Reassociate.cpp revision f4978e2094a08760d4fa8a07052091cb7276eec7
15c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
25267f701546148b83dfbe1d151cb184385bb5c22Torne (Richard Coles)//
35267f701546148b83dfbe1d151cb184385bb5c22Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
55c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// License. See LICENSE.TXT for details.
75267f701546148b83dfbe1d151cb184385bb5c22Torne (Richard Coles)//
85c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
95c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This pass reassociates commutative expressions in an order that is designed
115c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// to promote better constant propagation, GCSE, LICM, PRE...
125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// For example: 4 + (x + 5) -> x + (4 + 5)
145c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
155c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// In the implementation of this algorithm, constants are assigned rank = 0,
165c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// function arguments are rank = 1, and other values are assigned ranks
175267f701546148b83dfbe1d151cb184385bb5c22Torne (Richard Coles)// corresponding to the reverse post order traversal of current function
185c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// (starting at 2), which effectively gives values in deep loops higher rank
195c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// than values not in loops.
205c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
215c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
225c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
235c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#define DEBUG_TYPE "reassociate"
245c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Transforms/Scalar.h"
255c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Constants.h"
265c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/DerivedTypes.h"
275c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Function.h"
285c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Instructions.h"
295c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/IntrinsicInst.h"
305c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Pass.h"
31591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch#include "llvm/Assembly/Writer.h"
32591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch#include "llvm/Support/CFG.h"
335c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/Support/Compiler.h"
34591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch#include "llvm/Support/Debug.h"
355c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include "llvm/ADT/PostOrderIterator.h"
36c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)#include "llvm/ADT/Statistic.h"
375c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)#include <algorithm>
38591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch#include <map>
395c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)using namespace llvm;
40591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch
41591b958dee2cf159d33a0b931e6231072eaf38d5Ben MurdochSTATISTIC(NumLinear , "Number of insts linearized");
42521d96ec04ace82590870fb04353ec4f82bb150fTorne (Richard Coles)STATISTIC(NumChanged, "Number of insts reassociated");
43323480423219ecd77329f8326dc5e0e3b50926d4Torne (Richard Coles)STATISTIC(NumAnnihil, "Number of expr tree annihilated");
44591b958dee2cf159d33a0b931e6231072eaf38d5Ben MurdochSTATISTIC(NumFactor , "Number of multiplies factored");
455c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
465c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)namespace {
47c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)  struct VISIBILITY_HIDDEN ValueEntry {
485c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)    unsigned Rank;
49591b958dee2cf159d33a0b931e6231072eaf38d5Ben Murdoch    Value *Op;
50    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
51  };
52  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
53    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
54  }
55}
56
57#ifndef NDEBUG
58/// PrintOps - Print out the expression identified in the Ops list.
59///
60static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
61  Module *M = I->getParent()->getParent()->getParent();
62  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
63       << *Ops[0].Op->getType();
64  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
65    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
66    cerr << "," << Ops[i].Rank;
67  }
68}
69#endif
70
71namespace {
72  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
73    std::map<BasicBlock*, unsigned> RankMap;
74    std::map<Value*, unsigned> ValueRankMap;
75    bool MadeChange;
76  public:
77    static char ID; // Pass identification, replacement for typeid
78    Reassociate() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      AU.setPreservesCFG();
84    }
85  private:
86    void BuildRankMap(Function &F);
87    unsigned getRank(Value *V);
88    void ReassociateExpression(BinaryOperator *I);
89    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
90                         unsigned Idx = 0);
91    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
93    void LinearizeExpr(BinaryOperator *I);
94    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
95    void ReassociateBB(BasicBlock *BB);
96
97    void RemoveDeadBinaryOp(Value *V);
98  };
99}
100
101char Reassociate::ID = 0;
102static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
103
104// Public interface to the Reassociate pass
105FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
106
107void Reassociate::RemoveDeadBinaryOp(Value *V) {
108  Instruction *Op = dyn_cast<Instruction>(V);
109  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
110    return;
111
112  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
113  RemoveDeadBinaryOp(LHS);
114  RemoveDeadBinaryOp(RHS);
115}
116
117
118static bool isUnmovableInstruction(Instruction *I) {
119  if (I->getOpcode() == Instruction::PHI ||
120      I->getOpcode() == Instruction::Alloca ||
121      I->getOpcode() == Instruction::Load ||
122      I->getOpcode() == Instruction::Malloc ||
123      I->getOpcode() == Instruction::Invoke ||
124      (I->getOpcode() == Instruction::Call &&
125       !isa<DbgInfoIntrinsic>(I)) ||
126      I->getOpcode() == Instruction::UDiv ||
127      I->getOpcode() == Instruction::SDiv ||
128      I->getOpcode() == Instruction::FDiv ||
129      I->getOpcode() == Instruction::URem ||
130      I->getOpcode() == Instruction::SRem ||
131      I->getOpcode() == Instruction::FRem)
132    return true;
133  return false;
134}
135
136void Reassociate::BuildRankMap(Function &F) {
137  unsigned i = 2;
138
139  // Assign distinct ranks to function arguments
140  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
141    ValueRankMap[I] = ++i;
142
143  ReversePostOrderTraversal<Function*> RPOT(&F);
144  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
145         E = RPOT.end(); I != E; ++I) {
146    BasicBlock *BB = *I;
147    unsigned BBRank = RankMap[BB] = ++i << 16;
148
149    // Walk the basic block, adding precomputed ranks for any instructions that
150    // we cannot move.  This ensures that the ranks for these instructions are
151    // all different in the block.
152    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
153      if (isUnmovableInstruction(I))
154        ValueRankMap[I] = ++BBRank;
155  }
156}
157
158unsigned Reassociate::getRank(Value *V) {
159  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
160
161  Instruction *I = dyn_cast<Instruction>(V);
162  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
163
164  unsigned &CachedRank = ValueRankMap[I];
165  if (CachedRank) return CachedRank;    // Rank already known?
166
167  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
168  // we can reassociate expressions for code motion!  Since we do not recurse
169  // for PHI nodes, we cannot have infinite recursion here, because there
170  // cannot be loops in the value graph that do not go through PHI nodes.
171  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
172  for (unsigned i = 0, e = I->getNumOperands();
173       i != e && Rank != MaxRank; ++i)
174    Rank = std::max(Rank, getRank(I->getOperand(i)));
175
176  // If this is a not or neg instruction, do not count it for rank.  This
177  // assures us that X and ~X will have the same rank.
178  if (!I->getType()->isInteger() ||
179      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
180    ++Rank;
181
182  //DOUT << "Calculated Rank[" << V->getName() << "] = "
183  //     << Rank << "\n";
184
185  return CachedRank = Rank;
186}
187
188/// isReassociableOp - Return true if V is an instruction of the specified
189/// opcode and if it only has one use.
190static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
191  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
192      cast<Instruction>(V)->getOpcode() == Opcode)
193    return cast<BinaryOperator>(V);
194  return 0;
195}
196
197/// LowerNegateToMultiply - Replace 0-X with X*-1.
198///
199static Instruction *LowerNegateToMultiply(Instruction *Neg,
200                                     std::map<Value*, unsigned> &ValueRankMap) {
201  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
202
203  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
204  ValueRankMap.erase(Neg);
205  Res->takeName(Neg);
206  Neg->replaceAllUsesWith(Res);
207  Neg->eraseFromParent();
208  return Res;
209}
210
211// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
212// Note that if D is also part of the expression tree that we recurse to
213// linearize it as well.  Besides that case, this does not recurse into A,B, or
214// C.
215void Reassociate::LinearizeExpr(BinaryOperator *I) {
216  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
217  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
218  assert(isReassociableOp(LHS, I->getOpcode()) &&
219         isReassociableOp(RHS, I->getOpcode()) &&
220         "Not an expression that needs linearization?");
221
222  DOUT << "Linear" << *LHS << *RHS << *I;
223
224  // Move the RHS instruction to live immediately before I, avoiding breaking
225  // dominator properties.
226  RHS->moveBefore(I);
227
228  // Move operands around to do the linearization.
229  I->setOperand(1, RHS->getOperand(0));
230  RHS->setOperand(0, LHS);
231  I->setOperand(0, RHS);
232
233  ++NumLinear;
234  MadeChange = true;
235  DOUT << "Linearized: " << *I;
236
237  // If D is part of this expression tree, tail recurse.
238  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
239    LinearizeExpr(I);
240}
241
242
243/// LinearizeExprTree - Given an associative binary expression tree, traverse
244/// all of the uses putting it into canonical form.  This forces a left-linear
245/// form of the the expression (((a+b)+c)+d), and collects information about the
246/// rank of the non-tree operands.
247///
248/// NOTE: These intentionally destroys the expression tree operands (turning
249/// them into undef values) to reduce #uses of the values.  This means that the
250/// caller MUST use something like RewriteExprTree to put the values back in.
251///
252void Reassociate::LinearizeExprTree(BinaryOperator *I,
253                                    std::vector<ValueEntry> &Ops) {
254  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
255  unsigned Opcode = I->getOpcode();
256
257  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
258  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
259  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
260
261  // If this is a multiply expression tree and it contains internal negations,
262  // transform them into multiplies by -1 so they can be reassociated.
263  if (I->getOpcode() == Instruction::Mul) {
264    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
265      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
266      LHSBO = isReassociableOp(LHS, Opcode);
267    }
268    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
269      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
270      RHSBO = isReassociableOp(RHS, Opcode);
271    }
272  }
273
274  if (!LHSBO) {
275    if (!RHSBO) {
276      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
277      // such, just remember these operands and their rank.
278      Ops.push_back(ValueEntry(getRank(LHS), LHS));
279      Ops.push_back(ValueEntry(getRank(RHS), RHS));
280
281      // Clear the leaves out.
282      I->setOperand(0, UndefValue::get(I->getType()));
283      I->setOperand(1, UndefValue::get(I->getType()));
284      return;
285    } else {
286      // Turn X+(Y+Z) -> (Y+Z)+X
287      std::swap(LHSBO, RHSBO);
288      std::swap(LHS, RHS);
289      bool Success = !I->swapOperands();
290      assert(Success && "swapOperands failed");
291      Success = false;
292      MadeChange = true;
293    }
294  } else if (RHSBO) {
295    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
296    // part of the expression tree.
297    LinearizeExpr(I);
298    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
299    RHS = I->getOperand(1);
300    RHSBO = 0;
301  }
302
303  // Okay, now we know that the LHS is a nested expression and that the RHS is
304  // not.  Perform reassociation.
305  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
306
307  // Move LHS right before I to make sure that the tree expression dominates all
308  // values.
309  LHSBO->moveBefore(I);
310
311  // Linearize the expression tree on the LHS.
312  LinearizeExprTree(LHSBO, Ops);
313
314  // Remember the RHS operand and its rank.
315  Ops.push_back(ValueEntry(getRank(RHS), RHS));
316
317  // Clear the RHS leaf out.
318  I->setOperand(1, UndefValue::get(I->getType()));
319}
320
321// RewriteExprTree - Now that the operands for this expression tree are
322// linearized and optimized, emit them in-order.  This function is written to be
323// tail recursive.
324void Reassociate::RewriteExprTree(BinaryOperator *I,
325                                  std::vector<ValueEntry> &Ops,
326                                  unsigned i) {
327  if (i+2 == Ops.size()) {
328    if (I->getOperand(0) != Ops[i].Op ||
329        I->getOperand(1) != Ops[i+1].Op) {
330      Value *OldLHS = I->getOperand(0);
331      DOUT << "RA: " << *I;
332      I->setOperand(0, Ops[i].Op);
333      I->setOperand(1, Ops[i+1].Op);
334      DOUT << "TO: " << *I;
335      MadeChange = true;
336      ++NumChanged;
337
338      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
339      // delete the extra, now dead, nodes.
340      RemoveDeadBinaryOp(OldLHS);
341    }
342    return;
343  }
344  assert(i+2 < Ops.size() && "Ops index out of range!");
345
346  if (I->getOperand(1) != Ops[i].Op) {
347    DOUT << "RA: " << *I;
348    I->setOperand(1, Ops[i].Op);
349    DOUT << "TO: " << *I;
350    MadeChange = true;
351    ++NumChanged;
352  }
353
354  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
355  assert(LHS->getOpcode() == I->getOpcode() &&
356         "Improper expression tree!");
357
358  // Compactify the tree instructions together with each other to guarantee
359  // that the expression tree is dominated by all of Ops.
360  LHS->moveBefore(I);
361  RewriteExprTree(LHS, Ops, i+1);
362}
363
364
365
366// NegateValue - Insert instructions before the instruction pointed to by BI,
367// that computes the negative version of the value specified.  The negative
368// version of the value is returned, and BI is left pointing at the instruction
369// that should be processed next by the reassociation pass.
370//
371static Value *NegateValue(Value *V, Instruction *BI) {
372  // We are trying to expose opportunity for reassociation.  One of the things
373  // that we want to do to achieve this is to push a negation as deep into an
374  // expression chain as possible, to expose the add instructions.  In practice,
375  // this means that we turn this:
376  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
377  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
378  // the constants.  We assume that instcombine will clean up the mess later if
379  // we introduce tons of unnecessary negation instructions...
380  //
381  if (Instruction *I = dyn_cast<Instruction>(V))
382    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
383      // Push the negates through the add.
384      I->setOperand(0, NegateValue(I->getOperand(0), BI));
385      I->setOperand(1, NegateValue(I->getOperand(1), BI));
386
387      // We must move the add instruction here, because the neg instructions do
388      // not dominate the old add instruction in general.  By moving it, we are
389      // assured that the neg instructions we just inserted dominate the
390      // instruction we are about to insert after them.
391      //
392      I->moveBefore(BI);
393      I->setName(I->getName()+".neg");
394      return I;
395    }
396
397  // Insert a 'neg' instruction that subtracts the value from zero to get the
398  // negation.
399  //
400  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
401}
402
403/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
404/// X-Y into (X + -Y).
405static bool ShouldBreakUpSubtract(Instruction *Sub) {
406  // If this is a negation, we can't split it up!
407  if (BinaryOperator::isNeg(Sub))
408    return false;
409
410  // Don't bother to break this up unless either the LHS is an associable add or
411  // subtract or if this is only used by one.
412  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
413      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
414    return true;
415  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
416      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
417    return true;
418  if (Sub->hasOneUse() &&
419      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
420       isReassociableOp(Sub->use_back(), Instruction::Sub)))
421    return true;
422
423  return false;
424}
425
426/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
427/// only used by an add, transform this into (X+(0-Y)) to promote better
428/// reassociation.
429static Instruction *BreakUpSubtract(Instruction *Sub,
430                                    std::map<Value*, unsigned> &ValueRankMap) {
431  // Convert a subtract into an add and a neg instruction... so that sub
432  // instructions can be commuted with other add instructions...
433  //
434  // Calculate the negative value of Operand 1 of the sub instruction...
435  // and set it as the RHS of the add instruction we just made...
436  //
437  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
438  Instruction *New =
439    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
440  New->takeName(Sub);
441
442  // Everyone now refers to the add instruction.
443  ValueRankMap.erase(Sub);
444  Sub->replaceAllUsesWith(New);
445  Sub->eraseFromParent();
446
447  DOUT << "Negated: " << *New;
448  return New;
449}
450
451/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
452/// by one, change this into a multiply by a constant to assist with further
453/// reassociation.
454static Instruction *ConvertShiftToMul(Instruction *Shl,
455                                      std::map<Value*, unsigned> &ValueRankMap){
456  // If an operand of this shift is a reassociable multiply, or if the shift
457  // is used by a reassociable multiply or add, turn into a multiply.
458  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
459      (Shl->hasOneUse() &&
460       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
461        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
462    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
463    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
464
465    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
466                                                 "", Shl);
467    ValueRankMap.erase(Shl);
468    Mul->takeName(Shl);
469    Shl->replaceAllUsesWith(Mul);
470    Shl->eraseFromParent();
471    return Mul;
472  }
473  return 0;
474}
475
476// Scan backwards and forwards among values with the same rank as element i to
477// see if X exists.  If X does not exist, return i.
478static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
479                                  Value *X) {
480  unsigned XRank = Ops[i].Rank;
481  unsigned e = Ops.size();
482  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
483    if (Ops[j].Op == X)
484      return j;
485  // Scan backwards
486  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
487    if (Ops[j].Op == X)
488      return j;
489  return i;
490}
491
492/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
493/// and returning the result.  Insert the tree before I.
494static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
495  if (Ops.size() == 1) return Ops.back();
496
497  Value *V1 = Ops.back();
498  Ops.pop_back();
499  Value *V2 = EmitAddTreeOfValues(I, Ops);
500  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
501}
502
503/// RemoveFactorFromExpression - If V is an expression tree that is a
504/// multiplication sequence, and if this sequence contains a multiply by Factor,
505/// remove Factor from the tree and return the new tree.
506Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
507  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
508  if (!BO) return 0;
509
510  std::vector<ValueEntry> Factors;
511  LinearizeExprTree(BO, Factors);
512
513  bool FoundFactor = false;
514  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
515    if (Factors[i].Op == Factor) {
516      FoundFactor = true;
517      Factors.erase(Factors.begin()+i);
518      break;
519    }
520  if (!FoundFactor) {
521    // Make sure to restore the operands to the expression tree.
522    RewriteExprTree(BO, Factors);
523    return 0;
524  }
525
526  if (Factors.size() == 1) return Factors[0].Op;
527
528  RewriteExprTree(BO, Factors);
529  return BO;
530}
531
532/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
533/// add its operands as factors, otherwise add V to the list of factors.
534static void FindSingleUseMultiplyFactors(Value *V,
535                                         std::vector<Value*> &Factors) {
536  BinaryOperator *BO;
537  if ((!V->hasOneUse() && !V->use_empty()) ||
538      !(BO = dyn_cast<BinaryOperator>(V)) ||
539      BO->getOpcode() != Instruction::Mul) {
540    Factors.push_back(V);
541    return;
542  }
543
544  // Otherwise, add the LHS and RHS to the list of factors.
545  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
546  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
547}
548
549
550
551Value *Reassociate::OptimizeExpression(BinaryOperator *I,
552                                       std::vector<ValueEntry> &Ops) {
553  // Now that we have the linearized expression tree, try to optimize it.
554  // Start by folding any constants that we found.
555  bool IterateOptimization = false;
556  if (Ops.size() == 1) return Ops[0].Op;
557
558  unsigned Opcode = I->getOpcode();
559
560  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
561    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
562      Ops.pop_back();
563      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
564      return OptimizeExpression(I, Ops);
565    }
566
567  // Check for destructive annihilation due to a constant being used.
568  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
569    switch (Opcode) {
570    default: break;
571    case Instruction::And:
572      if (CstVal->isZero()) {                // ... & 0 -> 0
573        ++NumAnnihil;
574        return CstVal;
575      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
576        Ops.pop_back();
577      }
578      break;
579    case Instruction::Mul:
580      if (CstVal->isZero()) {                // ... * 0 -> 0
581        ++NumAnnihil;
582        return CstVal;
583      } else if (cast<ConstantInt>(CstVal)->isOne()) {
584        Ops.pop_back();                      // ... * 1 -> ...
585      }
586      break;
587    case Instruction::Or:
588      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
589        ++NumAnnihil;
590        return CstVal;
591      }
592      // FALLTHROUGH!
593    case Instruction::Add:
594    case Instruction::Xor:
595      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
596        Ops.pop_back();
597      break;
598    }
599  if (Ops.size() == 1) return Ops[0].Op;
600
601  // Handle destructive annihilation do to identities between elements in the
602  // argument list here.
603  switch (Opcode) {
604  default: break;
605  case Instruction::And:
606  case Instruction::Or:
607  case Instruction::Xor:
608    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
609    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
610    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
611      // First, check for X and ~X in the operand list.
612      assert(i < Ops.size());
613      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
614        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
615        unsigned FoundX = FindInOperandList(Ops, i, X);
616        if (FoundX != i) {
617          if (Opcode == Instruction::And) {   // ...&X&~X = 0
618            ++NumAnnihil;
619            return Constant::getNullValue(X->getType());
620          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
621            ++NumAnnihil;
622            return ConstantInt::getAllOnesValue(X->getType());
623          }
624        }
625      }
626
627      // Next, check for duplicate pairs of values, which we assume are next to
628      // each other, due to our sorting criteria.
629      assert(i < Ops.size());
630      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
631        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
632          // Drop duplicate values.
633          Ops.erase(Ops.begin()+i);
634          --i; --e;
635          IterateOptimization = true;
636          ++NumAnnihil;
637        } else {
638          assert(Opcode == Instruction::Xor);
639          if (e == 2) {
640            ++NumAnnihil;
641            return Constant::getNullValue(Ops[0].Op->getType());
642          }
643          // ... X^X -> ...
644          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
645          i -= 1; e -= 2;
646          IterateOptimization = true;
647          ++NumAnnihil;
648        }
649      }
650    }
651    break;
652
653  case Instruction::Add:
654    // Scan the operand lists looking for X and -X pairs.  If we find any, we
655    // can simplify the expression. X+-X == 0.
656    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
657      assert(i < Ops.size());
658      // Check for X and -X in the operand list.
659      if (BinaryOperator::isNeg(Ops[i].Op)) {
660        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
661        unsigned FoundX = FindInOperandList(Ops, i, X);
662        if (FoundX != i) {
663          // Remove X and -X from the operand list.
664          if (Ops.size() == 2) {
665            ++NumAnnihil;
666            return Constant::getNullValue(X->getType());
667          } else {
668            Ops.erase(Ops.begin()+i);
669            if (i < FoundX)
670              --FoundX;
671            else
672              --i;   // Need to back up an extra one.
673            Ops.erase(Ops.begin()+FoundX);
674            IterateOptimization = true;
675            ++NumAnnihil;
676            --i;     // Revisit element.
677            e -= 2;  // Removed two elements.
678          }
679        }
680      }
681    }
682
683
684    // Scan the operand list, checking to see if there are any common factors
685    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
686    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
687    // To efficiently find this, we count the number of times a factor occurs
688    // for any ADD operands that are MULs.
689    std::map<Value*, unsigned> FactorOccurrences;
690    unsigned MaxOcc = 0;
691    Value *MaxOccVal = 0;
692    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
693      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
694        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
695          // Compute all of the factors of this added value.
696          std::vector<Value*> Factors;
697          FindSingleUseMultiplyFactors(BOp, Factors);
698          assert(Factors.size() > 1 && "Bad linearize!");
699
700          // Add one to FactorOccurrences for each unique factor in this op.
701          if (Factors.size() == 2) {
702            unsigned Occ = ++FactorOccurrences[Factors[0]];
703            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
704            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
705              Occ = ++FactorOccurrences[Factors[1]];
706              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
707            }
708          } else {
709            std::set<Value*> Duplicates;
710            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
711              if (Duplicates.insert(Factors[i]).second) {
712                unsigned Occ = ++FactorOccurrences[Factors[i]];
713                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
714              }
715            }
716          }
717        }
718      }
719    }
720
721    // If any factor occurred more than one time, we can pull it out.
722    if (MaxOcc > 1) {
723      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
724
725      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
726      // this, we could otherwise run into situations where removing a factor
727      // from an expression will drop a use of maxocc, and this can cause
728      // RemoveFactorFromExpression on successive values to behave differently.
729      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
730      std::vector<Value*> NewMulOps;
731      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
732        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
733          NewMulOps.push_back(V);
734          Ops.erase(Ops.begin()+i);
735          --i; --e;
736        }
737      }
738
739      // No need for extra uses anymore.
740      delete DummyInst;
741
742      unsigned NumAddedValues = NewMulOps.size();
743      Value *V = EmitAddTreeOfValues(I, NewMulOps);
744      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
745
746      // Now that we have inserted V and its sole use, optimize it. This allows
747      // us to handle cases that require multiple factoring steps, such as this:
748      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
749      if (NumAddedValues > 1)
750        ReassociateExpression(cast<BinaryOperator>(V));
751
752      ++NumFactor;
753
754      if (Ops.empty())
755        return V2;
756
757      // Add the new value to the list of things being added.
758      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
759
760      // Rewrite the tree so that there is now a use of V.
761      RewriteExprTree(I, Ops);
762      return OptimizeExpression(I, Ops);
763    }
764    break;
765  //case Instruction::Mul:
766  }
767
768  if (IterateOptimization)
769    return OptimizeExpression(I, Ops);
770  return 0;
771}
772
773
774/// ReassociateBB - Inspect all of the instructions in this basic block,
775/// reassociating them as we go.
776void Reassociate::ReassociateBB(BasicBlock *BB) {
777  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
778    Instruction *BI = BBI++;
779    if (BI->getOpcode() == Instruction::Shl &&
780        isa<ConstantInt>(BI->getOperand(1)))
781      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
782        MadeChange = true;
783        BI = NI;
784      }
785
786    // Reject cases where it is pointless to do this.
787    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
788        isa<VectorType>(BI->getType()))
789      continue;  // Floating point ops are not associative.
790
791    // If this is a subtract instruction which is not already in negate form,
792    // see if we can convert it to X+-Y.
793    if (BI->getOpcode() == Instruction::Sub) {
794      if (ShouldBreakUpSubtract(BI)) {
795        BI = BreakUpSubtract(BI, ValueRankMap);
796        MadeChange = true;
797      } else if (BinaryOperator::isNeg(BI)) {
798        // Otherwise, this is a negation.  See if the operand is a multiply tree
799        // and if this is not an inner node of a multiply tree.
800        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
801            (!BI->hasOneUse() ||
802             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
803          BI = LowerNegateToMultiply(BI, ValueRankMap);
804          MadeChange = true;
805        }
806      }
807    }
808
809    // If this instruction is a commutative binary operator, process it.
810    if (!BI->isAssociative()) continue;
811    BinaryOperator *I = cast<BinaryOperator>(BI);
812
813    // If this is an interior node of a reassociable tree, ignore it until we
814    // get to the root of the tree, to avoid N^2 analysis.
815    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
816      continue;
817
818    // If this is an add tree that is used by a sub instruction, ignore it
819    // until we process the subtract.
820    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
821        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
822      continue;
823
824    ReassociateExpression(I);
825  }
826}
827
828void Reassociate::ReassociateExpression(BinaryOperator *I) {
829
830  // First, walk the expression tree, linearizing the tree, collecting
831  std::vector<ValueEntry> Ops;
832  LinearizeExprTree(I, Ops);
833
834  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
835
836  // Now that we have linearized the tree to a list and have gathered all of
837  // the operands and their ranks, sort the operands by their rank.  Use a
838  // stable_sort so that values with equal ranks will have their relative
839  // positions maintained (and so the compiler is deterministic).  Note that
840  // this sorts so that the highest ranking values end up at the beginning of
841  // the vector.
842  std::stable_sort(Ops.begin(), Ops.end());
843
844  // OptimizeExpression - Now that we have the expression tree in a convenient
845  // sorted form, optimize it globally if possible.
846  if (Value *V = OptimizeExpression(I, Ops)) {
847    // This expression tree simplified to something that isn't a tree,
848    // eliminate it.
849    DOUT << "Reassoc to scalar: " << *V << "\n";
850    I->replaceAllUsesWith(V);
851    RemoveDeadBinaryOp(I);
852    return;
853  }
854
855  // We want to sink immediates as deeply as possible except in the case where
856  // this is a multiply tree used only by an add, and the immediate is a -1.
857  // In this case we reassociate to put the negation on the outside so that we
858  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
859  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
860      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
861      isa<ConstantInt>(Ops.back().Op) &&
862      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
863    Ops.insert(Ops.begin(), Ops.back());
864    Ops.pop_back();
865  }
866
867  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
868
869  if (Ops.size() == 1) {
870    // This expression tree simplified to something that isn't a tree,
871    // eliminate it.
872    I->replaceAllUsesWith(Ops[0].Op);
873    RemoveDeadBinaryOp(I);
874  } else {
875    // Now that we ordered and optimized the expressions, splat them back into
876    // the expression tree, removing any unneeded nodes.
877    RewriteExprTree(I, Ops);
878  }
879}
880
881
882bool Reassociate::runOnFunction(Function &F) {
883  // Recalculate the rank map for F
884  BuildRankMap(F);
885
886  MadeChange = false;
887  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
888    ReassociateBB(FI);
889
890  // We are done with the rank map...
891  RankMap.clear();
892  ValueRankMap.clear();
893  return MadeChange;
894}
895
896