiply tree.
803        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
804            (!BI->hasOneUse() ||
805             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
806          BI = LowerNegateToMultiply(BI, ValueRankMap);
807          MadeChange = true;
808        }
809      }
810    }
811
812    // If this instruction is a commutative binary operator, process it.
813    if (!BI->isAssociative()) continue;
814    BinaryOperator *I = cast<BinaryOperator>(BI);
815
816    // If this is an interior node of a reassociable tree, ignore it until we
817    // get to the root of the tree, to avoid N^2 analysis.
818    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
819      continue;
820
821    // If this is an add tree that is used by a sub instruction, ignore it
822    // until we process the subtract.
823    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
824        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
825      continue;
826
827    ReassociateExpression(I);
828  }
829}
830
831void Reassociate::ReassociateExpression(BinaryOperator *I) {
832
833  // First, walk the expression tree, linearizing the tree, collecting
834  std::vector<ValueEntry> Ops;
835  LinearizeExprTree(I, Ops);
836
837  DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
838
839  // Now that we have linearized the tree to a list and have gathered all of
840  // the operands and their ranks, sort the operands by their rank.  Use a
841  // stable_sort so that values with equal ranks will have their relative
842  // positions maintained (and so the compiler is deterministic).  Note that
843  // this sorts so that the highest ranking values end up at the beginning of
844  // the vector.
845  std::stable_sort(Ops.begin(), Ops.end());
846
847  // OptimizeExpression - Now that we have the expression tree in a convenient
848  // sorted form, optimize it globally if possible.
849  if (Value *V = OptimizeExpression(I, Ops)) {
850    // This expression tree simplified to something that isn't a tree,
851    // eliminate it.
852    DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
853    I->replaceAllUsesWith(V);
854    RemoveDeadBinaryOp(I);
855    return;
856  }
857
858  // We want to sink immediates as deeply as possible except in the case where
859  // this is a multiply tree used only by an add, and the immediate is a -1.
860  // In this case we reassociate to put the negation on the outside so that we
861  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
862  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
863      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
864      isa<ConstantInt>(Ops.back().Op) &&
865      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
866    Ops.insert(Ops.begin(), Ops.back());
867    Ops.pop_back();
868  }
869
870  DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
871
872  if (Ops.size() == 1) {
873    // This expression tree simplified to something that isn't a tree,
874    // eliminate it.
875    I->replaceAllUsesWith(Ops[0].Op);
876    RemoveDeadBinaryOp(I);
877  } else {
878    // Now that we ordered and optimized the expressions, splat them back into
879    // the expression tree, removing any unneeded nodes.
880    RewriteExprTree(I, Ops);
881  }
882}
883
884
885bool Reassociate::runOnFunction(Function &F) {
886  // Recalculate the rank map for F
887  BuildRankMap(F);
888
889  MadeChange = false;
890  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
891    ReassociateBB(FI);
892
893  // We are done with the rank map...
894  RankMap.clear();
895  ValueRankMap.clear();
896  return MadeChange;
897}
898
899