Reassociate.cpp revision fa0e6facc793d0a67e89f873e18cd35a9d7c02e0
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Constants.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/Instructions.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ValueHandle.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/DenseMap.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
49  struct ValueEntry {
50    unsigned Rank;
51    Value *Op;
52    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53  };
54  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
56  }
57}
58
59#ifndef NDEBUG
60/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
63  Module *M = I->getParent()->getParent()->getParent();
64  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65       << *Ops[0].Op->getType() << '\t';
66  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67    dbgs() << "[ ";
68    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
69    dbgs() << ", #" << Ops[i].Rank << "] ";
70  }
71}
72#endif
73
74namespace {
75  class Reassociate : public FunctionPass {
76    DenseMap<BasicBlock*, unsigned> RankMap;
77    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
78    SmallVector<WeakVH, 8> DeadInsts;
79    bool MadeChange;
80  public:
81    static char ID; // Pass identification, replacement for typeid
82    Reassociate() : FunctionPass(ID) {
83      initializeReassociatePass(*PassRegistry::getPassRegistry());
84    }
85
86    bool runOnFunction(Function &F);
87
88    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89      AU.setPreservesCFG();
90    }
91  private:
92    void BuildRankMap(Function &F);
93    unsigned getRank(Value *V);
94    Value *ReassociateExpression(BinaryOperator *I);
95    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
96                         unsigned Idx = 0);
97    Value *OptimizeExpression(BinaryOperator *I,
98                              SmallVectorImpl<ValueEntry> &Ops);
99    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
100    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
101    void LinearizeExpr(BinaryOperator *I);
102    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
103    void ReassociateBB(BasicBlock *BB);
104
105    void RemoveDeadBinaryOp(Value *V);
106  };
107}
108
109char Reassociate::ID = 0;
110INITIALIZE_PASS(Reassociate, "reassociate",
111                "Reassociate expressions", false, false)
112
113// Public interface to the Reassociate pass
114FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
115
116void Reassociate::RemoveDeadBinaryOp(Value *V) {
117  Instruction *Op = dyn_cast<Instruction>(V);
118  if (!Op || !isa<BinaryOperator>(Op))
119    return;
120
121  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
122
123  ValueRankMap.erase(Op);
124  DeadInsts.push_back(Op);
125  RemoveDeadBinaryOp(LHS);
126  RemoveDeadBinaryOp(RHS);
127}
128
129
130static bool isUnmovableInstruction(Instruction *I) {
131  if (I->getOpcode() == Instruction::PHI ||
132      I->getOpcode() == Instruction::Alloca ||
133      I->getOpcode() == Instruction::Load ||
134      I->getOpcode() == Instruction::Invoke ||
135      (I->getOpcode() == Instruction::Call &&
136       !isa<DbgInfoIntrinsic>(I)) ||
137      I->getOpcode() == Instruction::UDiv ||
138      I->getOpcode() == Instruction::SDiv ||
139      I->getOpcode() == Instruction::FDiv ||
140      I->getOpcode() == Instruction::URem ||
141      I->getOpcode() == Instruction::SRem ||
142      I->getOpcode() == Instruction::FRem)
143    return true;
144  return false;
145}
146
147void Reassociate::BuildRankMap(Function &F) {
148  unsigned i = 2;
149
150  // Assign distinct ranks to function arguments
151  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
152    ValueRankMap[&*I] = ++i;
153
154  ReversePostOrderTraversal<Function*> RPOT(&F);
155  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
156         E = RPOT.end(); I != E; ++I) {
157    BasicBlock *BB = *I;
158    unsigned BBRank = RankMap[BB] = ++i << 16;
159
160    // Walk the basic block, adding precomputed ranks for any instructions that
161    // we cannot move.  This ensures that the ranks for these instructions are
162    // all different in the block.
163    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
164      if (isUnmovableInstruction(I))
165        ValueRankMap[&*I] = ++BBRank;
166  }
167}
168
169unsigned Reassociate::getRank(Value *V) {
170  Instruction *I = dyn_cast<Instruction>(V);
171  if (I == 0) {
172    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
173    return 0;  // Otherwise it's a global or constant, rank 0.
174  }
175
176  if (unsigned Rank = ValueRankMap[I])
177    return Rank;    // Rank already known?
178
179  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
180  // we can reassociate expressions for code motion!  Since we do not recurse
181  // for PHI nodes, we cannot have infinite recursion here, because there
182  // cannot be loops in the value graph that do not go through PHI nodes.
183  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
184  for (unsigned i = 0, e = I->getNumOperands();
185       i != e && Rank != MaxRank; ++i)
186    Rank = std::max(Rank, getRank(I->getOperand(i)));
187
188  // If this is a not or neg instruction, do not count it for rank.  This
189  // assures us that X and ~X will have the same rank.
190  if (!I->getType()->isIntegerTy() ||
191      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
192    ++Rank;
193
194  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
195  //     << Rank << "\n");
196
197  return ValueRankMap[I] = Rank;
198}
199
200/// isReassociableOp - Return true if V is an instruction of the specified
201/// opcode and if it only has one use.
202static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
203  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
204      cast<Instruction>(V)->getOpcode() == Opcode)
205    return cast<BinaryOperator>(V);
206  return 0;
207}
208
209/// LowerNegateToMultiply - Replace 0-X with X*-1.
210///
211static Instruction *LowerNegateToMultiply(Instruction *Neg,
212                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
213  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
214
215  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
216  ValueRankMap.erase(Neg);
217  Res->takeName(Neg);
218  Neg->replaceAllUsesWith(Res);
219  Neg->eraseFromParent();
220  return Res;
221}
222
223// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
224// Note that if D is also part of the expression tree that we recurse to
225// linearize it as well.  Besides that case, this does not recurse into A,B, or
226// C.
227void Reassociate::LinearizeExpr(BinaryOperator *I) {
228  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
229  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
230  assert(isReassociableOp(LHS, I->getOpcode()) &&
231         isReassociableOp(RHS, I->getOpcode()) &&
232         "Not an expression that needs linearization?");
233
234  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
235
236  // Move the RHS instruction to live immediately before I, avoiding breaking
237  // dominator properties.
238  RHS->moveBefore(I);
239
240  // Move operands around to do the linearization.
241  I->setOperand(1, RHS->getOperand(0));
242  RHS->setOperand(0, LHS);
243  I->setOperand(0, RHS);
244
245  // Conservatively clear all the optional flags, which may not hold
246  // after the reassociation.
247  I->clearSubclassOptionalData();
248  LHS->clearSubclassOptionalData();
249  RHS->clearSubclassOptionalData();
250
251  ++NumLinear;
252  MadeChange = true;
253  DEBUG(dbgs() << "Linearized: " << *I << '\n');
254
255  // If D is part of this expression tree, tail recurse.
256  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
257    LinearizeExpr(I);
258}
259
260
261/// LinearizeExprTree - Given an associative binary expression tree, traverse
262/// all of the uses putting it into canonical form.  This forces a left-linear
263/// form of the expression (((a+b)+c)+d), and collects information about the
264/// rank of the non-tree operands.
265///
266/// NOTE: These intentionally destroys the expression tree operands (turning
267/// them into undef values) to reduce #uses of the values.  This means that the
268/// caller MUST use something like RewriteExprTree to put the values back in.
269///
270void Reassociate::LinearizeExprTree(BinaryOperator *I,
271                                    SmallVectorImpl<ValueEntry> &Ops) {
272  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
273  unsigned Opcode = I->getOpcode();
274
275  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
276  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
277  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
278
279  // If this is a multiply expression tree and it contains internal negations,
280  // transform them into multiplies by -1 so they can be reassociated.
281  if (I->getOpcode() == Instruction::Mul) {
282    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
283      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
284      LHSBO = isReassociableOp(LHS, Opcode);
285    }
286    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
287      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
288      RHSBO = isReassociableOp(RHS, Opcode);
289    }
290  }
291
292  if (!LHSBO) {
293    if (!RHSBO) {
294      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
295      // such, just remember these operands and their rank.
296      Ops.push_back(ValueEntry(getRank(LHS), LHS));
297      Ops.push_back(ValueEntry(getRank(RHS), RHS));
298
299      // Clear the leaves out.
300      I->setOperand(0, UndefValue::get(I->getType()));
301      I->setOperand(1, UndefValue::get(I->getType()));
302      return;
303    }
304
305    // Turn X+(Y+Z) -> (Y+Z)+X
306    std::swap(LHSBO, RHSBO);
307    std::swap(LHS, RHS);
308    bool Success = !I->swapOperands();
309    assert(Success && "swapOperands failed");
310    Success = false;
311    MadeChange = true;
312  } else if (RHSBO) {
313    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
314    // part of the expression tree.
315    LinearizeExpr(I);
316    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
317    RHS = I->getOperand(1);
318    RHSBO = 0;
319  }
320
321  // Okay, now we know that the LHS is a nested expression and that the RHS is
322  // not.  Perform reassociation.
323  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
324
325  // Move LHS right before I to make sure that the tree expression dominates all
326  // values.
327  LHSBO->moveBefore(I);
328
329  // Linearize the expression tree on the LHS.
330  LinearizeExprTree(LHSBO, Ops);
331
332  // Remember the RHS operand and its rank.
333  Ops.push_back(ValueEntry(getRank(RHS), RHS));
334
335  // Clear the RHS leaf out.
336  I->setOperand(1, UndefValue::get(I->getType()));
337}
338
339// RewriteExprTree - Now that the operands for this expression tree are
340// linearized and optimized, emit them in-order.  This function is written to be
341// tail recursive.
342void Reassociate::RewriteExprTree(BinaryOperator *I,
343                                  SmallVectorImpl<ValueEntry> &Ops,
344                                  unsigned i) {
345  if (i+2 == Ops.size()) {
346    if (I->getOperand(0) != Ops[i].Op ||
347        I->getOperand(1) != Ops[i+1].Op) {
348      Value *OldLHS = I->getOperand(0);
349      DEBUG(dbgs() << "RA: " << *I << '\n');
350      I->setOperand(0, Ops[i].Op);
351      I->setOperand(1, Ops[i+1].Op);
352
353      // Clear all the optional flags, which may not hold after the
354      // reassociation if the expression involved more than just this operation.
355      if (Ops.size() != 2)
356        I->clearSubclassOptionalData();
357
358      DEBUG(dbgs() << "TO: " << *I << '\n');
359      MadeChange = true;
360      ++NumChanged;
361
362      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
363      // delete the extra, now dead, nodes.
364      RemoveDeadBinaryOp(OldLHS);
365    }
366    return;
367  }
368  assert(i+2 < Ops.size() && "Ops index out of range!");
369
370  if (I->getOperand(1) != Ops[i].Op) {
371    DEBUG(dbgs() << "RA: " << *I << '\n');
372    I->setOperand(1, Ops[i].Op);
373
374    // Conservatively clear all the optional flags, which may not hold
375    // after the reassociation.
376    I->clearSubclassOptionalData();
377
378    DEBUG(dbgs() << "TO: " << *I << '\n');
379    MadeChange = true;
380    ++NumChanged;
381  }
382
383  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
384  assert(LHS->getOpcode() == I->getOpcode() &&
385         "Improper expression tree!");
386
387  // Compactify the tree instructions together with each other to guarantee
388  // that the expression tree is dominated by all of Ops.
389  LHS->moveBefore(I);
390  RewriteExprTree(LHS, Ops, i+1);
391}
392
393
394
395// NegateValue - Insert instructions before the instruction pointed to by BI,
396// that computes the negative version of the value specified.  The negative
397// version of the value is returned, and BI is left pointing at the instruction
398// that should be processed next by the reassociation pass.
399//
400static Value *NegateValue(Value *V, Instruction *BI) {
401  if (Constant *C = dyn_cast<Constant>(V))
402    return ConstantExpr::getNeg(C);
403
404  // We are trying to expose opportunity for reassociation.  One of the things
405  // that we want to do to achieve this is to push a negation as deep into an
406  // expression chain as possible, to expose the add instructions.  In practice,
407  // this means that we turn this:
408  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
409  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
410  // the constants.  We assume that instcombine will clean up the mess later if
411  // we introduce tons of unnecessary negation instructions.
412  //
413  if (Instruction *I = dyn_cast<Instruction>(V))
414    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
415      // Push the negates through the add.
416      I->setOperand(0, NegateValue(I->getOperand(0), BI));
417      I->setOperand(1, NegateValue(I->getOperand(1), BI));
418
419      // We must move the add instruction here, because the neg instructions do
420      // not dominate the old add instruction in general.  By moving it, we are
421      // assured that the neg instructions we just inserted dominate the
422      // instruction we are about to insert after them.
423      //
424      I->moveBefore(BI);
425      I->setName(I->getName()+".neg");
426      return I;
427    }
428
429  // Okay, we need to materialize a negated version of V with an instruction.
430  // Scan the use lists of V to see if we have one already.
431  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
432    User *U = *UI;
433    if (!BinaryOperator::isNeg(U)) continue;
434
435    // We found one!  Now we have to make sure that the definition dominates
436    // this use.  We do this by moving it to the entry block (if it is a
437    // non-instruction value) or right after the definition.  These negates will
438    // be zapped by reassociate later, so we don't need much finesse here.
439    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
440
441    // Verify that the negate is in this function, V might be a constant expr.
442    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
443      continue;
444
445    BasicBlock::iterator InsertPt;
446    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
447      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
448        InsertPt = II->getNormalDest()->begin();
449      } else {
450        InsertPt = InstInput;
451        ++InsertPt;
452      }
453      while (isa<PHINode>(InsertPt)) ++InsertPt;
454    } else {
455      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
456    }
457    TheNeg->moveBefore(InsertPt);
458    return TheNeg;
459  }
460
461  // Insert a 'neg' instruction that subtracts the value from zero to get the
462  // negation.
463  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
464}
465
466/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
467/// X-Y into (X + -Y).
468static bool ShouldBreakUpSubtract(Instruction *Sub) {
469  // If this is a negation, we can't split it up!
470  if (BinaryOperator::isNeg(Sub))
471    return false;
472
473  // Don't bother to break this up unless either the LHS is an associable add or
474  // subtract or if this is only used by one.
475  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
476      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
477    return true;
478  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
479      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
480    return true;
481  if (Sub->hasOneUse() &&
482      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
483       isReassociableOp(Sub->use_back(), Instruction::Sub)))
484    return true;
485
486  return false;
487}
488
489/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
490/// only used by an add, transform this into (X+(0-Y)) to promote better
491/// reassociation.
492static Instruction *BreakUpSubtract(Instruction *Sub,
493                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
494  // Convert a subtract into an add and a neg instruction. This allows sub
495  // instructions to be commuted with other add instructions.
496  //
497  // Calculate the negative value of Operand 1 of the sub instruction,
498  // and set it as the RHS of the add instruction we just made.
499  //
500  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
501  Instruction *New =
502    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
503  New->takeName(Sub);
504
505  // Everyone now refers to the add instruction.
506  ValueRankMap.erase(Sub);
507  Sub->replaceAllUsesWith(New);
508  Sub->eraseFromParent();
509
510  DEBUG(dbgs() << "Negated: " << *New << '\n');
511  return New;
512}
513
514/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
515/// by one, change this into a multiply by a constant to assist with further
516/// reassociation.
517static Instruction *ConvertShiftToMul(Instruction *Shl,
518                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
519  // If an operand of this shift is a reassociable multiply, or if the shift
520  // is used by a reassociable multiply or add, turn into a multiply.
521  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
522      (Shl->hasOneUse() &&
523       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
524        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
525    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
526    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
527
528    Instruction *Mul =
529      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
530    ValueRankMap.erase(Shl);
531    Mul->takeName(Shl);
532    Shl->replaceAllUsesWith(Mul);
533    Shl->eraseFromParent();
534    return Mul;
535  }
536  return 0;
537}
538
539// Scan backwards and forwards among values with the same rank as element i to
540// see if X exists.  If X does not exist, return i.  This is useful when
541// scanning for 'x' when we see '-x' because they both get the same rank.
542static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
543                                  Value *X) {
544  unsigned XRank = Ops[i].Rank;
545  unsigned e = Ops.size();
546  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
547    if (Ops[j].Op == X)
548      return j;
549  // Scan backwards.
550  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
551    if (Ops[j].Op == X)
552      return j;
553  return i;
554}
555
556/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
557/// and returning the result.  Insert the tree before I.
558static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
559  if (Ops.size() == 1) return Ops.back();
560
561  Value *V1 = Ops.back();
562  Ops.pop_back();
563  Value *V2 = EmitAddTreeOfValues(I, Ops);
564  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
565}
566
567/// RemoveFactorFromExpression - If V is an expression tree that is a
568/// multiplication sequence, and if this sequence contains a multiply by Factor,
569/// remove Factor from the tree and return the new tree.
570Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
571  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
572  if (!BO) return 0;
573
574  SmallVector<ValueEntry, 8> Factors;
575  LinearizeExprTree(BO, Factors);
576
577  bool FoundFactor = false;
578  bool NeedsNegate = false;
579  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
580    if (Factors[i].Op == Factor) {
581      FoundFactor = true;
582      Factors.erase(Factors.begin()+i);
583      break;
584    }
585
586    // If this is a negative version of this factor, remove it.
587    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
588      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
589        if (FC1->getValue() == -FC2->getValue()) {
590          FoundFactor = NeedsNegate = true;
591          Factors.erase(Factors.begin()+i);
592          break;
593        }
594  }
595
596  if (!FoundFactor) {
597    // Make sure to restore the operands to the expression tree.
598    RewriteExprTree(BO, Factors);
599    return 0;
600  }
601
602  BasicBlock::iterator InsertPt = BO; ++InsertPt;
603
604  // If this was just a single multiply, remove the multiply and return the only
605  // remaining operand.
606  if (Factors.size() == 1) {
607    ValueRankMap.erase(BO);
608    DeadInsts.push_back(BO);
609    V = Factors[0].Op;
610  } else {
611    RewriteExprTree(BO, Factors);
612    V = BO;
613  }
614
615  if (NeedsNegate)
616    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
617
618  return V;
619}
620
621/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
622/// add its operands as factors, otherwise add V to the list of factors.
623///
624/// Ops is the top-level list of add operands we're trying to factor.
625static void FindSingleUseMultiplyFactors(Value *V,
626                                         SmallVectorImpl<Value*> &Factors,
627                                       const SmallVectorImpl<ValueEntry> &Ops,
628                                         bool IsRoot) {
629  BinaryOperator *BO;
630  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
631      !(BO = dyn_cast<BinaryOperator>(V)) ||
632      BO->getOpcode() != Instruction::Mul) {
633    Factors.push_back(V);
634    return;
635  }
636
637  // If this value has a single use because it is another input to the add
638  // tree we're reassociating and we dropped its use, it actually has two
639  // uses and we can't factor it.
640  if (!IsRoot) {
641    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
642      if (Ops[i].Op == V) {
643        Factors.push_back(V);
644        return;
645      }
646  }
647
648
649  // Otherwise, add the LHS and RHS to the list of factors.
650  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
651  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
652}
653
654/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
655/// instruction.  This optimizes based on identities.  If it can be reduced to
656/// a single Value, it is returned, otherwise the Ops list is mutated as
657/// necessary.
658static Value *OptimizeAndOrXor(unsigned Opcode,
659                               SmallVectorImpl<ValueEntry> &Ops) {
660  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
661  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
662  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663    // First, check for X and ~X in the operand list.
664    assert(i < Ops.size());
665    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
666      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
667      unsigned FoundX = FindInOperandList(Ops, i, X);
668      if (FoundX != i) {
669        if (Opcode == Instruction::And)   // ...&X&~X = 0
670          return Constant::getNullValue(X->getType());
671
672        if (Opcode == Instruction::Or)    // ...|X|~X = -1
673          return Constant::getAllOnesValue(X->getType());
674      }
675    }
676
677    // Next, check for duplicate pairs of values, which we assume are next to
678    // each other, due to our sorting criteria.
679    assert(i < Ops.size());
680    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
681      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
682        // Drop duplicate values for And and Or.
683        Ops.erase(Ops.begin()+i);
684        --i; --e;
685        ++NumAnnihil;
686        continue;
687      }
688
689      // Drop pairs of values for Xor.
690      assert(Opcode == Instruction::Xor);
691      if (e == 2)
692        return Constant::getNullValue(Ops[0].Op->getType());
693
694      // Y ^ X^X -> Y
695      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
696      i -= 1; e -= 2;
697      ++NumAnnihil;
698    }
699  }
700  return 0;
701}
702
703/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
704/// optimizes based on identities.  If it can be reduced to a single Value, it
705/// is returned, otherwise the Ops list is mutated as necessary.
706Value *Reassociate::OptimizeAdd(Instruction *I,
707                                SmallVectorImpl<ValueEntry> &Ops) {
708  // Scan the operand lists looking for X and -X pairs.  If we find any, we
709  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
710  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
711  //
712  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
713  //
714  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
715    Value *TheOp = Ops[i].Op;
716    // Check to see if we've seen this operand before.  If so, we factor all
717    // instances of the operand together.  Due to our sorting criteria, we know
718    // that these need to be next to each other in the vector.
719    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
720      // Rescan the list, remove all instances of this operand from the expr.
721      unsigned NumFound = 0;
722      do {
723        Ops.erase(Ops.begin()+i);
724        ++NumFound;
725      } while (i != Ops.size() && Ops[i].Op == TheOp);
726
727      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
728      ++NumFactor;
729
730      // Insert a new multiply.
731      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
732      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
733
734      // Now that we have inserted a multiply, optimize it. This allows us to
735      // handle cases that require multiple factoring steps, such as this:
736      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
737      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
738
739      // If every add operand was a duplicate, return the multiply.
740      if (Ops.empty())
741        return Mul;
742
743      // Otherwise, we had some input that didn't have the dupe, such as
744      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
745      // things being added by this operation.
746      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
747
748      --i;
749      e = Ops.size();
750      continue;
751    }
752
753    // Check for X and -X in the operand list.
754    if (!BinaryOperator::isNeg(TheOp))
755      continue;
756
757    Value *X = BinaryOperator::getNegArgument(TheOp);
758    unsigned FoundX = FindInOperandList(Ops, i, X);
759    if (FoundX == i)
760      continue;
761
762    // Remove X and -X from the operand list.
763    if (Ops.size() == 2)
764      return Constant::getNullValue(X->getType());
765
766    Ops.erase(Ops.begin()+i);
767    if (i < FoundX)
768      --FoundX;
769    else
770      --i;   // Need to back up an extra one.
771    Ops.erase(Ops.begin()+FoundX);
772    ++NumAnnihil;
773    --i;     // Revisit element.
774    e -= 2;  // Removed two elements.
775  }
776
777  // Scan the operand list, checking to see if there are any common factors
778  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
779  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
780  // To efficiently find this, we count the number of times a factor occurs
781  // for any ADD operands that are MULs.
782  DenseMap<Value*, unsigned> FactorOccurrences;
783
784  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
785  // where they are actually the same multiply.
786  unsigned MaxOcc = 0;
787  Value *MaxOccVal = 0;
788  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
789    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
790    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
791      continue;
792
793    // Compute all of the factors of this added value.
794    SmallVector<Value*, 8> Factors;
795    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
796    assert(Factors.size() > 1 && "Bad linearize!");
797
798    // Add one to FactorOccurrences for each unique factor in this op.
799    SmallPtrSet<Value*, 8> Duplicates;
800    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
801      Value *Factor = Factors[i];
802      if (!Duplicates.insert(Factor)) continue;
803
804      unsigned Occ = ++FactorOccurrences[Factor];
805      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
806
807      // If Factor is a negative constant, add the negated value as a factor
808      // because we can percolate the negate out.  Watch for minint, which
809      // cannot be positivified.
810      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
811        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
812          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
813          assert(!Duplicates.count(Factor) &&
814                 "Shouldn't have two constant factors, missed a canonicalize");
815
816          unsigned Occ = ++FactorOccurrences[Factor];
817          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
818        }
819    }
820  }
821
822  // If any factor occurred more than one time, we can pull it out.
823  if (MaxOcc > 1) {
824    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
825    ++NumFactor;
826
827    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
828    // this, we could otherwise run into situations where removing a factor
829    // from an expression will drop a use of maxocc, and this can cause
830    // RemoveFactorFromExpression on successive values to behave differently.
831    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
832    SmallVector<Value*, 4> NewMulOps;
833    for (unsigned i = 0; i != Ops.size(); ++i) {
834      // Only try to remove factors from expressions we're allowed to.
835      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
836      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
837        continue;
838
839      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
840        // The factorized operand may occur several times.  Convert them all in
841        // one fell swoop.
842        for (unsigned j = Ops.size(); j != i;) {
843          --j;
844          if (Ops[j].Op == Ops[i].Op) {
845            NewMulOps.push_back(V);
846            Ops.erase(Ops.begin()+j);
847          }
848        }
849        --i;
850      }
851    }
852
853    // No need for extra uses anymore.
854    delete DummyInst;
855
856    unsigned NumAddedValues = NewMulOps.size();
857    Value *V = EmitAddTreeOfValues(I, NewMulOps);
858
859    // Now that we have inserted the add tree, optimize it. This allows us to
860    // handle cases that require multiple factoring steps, such as this:
861    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
862    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
863    (void)NumAddedValues;
864    V = ReassociateExpression(cast<BinaryOperator>(V));
865
866    // Create the multiply.
867    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
868
869    // Rerun associate on the multiply in case the inner expression turned into
870    // a multiply.  We want to make sure that we keep things in canonical form.
871    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
872
873    // If every add operand included the factor (e.g. "A*B + A*C"), then the
874    // entire result expression is just the multiply "A*(B+C)".
875    if (Ops.empty())
876      return V2;
877
878    // Otherwise, we had some input that didn't have the factor, such as
879    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
880    // things being added by this operation.
881    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
882  }
883
884  return 0;
885}
886
887Value *Reassociate::OptimizeExpression(BinaryOperator *I,
888                                       SmallVectorImpl<ValueEntry> &Ops) {
889  // Now that we have the linearized expression tree, try to optimize it.
890  // Start by folding any constants that we found.
891  bool IterateOptimization = false;
892  if (Ops.size() == 1) return Ops[0].Op;
893
894  unsigned Opcode = I->getOpcode();
895
896  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
897    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
898      Ops.pop_back();
899      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
900      return OptimizeExpression(I, Ops);
901    }
902
903  // Check for destructive annihilation due to a constant being used.
904  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
905    switch (Opcode) {
906    default: break;
907    case Instruction::And:
908      if (CstVal->isZero())                  // X & 0 -> 0
909        return CstVal;
910      if (CstVal->isAllOnesValue())          // X & -1 -> X
911        Ops.pop_back();
912      break;
913    case Instruction::Mul:
914      if (CstVal->isZero()) {                // X * 0 -> 0
915        ++NumAnnihil;
916        return CstVal;
917      }
918
919      if (cast<ConstantInt>(CstVal)->isOne())
920        Ops.pop_back();                      // X * 1 -> X
921      break;
922    case Instruction::Or:
923      if (CstVal->isAllOnesValue())          // X | -1 -> -1
924        return CstVal;
925      // FALLTHROUGH!
926    case Instruction::Add:
927    case Instruction::Xor:
928      if (CstVal->isZero())                  // X [|^+] 0 -> X
929        Ops.pop_back();
930      break;
931    }
932  if (Ops.size() == 1) return Ops[0].Op;
933
934  // Handle destructive annihilation due to identities between elements in the
935  // argument list here.
936  switch (Opcode) {
937  default: break;
938  case Instruction::And:
939  case Instruction::Or:
940  case Instruction::Xor: {
941    unsigned NumOps = Ops.size();
942    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
943      return Result;
944    IterateOptimization |= Ops.size() != NumOps;
945    break;
946  }
947
948  case Instruction::Add: {
949    unsigned NumOps = Ops.size();
950    if (Value *Result = OptimizeAdd(I, Ops))
951      return Result;
952    IterateOptimization |= Ops.size() != NumOps;
953  }
954
955    break;
956  //case Instruction::Mul:
957  }
958
959  if (IterateOptimization)
960    return OptimizeExpression(I, Ops);
961  return 0;
962}
963
964
965/// ReassociateBB - Inspect all of the instructions in this basic block,
966/// reassociating them as we go.
967void Reassociate::ReassociateBB(BasicBlock *BB) {
968  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
969    Instruction *BI = BBI++;
970    if (BI->getOpcode() == Instruction::Shl &&
971        isa<ConstantInt>(BI->getOperand(1)))
972      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
973        MadeChange = true;
974        BI = NI;
975      }
976
977    // Reject cases where it is pointless to do this.
978    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
979        BI->getType()->isVectorTy())
980      continue;  // Floating point ops are not associative.
981
982    // Do not reassociate boolean (i1) expressions.  We want to preserve the
983    // original order of evaluation for short-circuited comparisons that
984    // SimplifyCFG has folded to AND/OR expressions.  If the expression
985    // is not further optimized, it is likely to be transformed back to a
986    // short-circuited form for code gen, and the source order may have been
987    // optimized for the most likely conditions.
988    if (BI->getType()->isIntegerTy(1))
989      continue;
990
991    // If this is a subtract instruction which is not already in negate form,
992    // see if we can convert it to X+-Y.
993    if (BI->getOpcode() == Instruction::Sub) {
994      if (ShouldBreakUpSubtract(BI)) {
995        BI = BreakUpSubtract(BI, ValueRankMap);
996        // Reset the BBI iterator in case BreakUpSubtract changed the
997        // instruction it points to.
998        BBI = BI;
999        ++BBI;
1000        MadeChange = true;
1001      } else if (BinaryOperator::isNeg(BI)) {
1002        // Otherwise, this is a negation.  See if the operand is a multiply tree
1003        // and if this is not an inner node of a multiply tree.
1004        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1005            (!BI->hasOneUse() ||
1006             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1007          BI = LowerNegateToMultiply(BI, ValueRankMap);
1008          MadeChange = true;
1009        }
1010      }
1011    }
1012
1013    // If this instruction is a commutative binary operator, process it.
1014    if (!BI->isAssociative()) continue;
1015    BinaryOperator *I = cast<BinaryOperator>(BI);
1016
1017    // If this is an interior node of a reassociable tree, ignore it until we
1018    // get to the root of the tree, to avoid N^2 analysis.
1019    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1020      continue;
1021
1022    // If this is an add tree that is used by a sub instruction, ignore it
1023    // until we process the subtract.
1024    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1025        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1026      continue;
1027
1028    ReassociateExpression(I);
1029  }
1030}
1031
1032Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1033
1034  // First, walk the expression tree, linearizing the tree, collecting the
1035  // operand information.
1036  SmallVector<ValueEntry, 8> Ops;
1037  LinearizeExprTree(I, Ops);
1038
1039  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1040
1041  // Now that we have linearized the tree to a list and have gathered all of
1042  // the operands and their ranks, sort the operands by their rank.  Use a
1043  // stable_sort so that values with equal ranks will have their relative
1044  // positions maintained (and so the compiler is deterministic).  Note that
1045  // this sorts so that the highest ranking values end up at the beginning of
1046  // the vector.
1047  std::stable_sort(Ops.begin(), Ops.end());
1048
1049  // OptimizeExpression - Now that we have the expression tree in a convenient
1050  // sorted form, optimize it globally if possible.
1051  if (Value *V = OptimizeExpression(I, Ops)) {
1052    // This expression tree simplified to something that isn't a tree,
1053    // eliminate it.
1054    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1055    I->replaceAllUsesWith(V);
1056    RemoveDeadBinaryOp(I);
1057    ++NumAnnihil;
1058    return V;
1059  }
1060
1061  // We want to sink immediates as deeply as possible except in the case where
1062  // this is a multiply tree used only by an add, and the immediate is a -1.
1063  // In this case we reassociate to put the negation on the outside so that we
1064  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1065  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1066      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1067      isa<ConstantInt>(Ops.back().Op) &&
1068      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1069    ValueEntry Tmp = Ops.pop_back_val();
1070    Ops.insert(Ops.begin(), Tmp);
1071  }
1072
1073  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1074
1075  if (Ops.size() == 1) {
1076    // This expression tree simplified to something that isn't a tree,
1077    // eliminate it.
1078    I->replaceAllUsesWith(Ops[0].Op);
1079    RemoveDeadBinaryOp(I);
1080    return Ops[0].Op;
1081  }
1082
1083  // Now that we ordered and optimized the expressions, splat them back into
1084  // the expression tree, removing any unneeded nodes.
1085  RewriteExprTree(I, Ops);
1086  return I;
1087}
1088
1089
1090bool Reassociate::runOnFunction(Function &F) {
1091  // Recalculate the rank map for F
1092  BuildRankMap(F);
1093
1094  MadeChange = false;
1095  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1096    ReassociateBB(FI);
1097
1098  // Now that we're done, delete any instructions which are no longer used.
1099  while (!DeadInsts.empty())
1100    if (Instruction *Inst =
1101          cast_or_null<Instruction>((Value *)DeadInsts.pop_back_val()))
1102      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1103
1104  // We are done with the rank map.
1105  RankMap.clear();
1106  ValueRankMap.clear();
1107  return MadeChange;
1108}
1109
1110