Reassociate.cpp revision fc375d22001d27ba6d22db67821da057e36f7f89
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType() << '\t';
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    dbgs() << "[ ";
67    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68    dbgs() << ", #" << Ops[i].Rank << "] ";
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    DenseMap<BasicBlock*, unsigned> RankMap;
76    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(&ID) {}
81
82    bool runOnFunction(Function &F);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.setPreservesCFG();
86    }
87  private:
88    void BuildRankMap(Function &F);
89    unsigned getRank(Value *V);
90    Value *ReassociateExpression(BinaryOperator *I);
91    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
92                         unsigned Idx = 0);
93    Value *OptimizeExpression(BinaryOperator *I,
94                              SmallVectorImpl<ValueEntry> &Ops);
95    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
97    void LinearizeExpr(BinaryOperator *I);
98    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
99    void ReassociateBB(BasicBlock *BB);
100
101    void RemoveDeadBinaryOp(Value *V);
102  };
103}
104
105char Reassociate::ID = 0;
106static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
107
108// Public interface to the Reassociate pass
109FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
110
111void Reassociate::RemoveDeadBinaryOp(Value *V) {
112  Instruction *Op = dyn_cast<Instruction>(V);
113  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
114    return;
115
116  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
117
118  ValueRankMap.erase(Op);
119  Op->eraseFromParent();
120  RemoveDeadBinaryOp(LHS);
121  RemoveDeadBinaryOp(RHS);
122}
123
124
125static bool isUnmovableInstruction(Instruction *I) {
126  if (I->getOpcode() == Instruction::PHI ||
127      I->getOpcode() == Instruction::Alloca ||
128      I->getOpcode() == Instruction::Load ||
129      I->getOpcode() == Instruction::Invoke ||
130      (I->getOpcode() == Instruction::Call &&
131       !isa<DbgInfoIntrinsic>(I)) ||
132      I->getOpcode() == Instruction::UDiv ||
133      I->getOpcode() == Instruction::SDiv ||
134      I->getOpcode() == Instruction::FDiv ||
135      I->getOpcode() == Instruction::URem ||
136      I->getOpcode() == Instruction::SRem ||
137      I->getOpcode() == Instruction::FRem)
138    return true;
139  return false;
140}
141
142void Reassociate::BuildRankMap(Function &F) {
143  unsigned i = 2;
144
145  // Assign distinct ranks to function arguments
146  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
147    ValueRankMap[&*I] = ++i;
148
149  ReversePostOrderTraversal<Function*> RPOT(&F);
150  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
151         E = RPOT.end(); I != E; ++I) {
152    BasicBlock *BB = *I;
153    unsigned BBRank = RankMap[BB] = ++i << 16;
154
155    // Walk the basic block, adding precomputed ranks for any instructions that
156    // we cannot move.  This ensures that the ranks for these instructions are
157    // all different in the block.
158    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
159      if (isUnmovableInstruction(I))
160        ValueRankMap[&*I] = ++BBRank;
161  }
162}
163
164unsigned Reassociate::getRank(Value *V) {
165  Instruction *I = dyn_cast<Instruction>(V);
166  if (I == 0) {
167    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
168    return 0;  // Otherwise it's a global or constant, rank 0.
169  }
170
171  if (unsigned Rank = ValueRankMap[I])
172    return Rank;    // Rank already known?
173
174  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175  // we can reassociate expressions for code motion!  Since we do not recurse
176  // for PHI nodes, we cannot have infinite recursion here, because there
177  // cannot be loops in the value graph that do not go through PHI nodes.
178  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179  for (unsigned i = 0, e = I->getNumOperands();
180       i != e && Rank != MaxRank; ++i)
181    Rank = std::max(Rank, getRank(I->getOperand(i)));
182
183  // If this is a not or neg instruction, do not count it for rank.  This
184  // assures us that X and ~X will have the same rank.
185  if (!I->getType()->isInteger() ||
186      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
187    ++Rank;
188
189  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
190  //     << Rank << "\n");
191
192  return ValueRankMap[I] = Rank;
193}
194
195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199      cast<Instruction>(V)->getOpcode() == Opcode)
200    return cast<BinaryOperator>(V);
201  return 0;
202}
203
204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
206static Instruction *LowerNegateToMultiply(Instruction *Neg,
207                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
208  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
209
210  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
211  ValueRankMap.erase(Neg);
212  Res->takeName(Neg);
213  Neg->replaceAllUsesWith(Res);
214  Neg->eraseFromParent();
215  return Res;
216}
217
218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well.  Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225  assert(isReassociableOp(LHS, I->getOpcode()) &&
226         isReassociableOp(RHS, I->getOpcode()) &&
227         "Not an expression that needs linearization?");
228
229  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
230
231  // Move the RHS instruction to live immediately before I, avoiding breaking
232  // dominator properties.
233  RHS->moveBefore(I);
234
235  // Move operands around to do the linearization.
236  I->setOperand(1, RHS->getOperand(0));
237  RHS->setOperand(0, LHS);
238  I->setOperand(0, RHS);
239
240  ++NumLinear;
241  MadeChange = true;
242  DEBUG(dbgs() << "Linearized: " << *I << '\n');
243
244  // If D is part of this expression tree, tail recurse.
245  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246    LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form.  This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values.  This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
259void Reassociate::LinearizeExprTree(BinaryOperator *I,
260                                    SmallVectorImpl<ValueEntry> &Ops) {
261  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262  unsigned Opcode = I->getOpcode();
263
264  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
268  // If this is a multiply expression tree and it contains internal negations,
269  // transform them into multiplies by -1 so they can be reassociated.
270  if (I->getOpcode() == Instruction::Mul) {
271    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
272      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
273      LHSBO = isReassociableOp(LHS, Opcode);
274    }
275    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
276      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
277      RHSBO = isReassociableOp(RHS, Opcode);
278    }
279  }
280
281  if (!LHSBO) {
282    if (!RHSBO) {
283      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
284      // such, just remember these operands and their rank.
285      Ops.push_back(ValueEntry(getRank(LHS), LHS));
286      Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288      // Clear the leaves out.
289      I->setOperand(0, UndefValue::get(I->getType()));
290      I->setOperand(1, UndefValue::get(I->getType()));
291      return;
292    }
293
294    // Turn X+(Y+Z) -> (Y+Z)+X
295    std::swap(LHSBO, RHSBO);
296    std::swap(LHS, RHS);
297    bool Success = !I->swapOperands();
298    assert(Success && "swapOperands failed");
299    Success = false;
300    MadeChange = true;
301  } else if (RHSBO) {
302    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
303    // part of the expression tree.
304    LinearizeExpr(I);
305    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306    RHS = I->getOperand(1);
307    RHSBO = 0;
308  }
309
310  // Okay, now we know that the LHS is a nested expression and that the RHS is
311  // not.  Perform reassociation.
312  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314  // Move LHS right before I to make sure that the tree expression dominates all
315  // values.
316  LHSBO->moveBefore(I);
317
318  // Linearize the expression tree on the LHS.
319  LinearizeExprTree(LHSBO, Ops);
320
321  // Remember the RHS operand and its rank.
322  Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324  // Clear the RHS leaf out.
325  I->setOperand(1, UndefValue::get(I->getType()));
326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order.  This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
332                                  SmallVectorImpl<ValueEntry> &Ops,
333                                  unsigned i) {
334  if (i+2 == Ops.size()) {
335    if (I->getOperand(0) != Ops[i].Op ||
336        I->getOperand(1) != Ops[i+1].Op) {
337      Value *OldLHS = I->getOperand(0);
338      DEBUG(dbgs() << "RA: " << *I << '\n');
339      I->setOperand(0, Ops[i].Op);
340      I->setOperand(1, Ops[i+1].Op);
341      DEBUG(dbgs() << "TO: " << *I << '\n');
342      MadeChange = true;
343      ++NumChanged;
344
345      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346      // delete the extra, now dead, nodes.
347      RemoveDeadBinaryOp(OldLHS);
348    }
349    return;
350  }
351  assert(i+2 < Ops.size() && "Ops index out of range!");
352
353  if (I->getOperand(1) != Ops[i].Op) {
354    DEBUG(dbgs() << "RA: " << *I << '\n');
355    I->setOperand(1, Ops[i].Op);
356    DEBUG(dbgs() << "TO: " << *I << '\n');
357    MadeChange = true;
358    ++NumChanged;
359  }
360
361  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362  assert(LHS->getOpcode() == I->getOpcode() &&
363         "Improper expression tree!");
364
365  // Compactify the tree instructions together with each other to guarantee
366  // that the expression tree is dominated by all of Ops.
367  LHS->moveBefore(I);
368  RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified.  The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
378static Value *NegateValue(Value *V, Instruction *BI) {
379  if (Constant *C = dyn_cast<Constant>(V))
380    return ConstantExpr::getNeg(C);
381
382  // We are trying to expose opportunity for reassociation.  One of the things
383  // that we want to do to achieve this is to push a negation as deep into an
384  // expression chain as possible, to expose the add instructions.  In practice,
385  // this means that we turn this:
386  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
387  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
388  // the constants.  We assume that instcombine will clean up the mess later if
389  // we introduce tons of unnecessary negation instructions.
390  //
391  if (Instruction *I = dyn_cast<Instruction>(V))
392    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
393      // Push the negates through the add.
394      I->setOperand(0, NegateValue(I->getOperand(0), BI));
395      I->setOperand(1, NegateValue(I->getOperand(1), BI));
396
397      // We must move the add instruction here, because the neg instructions do
398      // not dominate the old add instruction in general.  By moving it, we are
399      // assured that the neg instructions we just inserted dominate the
400      // instruction we are about to insert after them.
401      //
402      I->moveBefore(BI);
403      I->setName(I->getName()+".neg");
404      return I;
405    }
406
407  // Okay, we need to materialize a negated version of V with an instruction.
408  // Scan the use lists of V to see if we have one already.
409  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
410    if (!BinaryOperator::isNeg(*UI)) continue;
411
412    // We found one!  Now we have to make sure that the definition dominates
413    // this use.  We do this by moving it to the entry block (if it is a
414    // non-instruction value) or right after the definition.  These negates will
415    // be zapped by reassociate later, so we don't need much finesse here.
416    BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
417
418    // Verify that the negate is in this function, V might be a constant expr.
419    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
420      continue;
421
422    BasicBlock::iterator InsertPt;
423    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
424      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
425        InsertPt = II->getNormalDest()->begin();
426      } else {
427        InsertPt = InstInput;
428        ++InsertPt;
429      }
430      while (isa<PHINode>(InsertPt)) ++InsertPt;
431    } else {
432      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
433    }
434    TheNeg->moveBefore(InsertPt);
435    return TheNeg;
436  }
437
438  // Insert a 'neg' instruction that subtracts the value from zero to get the
439  // negation.
440  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
441}
442
443/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
444/// X-Y into (X + -Y).
445static bool ShouldBreakUpSubtract(Instruction *Sub) {
446  // If this is a negation, we can't split it up!
447  if (BinaryOperator::isNeg(Sub))
448    return false;
449
450  // Don't bother to break this up unless either the LHS is an associable add or
451  // subtract or if this is only used by one.
452  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
453      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
454    return true;
455  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
456      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
457    return true;
458  if (Sub->hasOneUse() &&
459      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
460       isReassociableOp(Sub->use_back(), Instruction::Sub)))
461    return true;
462
463  return false;
464}
465
466/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
467/// only used by an add, transform this into (X+(0-Y)) to promote better
468/// reassociation.
469static Instruction *BreakUpSubtract(Instruction *Sub,
470                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
471  // Convert a subtract into an add and a neg instruction. This allows sub
472  // instructions to be commuted with other add instructions.
473  //
474  // Calculate the negative value of Operand 1 of the sub instruction,
475  // and set it as the RHS of the add instruction we just made.
476  //
477  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
478  Instruction *New =
479    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
480  New->takeName(Sub);
481
482  // Everyone now refers to the add instruction.
483  ValueRankMap.erase(Sub);
484  Sub->replaceAllUsesWith(New);
485  Sub->eraseFromParent();
486
487  DEBUG(dbgs() << "Negated: " << *New << '\n');
488  return New;
489}
490
491/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
492/// by one, change this into a multiply by a constant to assist with further
493/// reassociation.
494static Instruction *ConvertShiftToMul(Instruction *Shl,
495                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
496  // If an operand of this shift is a reassociable multiply, or if the shift
497  // is used by a reassociable multiply or add, turn into a multiply.
498  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
499      (Shl->hasOneUse() &&
500       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
501        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
502    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
503    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
504
505    Instruction *Mul =
506      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
507    ValueRankMap.erase(Shl);
508    Mul->takeName(Shl);
509    Shl->replaceAllUsesWith(Mul);
510    Shl->eraseFromParent();
511    return Mul;
512  }
513  return 0;
514}
515
516// Scan backwards and forwards among values with the same rank as element i to
517// see if X exists.  If X does not exist, return i.  This is useful when
518// scanning for 'x' when we see '-x' because they both get the same rank.
519static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
520                                  Value *X) {
521  unsigned XRank = Ops[i].Rank;
522  unsigned e = Ops.size();
523  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
524    if (Ops[j].Op == X)
525      return j;
526  // Scan backwards.
527  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
528    if (Ops[j].Op == X)
529      return j;
530  return i;
531}
532
533/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
534/// and returning the result.  Insert the tree before I.
535static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
536  if (Ops.size() == 1) return Ops.back();
537
538  Value *V1 = Ops.back();
539  Ops.pop_back();
540  Value *V2 = EmitAddTreeOfValues(I, Ops);
541  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
542}
543
544/// RemoveFactorFromExpression - If V is an expression tree that is a
545/// multiplication sequence, and if this sequence contains a multiply by Factor,
546/// remove Factor from the tree and return the new tree.
547Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
548  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
549  if (!BO) return 0;
550
551  SmallVector<ValueEntry, 8> Factors;
552  LinearizeExprTree(BO, Factors);
553
554  bool FoundFactor = false;
555  bool NeedsNegate = false;
556  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
557    if (Factors[i].Op == Factor) {
558      FoundFactor = true;
559      Factors.erase(Factors.begin()+i);
560      break;
561    }
562
563    // If this is a negative version of this factor, remove it.
564    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
565      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
566        if (FC1->getValue() == -FC2->getValue()) {
567          FoundFactor = NeedsNegate = true;
568          Factors.erase(Factors.begin()+i);
569          break;
570        }
571  }
572
573  if (!FoundFactor) {
574    // Make sure to restore the operands to the expression tree.
575    RewriteExprTree(BO, Factors);
576    return 0;
577  }
578
579  BasicBlock::iterator InsertPt = BO; ++InsertPt;
580
581  // If this was just a single multiply, remove the multiply and return the only
582  // remaining operand.
583  if (Factors.size() == 1) {
584    ValueRankMap.erase(BO);
585    BO->eraseFromParent();
586    V = Factors[0].Op;
587  } else {
588    RewriteExprTree(BO, Factors);
589    V = BO;
590  }
591
592  if (NeedsNegate)
593    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
594
595  return V;
596}
597
598/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
599/// add its operands as factors, otherwise add V to the list of factors.
600static void FindSingleUseMultiplyFactors(Value *V,
601                                         SmallVectorImpl<Value*> &Factors) {
602  BinaryOperator *BO;
603  if ((!V->hasOneUse() && !V->use_empty()) ||
604      !(BO = dyn_cast<BinaryOperator>(V)) ||
605      BO->getOpcode() != Instruction::Mul) {
606    Factors.push_back(V);
607    return;
608  }
609
610  // Otherwise, add the LHS and RHS to the list of factors.
611  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
612  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
613}
614
615/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
616/// instruction.  This optimizes based on identities.  If it can be reduced to
617/// a single Value, it is returned, otherwise the Ops list is mutated as
618/// necessary.
619static Value *OptimizeAndOrXor(unsigned Opcode,
620                               SmallVectorImpl<ValueEntry> &Ops) {
621  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
622  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
623  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
624    // First, check for X and ~X in the operand list.
625    assert(i < Ops.size());
626    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
627      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
628      unsigned FoundX = FindInOperandList(Ops, i, X);
629      if (FoundX != i) {
630        if (Opcode == Instruction::And)   // ...&X&~X = 0
631          return Constant::getNullValue(X->getType());
632
633        if (Opcode == Instruction::Or)    // ...|X|~X = -1
634          return Constant::getAllOnesValue(X->getType());
635      }
636    }
637
638    // Next, check for duplicate pairs of values, which we assume are next to
639    // each other, due to our sorting criteria.
640    assert(i < Ops.size());
641    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
642      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
643        // Drop duplicate values for And and Or.
644        Ops.erase(Ops.begin()+i);
645        --i; --e;
646        ++NumAnnihil;
647        continue;
648      }
649
650      // Drop pairs of values for Xor.
651      assert(Opcode == Instruction::Xor);
652      if (e == 2)
653        return Constant::getNullValue(Ops[0].Op->getType());
654
655      // Y ^ X^X -> Y
656      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
657      i -= 1; e -= 2;
658      ++NumAnnihil;
659    }
660  }
661  return 0;
662}
663
664/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
665/// optimizes based on identities.  If it can be reduced to a single Value, it
666/// is returned, otherwise the Ops list is mutated as necessary.
667Value *Reassociate::OptimizeAdd(Instruction *I,
668                                SmallVectorImpl<ValueEntry> &Ops) {
669  // Scan the operand lists looking for X and -X pairs.  If we find any, we
670  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
671  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
672  //
673  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
674  //
675  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
676    Value *TheOp = Ops[i].Op;
677    // Check to see if we've seen this operand before.  If so, we factor all
678    // instances of the operand together.  Due to our sorting criteria, we know
679    // that these need to be next to each other in the vector.
680    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
681      // Rescan the list, remove all instances of this operand from the expr.
682      unsigned NumFound = 0;
683      do {
684        Ops.erase(Ops.begin()+i);
685        ++NumFound;
686      } while (i != Ops.size() && Ops[i].Op == TheOp);
687
688      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
689      ++NumFactor;
690
691      // Insert a new multiply.
692      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
693      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
694
695      // Now that we have inserted a multiply, optimize it. This allows us to
696      // handle cases that require multiple factoring steps, such as this:
697      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
698      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
699
700      // If every add operand was a duplicate, return the multiply.
701      if (Ops.empty())
702        return Mul;
703
704      // Otherwise, we had some input that didn't have the dupe, such as
705      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
706      // things being added by this operation.
707      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
708
709      --i;
710      e = Ops.size();
711      continue;
712    }
713
714    // Check for X and -X in the operand list.
715    if (!BinaryOperator::isNeg(TheOp))
716      continue;
717
718    Value *X = BinaryOperator::getNegArgument(TheOp);
719    unsigned FoundX = FindInOperandList(Ops, i, X);
720    if (FoundX == i)
721      continue;
722
723    // Remove X and -X from the operand list.
724    if (Ops.size() == 2)
725      return Constant::getNullValue(X->getType());
726
727    Ops.erase(Ops.begin()+i);
728    if (i < FoundX)
729      --FoundX;
730    else
731      --i;   // Need to back up an extra one.
732    Ops.erase(Ops.begin()+FoundX);
733    ++NumAnnihil;
734    --i;     // Revisit element.
735    e -= 2;  // Removed two elements.
736  }
737
738  // Scan the operand list, checking to see if there are any common factors
739  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
740  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
741  // To efficiently find this, we count the number of times a factor occurs
742  // for any ADD operands that are MULs.
743  DenseMap<Value*, unsigned> FactorOccurrences;
744
745  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
746  // where they are actually the same multiply.
747  unsigned MaxOcc = 0;
748  Value *MaxOccVal = 0;
749  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
750    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
751    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
752      continue;
753
754    // Compute all of the factors of this added value.
755    SmallVector<Value*, 8> Factors;
756    FindSingleUseMultiplyFactors(BOp, Factors);
757    assert(Factors.size() > 1 && "Bad linearize!");
758
759    // Add one to FactorOccurrences for each unique factor in this op.
760    SmallPtrSet<Value*, 8> Duplicates;
761    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
762      Value *Factor = Factors[i];
763      if (!Duplicates.insert(Factor)) continue;
764
765      unsigned Occ = ++FactorOccurrences[Factor];
766      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
767
768      // If Factor is a negative constant, add the negated value as a factor
769      // because we can percolate the negate out.  Watch for minint, which
770      // cannot be positivified.
771      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
772        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
773          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
774          assert(!Duplicates.count(Factor) &&
775                 "Shouldn't have two constant factors, missed a canonicalize");
776
777          unsigned Occ = ++FactorOccurrences[Factor];
778          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
779        }
780    }
781  }
782
783  // If any factor occurred more than one time, we can pull it out.
784  if (MaxOcc > 1) {
785    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
786    ++NumFactor;
787
788    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
789    // this, we could otherwise run into situations where removing a factor
790    // from an expression will drop a use of maxocc, and this can cause
791    // RemoveFactorFromExpression on successive values to behave differently.
792    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
793    SmallVector<Value*, 4> NewMulOps;
794    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
795      // Only try to remove factors from expressions we're allowed to.
796      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
797      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
798        continue;
799
800      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
801        NewMulOps.push_back(V);
802        Ops.erase(Ops.begin()+i);
803        --i; --e;
804      }
805    }
806
807    // No need for extra uses anymore.
808    delete DummyInst;
809
810    unsigned NumAddedValues = NewMulOps.size();
811    Value *V = EmitAddTreeOfValues(I, NewMulOps);
812
813    // Now that we have inserted the add tree, optimize it. This allows us to
814    // handle cases that require multiple factoring steps, such as this:
815    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
816    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
817    (void)NumAddedValues;
818    V = ReassociateExpression(cast<BinaryOperator>(V));
819
820    // Create the multiply.
821    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
822
823    // Rerun associate on the multiply in case the inner expression turned into
824    // a multiply.  We want to make sure that we keep things in canonical form.
825    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
826
827    // If every add operand included the factor (e.g. "A*B + A*C"), then the
828    // entire result expression is just the multiply "A*(B+C)".
829    if (Ops.empty())
830      return V2;
831
832    // Otherwise, we had some input that didn't have the factor, such as
833    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
834    // things being added by this operation.
835    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
836  }
837
838  return 0;
839}
840
841Value *Reassociate::OptimizeExpression(BinaryOperator *I,
842                                       SmallVectorImpl<ValueEntry> &Ops) {
843  // Now that we have the linearized expression tree, try to optimize it.
844  // Start by folding any constants that we found.
845  bool IterateOptimization = false;
846  if (Ops.size() == 1) return Ops[0].Op;
847
848  unsigned Opcode = I->getOpcode();
849
850  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
851    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
852      Ops.pop_back();
853      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
854      return OptimizeExpression(I, Ops);
855    }
856
857  // Check for destructive annihilation due to a constant being used.
858  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
859    switch (Opcode) {
860    default: break;
861    case Instruction::And:
862      if (CstVal->isZero())                  // X & 0 -> 0
863        return CstVal;
864      if (CstVal->isAllOnesValue())          // X & -1 -> X
865        Ops.pop_back();
866      break;
867    case Instruction::Mul:
868      if (CstVal->isZero()) {                // X * 0 -> 0
869        ++NumAnnihil;
870        return CstVal;
871      }
872
873      if (cast<ConstantInt>(CstVal)->isOne())
874        Ops.pop_back();                      // X * 1 -> X
875      break;
876    case Instruction::Or:
877      if (CstVal->isAllOnesValue())          // X | -1 -> -1
878        return CstVal;
879      // FALLTHROUGH!
880    case Instruction::Add:
881    case Instruction::Xor:
882      if (CstVal->isZero())                  // X [|^+] 0 -> X
883        Ops.pop_back();
884      break;
885    }
886  if (Ops.size() == 1) return Ops[0].Op;
887
888  // Handle destructive annihilation due to identities between elements in the
889  // argument list here.
890  switch (Opcode) {
891  default: break;
892  case Instruction::And:
893  case Instruction::Or:
894  case Instruction::Xor: {
895    unsigned NumOps = Ops.size();
896    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
897      return Result;
898    IterateOptimization |= Ops.size() != NumOps;
899    break;
900  }
901
902  case Instruction::Add: {
903    unsigned NumOps = Ops.size();
904    if (Value *Result = OptimizeAdd(I, Ops))
905      return Result;
906    IterateOptimization |= Ops.size() != NumOps;
907  }
908
909    break;
910  //case Instruction::Mul:
911  }
912
913  if (IterateOptimization)
914    return OptimizeExpression(I, Ops);
915  return 0;
916}
917
918
919/// ReassociateBB - Inspect all of the instructions in this basic block,
920/// reassociating them as we go.
921void Reassociate::ReassociateBB(BasicBlock *BB) {
922  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
923    Instruction *BI = BBI++;
924    if (BI->getOpcode() == Instruction::Shl &&
925        isa<ConstantInt>(BI->getOperand(1)))
926      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
927        MadeChange = true;
928        BI = NI;
929      }
930
931    // Reject cases where it is pointless to do this.
932    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
933        isa<VectorType>(BI->getType()))
934      continue;  // Floating point ops are not associative.
935
936    // Do not reassociate boolean (i1) expressions.  We want to preserve the
937    // original order of evaluation for short-circuited comparisons that
938    // SimplifyCFG has folded to AND/OR expressions.  If the expression
939    // is not further optimized, it is likely to be transformed back to a
940    // short-circuited form for code gen, and the source order may have been
941    // optimized for the most likely conditions.
942    if (BI->getType()->isInteger(1))
943      continue;
944
945    // If this is a subtract instruction which is not already in negate form,
946    // see if we can convert it to X+-Y.
947    if (BI->getOpcode() == Instruction::Sub) {
948      if (ShouldBreakUpSubtract(BI)) {
949        BI = BreakUpSubtract(BI, ValueRankMap);
950        // Reset the BBI iterator in case BreakUpSubtract changed the
951        // instruction it points to.
952        BBI = BI;
953        ++BBI;
954        MadeChange = true;
955      } else if (BinaryOperator::isNeg(BI)) {
956        // Otherwise, this is a negation.  See if the operand is a multiply tree
957        // and if this is not an inner node of a multiply tree.
958        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
959            (!BI->hasOneUse() ||
960             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
961          BI = LowerNegateToMultiply(BI, ValueRankMap);
962          MadeChange = true;
963        }
964      }
965    }
966
967    // If this instruction is a commutative binary operator, process it.
968    if (!BI->isAssociative()) continue;
969    BinaryOperator *I = cast<BinaryOperator>(BI);
970
971    // If this is an interior node of a reassociable tree, ignore it until we
972    // get to the root of the tree, to avoid N^2 analysis.
973    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
974      continue;
975
976    // If this is an add tree that is used by a sub instruction, ignore it
977    // until we process the subtract.
978    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
979        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
980      continue;
981
982    ReassociateExpression(I);
983  }
984}
985
986Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
987
988  // First, walk the expression tree, linearizing the tree, collecting the
989  // operand information.
990  SmallVector<ValueEntry, 8> Ops;
991  LinearizeExprTree(I, Ops);
992
993  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
994
995  // Now that we have linearized the tree to a list and have gathered all of
996  // the operands and their ranks, sort the operands by their rank.  Use a
997  // stable_sort so that values with equal ranks will have their relative
998  // positions maintained (and so the compiler is deterministic).  Note that
999  // this sorts so that the highest ranking values end up at the beginning of
1000  // the vector.
1001  std::stable_sort(Ops.begin(), Ops.end());
1002
1003  // OptimizeExpression - Now that we have the expression tree in a convenient
1004  // sorted form, optimize it globally if possible.
1005  if (Value *V = OptimizeExpression(I, Ops)) {
1006    // This expression tree simplified to something that isn't a tree,
1007    // eliminate it.
1008    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1009    I->replaceAllUsesWith(V);
1010    RemoveDeadBinaryOp(I);
1011    ++NumAnnihil;
1012    return V;
1013  }
1014
1015  // We want to sink immediates as deeply as possible except in the case where
1016  // this is a multiply tree used only by an add, and the immediate is a -1.
1017  // In this case we reassociate to put the negation on the outside so that we
1018  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1019  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1020      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1021      isa<ConstantInt>(Ops.back().Op) &&
1022      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1023    ValueEntry Tmp = Ops.pop_back_val();
1024    Ops.insert(Ops.begin(), Tmp);
1025  }
1026
1027  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1028
1029  if (Ops.size() == 1) {
1030    // This expression tree simplified to something that isn't a tree,
1031    // eliminate it.
1032    I->replaceAllUsesWith(Ops[0].Op);
1033    RemoveDeadBinaryOp(I);
1034    return Ops[0].Op;
1035  }
1036
1037  // Now that we ordered and optimized the expressions, splat them back into
1038  // the expression tree, removing any unneeded nodes.
1039  RewriteExprTree(I, Ops);
1040  return I;
1041}
1042
1043
1044bool Reassociate::runOnFunction(Function &F) {
1045  // Recalculate the rank map for F
1046  BuildRankMap(F);
1047
1048  MadeChange = false;
1049  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1050    ReassociateBB(FI);
1051
1052  // We are done with the rank map.
1053  RankMap.clear();
1054  ValueRankMap.clear();
1055  return MadeChange;
1056}
1057
1058