SCCP.cpp revision 15876bb28c9c0983279c30a123c13224648574c1
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "Support/Debug.h"
34#include "Support/hash_map"
35#include "Support/Statistic.h"
36#include "Support/STLExtras.h"
37#include <algorithm>
38#include <set>
39using namespace llvm;
40
41// InstVal class - This class represents the different lattice values that an
42// instruction may occupy.  It is a simple class with value semantics.
43//
44namespace {
45  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
46
47class InstVal {
48  enum {
49    undefined,           // This instruction has no known value
50    constant,            // This instruction has a constant value
51    overdefined          // This instruction has an unknown value
52  } LatticeValue;        // The current lattice position
53  Constant *ConstantVal; // If Constant value, the current value
54public:
55  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
56
57  // markOverdefined - Return true if this is a new status to be in...
58  inline bool markOverdefined() {
59    if (LatticeValue != overdefined) {
60      LatticeValue = overdefined;
61      return true;
62    }
63    return false;
64  }
65
66  // markConstant - Return true if this is a new status for us...
67  inline bool markConstant(Constant *V) {
68    if (LatticeValue != constant) {
69      LatticeValue = constant;
70      ConstantVal = V;
71      return true;
72    } else {
73      assert(ConstantVal == V && "Marking constant with different value");
74    }
75    return false;
76  }
77
78  inline bool isUndefined()   const { return LatticeValue == undefined; }
79  inline bool isConstant()    const { return LatticeValue == constant; }
80  inline bool isOverdefined() const { return LatticeValue == overdefined; }
81
82  inline Constant *getConstant() const {
83    assert(isConstant() && "Cannot get the constant of a non-constant!");
84    return ConstantVal;
85  }
86};
87
88} // end anonymous namespace
89
90
91//===----------------------------------------------------------------------===//
92// SCCP Class
93//
94// This class does all of the work of Sparse Conditional Constant Propagation.
95//
96namespace {
97class SCCP : public FunctionPass, public InstVisitor<SCCP> {
98  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
99  hash_map<Value*, InstVal> ValueState;  // The state each value is in...
100
101  // The reason for two worklists is that overdefined is the lowest state
102  // on the lattice, and moving things to overdefined as fast as possible
103  // makes SCCP converge much faster.
104  // By having a separate worklist, we accomplish this because everything
105  // possibly overdefined will become overdefined at the soonest possible
106  // point.
107  std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined
108                                                    // instruction work list
109  std::vector<Instruction*> InstWorkList;// The instruction work list
110
111
112  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
113
114  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
115  /// overdefined, despite the fact that the PHI node is overdefined.
116  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
117
118  /// KnownFeasibleEdges - Entries in this set are edges which have already had
119  /// PHI nodes retriggered.
120  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
121  std::set<Edge> KnownFeasibleEdges;
122public:
123
124  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
125  // and return true if the function was modified.
126  //
127  bool runOnFunction(Function &F);
128
129  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130    AU.setPreservesCFG();
131  }
132
133
134  //===--------------------------------------------------------------------===//
135  // The implementation of this class
136  //
137private:
138  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
139
140  // markConstant - Make a value be marked as "constant".  If the value
141  // is not already a constant, add it to the instruction work list so that
142  // the users of the instruction are updated later.
143  //
144  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
145    if (IV.markConstant(C)) {
146      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
147      InstWorkList.push_back(I);
148    }
149  }
150  inline void markConstant(Instruction *I, Constant *C) {
151    markConstant(ValueState[I], I, C);
152  }
153
154  // markOverdefined - Make a value be marked as "overdefined". If the
155  // value is not already overdefined, add it to the overdefined instruction
156  // work list so that the users of the instruction are updated later.
157
158  inline void markOverdefined(InstVal &IV, Instruction *I) {
159    if (IV.markOverdefined()) {
160      DEBUG(std::cerr << "markOverdefined: " << *I);
161      OverdefinedInstWorkList.push_back(I);  // Only instructions go on the work list
162    }
163  }
164  inline void markOverdefined(Instruction *I) {
165    markOverdefined(ValueState[I], I);
166  }
167
168  // getValueState - Return the InstVal object that corresponds to the value.
169  // This function is necessary because not all values should start out in the
170  // underdefined state... Argument's should be overdefined, and
171  // constants should be marked as constants.  If a value is not known to be an
172  // Instruction object, then use this accessor to get its value from the map.
173  //
174  inline InstVal &getValueState(Value *V) {
175    hash_map<Value*, InstVal>::iterator I = ValueState.find(V);
176    if (I != ValueState.end()) return I->second;  // Common case, in the map
177
178    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
179      ValueState[CPV].markConstant(CPV);
180    } else if (isa<Argument>(V)) {                // Arguments are overdefined
181      ValueState[V].markOverdefined();
182    }
183    // All others are underdefined by default...
184    return ValueState[V];
185  }
186
187  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
188  // work list if it is not already executable...
189  //
190  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
191    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
192      return;  // This edge is already known to be executable!
193
194    if (BBExecutable.count(Dest)) {
195      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
196                      << " -> " << Dest->getName() << "\n");
197
198      // The destination is already executable, but we just made an edge
199      // feasible that wasn't before.  Revisit the PHI nodes in the block
200      // because they have potentially new operands.
201      for (BasicBlock::iterator I = Dest->begin();
202           PHINode *PN = dyn_cast<PHINode>(I); ++I)
203        visitPHINode(*PN);
204
205    } else {
206      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
207      BBExecutable.insert(Dest);   // Basic block is executable!
208      BBWorkList.push_back(Dest);  // Add the block to the work list!
209    }
210  }
211
212
213  // visit implementations - Something changed in this instruction... Either an
214  // operand made a transition, or the instruction is newly executable.  Change
215  // the value type of I to reflect these changes if appropriate.
216  //
217  void visitPHINode(PHINode &I);
218
219  // Terminators
220  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
221  void visitTerminatorInst(TerminatorInst &TI);
222
223  void visitCastInst(CastInst &I);
224  void visitSelectInst(SelectInst &I);
225  void visitBinaryOperator(Instruction &I);
226  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
227
228  // Instructions that cannot be folded away...
229  void visitStoreInst     (Instruction &I) { /*returns void*/ }
230  void visitLoadInst      (LoadInst &I);
231  void visitGetElementPtrInst(GetElementPtrInst &I);
232  void visitCallInst      (CallInst &I);
233  void visitInvokeInst    (TerminatorInst &I) {
234    if (I.getType() != Type::VoidTy) markOverdefined(&I);
235    visitTerminatorInst(I);
236  }
237  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
238  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
239  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
240  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
241  void visitFreeInst      (Instruction &I) { /*returns void*/ }
242
243  void visitInstruction(Instruction &I) {
244    // If a new instruction is added to LLVM that we don't handle...
245    std::cerr << "SCCP: Don't know how to handle: " << I;
246    markOverdefined(&I);   // Just in case
247  }
248
249  // getFeasibleSuccessors - Return a vector of booleans to indicate which
250  // successors are reachable from a given terminator instruction.
251  //
252  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
253
254  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
255  // block to the 'To' basic block is currently feasible...
256  //
257  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
258
259  // OperandChangedState - This method is invoked on all of the users of an
260  // instruction that was just changed state somehow....  Based on this
261  // information, we need to update the specified user of this instruction.
262  //
263  void OperandChangedState(User *U) {
264    // Only instructions use other variable values!
265    Instruction &I = cast<Instruction>(*U);
266    if (BBExecutable.count(I.getParent()))   // Inst is executable?
267      visit(I);
268  }
269};
270
271  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
272} // end anonymous namespace
273
274
275// createSCCPPass - This is the public interface to this file...
276Pass *llvm::createSCCPPass() {
277  return new SCCP();
278}
279
280
281//===----------------------------------------------------------------------===//
282// SCCP Class Implementation
283
284
285// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
286// and return true if the function was modified.
287//
288bool SCCP::runOnFunction(Function &F) {
289  // Mark the first block of the function as being executable...
290  BBExecutable.insert(F.begin());   // Basic block is executable!
291  BBWorkList.push_back(F.begin());  // Add the block to the work list!
292
293  // Process the work lists until they are empty!
294  while (!BBWorkList.empty() || !InstWorkList.empty() ||
295	 !OverdefinedInstWorkList.empty()) {
296    // Process the instruction work list...
297    while (!OverdefinedInstWorkList.empty()) {
298      Instruction *I = OverdefinedInstWorkList.back();
299      OverdefinedInstWorkList.pop_back();
300
301      DEBUG(std::cerr << "\nPopped off OI-WL: " << I);
302
303      // "I" got into the work list because it either made the transition from
304      // bottom to constant
305      //
306      // Anything on this worklist that is overdefined need not be visited
307      // since all of its users will have already been marked as overdefined
308      // Update all of the users of this instruction's value...
309      //
310      for_each(I->use_begin(), I->use_end(),
311	       bind_obj(this, &SCCP::OperandChangedState));
312    }
313    // Process the instruction work list...
314    while (!InstWorkList.empty()) {
315      Instruction *I = InstWorkList.back();
316      InstWorkList.pop_back();
317
318      DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
319
320      // "I" got into the work list because it either made the transition from
321      // bottom to constant
322      //
323      // Anything on this worklist that is overdefined need not be visited
324      // since all of its users will have already been marked as overdefined.
325      // Update all of the users of this instruction's value...
326      //
327      InstVal &Ival = getValueState (I);
328      if (!Ival.isOverdefined())
329	for_each(I->use_begin(), I->use_end(),
330		 bind_obj(this, &SCCP::OperandChangedState));
331    }
332
333    // Process the basic block work list...
334    while (!BBWorkList.empty()) {
335      BasicBlock *BB = BBWorkList.back();
336      BBWorkList.pop_back();
337
338      DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
339
340      // Notify all instructions in this basic block that they are newly
341      // executable.
342      visit(BB);
343    }
344  }
345
346  if (DebugFlag) {
347    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
348      if (!BBExecutable.count(I))
349        std::cerr << "BasicBlock Dead:" << *I;
350  }
351
352  // Iterate over all of the instructions in a function, replacing them with
353  // constants if we have found them to be of constant values.
354  //
355  bool MadeChanges = false;
356  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
357    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
358      Instruction &Inst = *BI;
359      InstVal &IV = ValueState[&Inst];
360      if (IV.isConstant()) {
361        Constant *Const = IV.getConstant();
362        DEBUG(std::cerr << "Constant: " << *Const << " = " << Inst);
363
364        // Replaces all of the uses of a variable with uses of the constant.
365        Inst.replaceAllUsesWith(Const);
366
367        // Remove the operator from the list of definitions... and delete it.
368        BI = BB->getInstList().erase(BI);
369
370        // Hey, we just changed something!
371        MadeChanges = true;
372        ++NumInstRemoved;
373      } else {
374        ++BI;
375      }
376    }
377
378  // Reset state so that the next invocation will have empty data structures
379  BBExecutable.clear();
380  ValueState.clear();
381  std::vector<Instruction*>().swap(OverdefinedInstWorkList);
382  std::vector<Instruction*>().swap(InstWorkList);
383  std::vector<BasicBlock*>().swap(BBWorkList);
384
385  return MadeChanges;
386}
387
388
389// getFeasibleSuccessors - Return a vector of booleans to indicate which
390// successors are reachable from a given terminator instruction.
391//
392void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
393  Succs.resize(TI.getNumSuccessors());
394  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
395    if (BI->isUnconditional()) {
396      Succs[0] = true;
397    } else {
398      InstVal &BCValue = getValueState(BI->getCondition());
399      if (BCValue.isOverdefined() ||
400          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
401        // Overdefined condition variables, and branches on unfoldable constant
402        // conditions, mean the branch could go either way.
403        Succs[0] = Succs[1] = true;
404      } else if (BCValue.isConstant()) {
405        // Constant condition variables mean the branch can only go a single way
406        Succs[BCValue.getConstant() == ConstantBool::False] = true;
407      }
408    }
409  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
410    // Invoke instructions successors are always executable.
411    Succs[0] = Succs[1] = true;
412  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
413    InstVal &SCValue = getValueState(SI->getCondition());
414    if (SCValue.isOverdefined() ||   // Overdefined condition?
415        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
416      // All destinations are executable!
417      Succs.assign(TI.getNumSuccessors(), true);
418    } else if (SCValue.isConstant()) {
419      Constant *CPV = SCValue.getConstant();
420      // Make sure to skip the "default value" which isn't a value
421      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
422        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
423          Succs[i] = true;
424          return;
425        }
426      }
427
428      // Constant value not equal to any of the branches... must execute
429      // default branch then...
430      Succs[0] = true;
431    }
432  } else {
433    std::cerr << "SCCP: Don't know how to handle: " << TI;
434    Succs.assign(TI.getNumSuccessors(), true);
435  }
436}
437
438
439// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
440// block to the 'To' basic block is currently feasible...
441//
442bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
443  assert(BBExecutable.count(To) && "Dest should always be alive!");
444
445  // Make sure the source basic block is executable!!
446  if (!BBExecutable.count(From)) return false;
447
448  // Check to make sure this edge itself is actually feasible now...
449  TerminatorInst *TI = From->getTerminator();
450  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
451    if (BI->isUnconditional())
452      return true;
453    else {
454      InstVal &BCValue = getValueState(BI->getCondition());
455      if (BCValue.isOverdefined()) {
456        // Overdefined condition variables mean the branch could go either way.
457        return true;
458      } else if (BCValue.isConstant()) {
459        // Not branching on an evaluatable constant?
460        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
461
462        // Constant condition variables mean the branch can only go a single way
463        return BI->getSuccessor(BCValue.getConstant() ==
464                                       ConstantBool::False) == To;
465      }
466      return false;
467    }
468  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
469    // Invoke instructions successors are always executable.
470    return true;
471  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
472    InstVal &SCValue = getValueState(SI->getCondition());
473    if (SCValue.isOverdefined()) {  // Overdefined condition?
474      // All destinations are executable!
475      return true;
476    } else if (SCValue.isConstant()) {
477      Constant *CPV = SCValue.getConstant();
478      if (!isa<ConstantInt>(CPV))
479        return true;  // not a foldable constant?
480
481      // Make sure to skip the "default value" which isn't a value
482      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
483        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
484          return SI->getSuccessor(i) == To;
485
486      // Constant value not equal to any of the branches... must execute
487      // default branch then...
488      return SI->getDefaultDest() == To;
489    }
490    return false;
491  } else {
492    std::cerr << "Unknown terminator instruction: " << *TI;
493    abort();
494  }
495}
496
497// visit Implementations - Something changed in this instruction... Either an
498// operand made a transition, or the instruction is newly executable.  Change
499// the value type of I to reflect these changes if appropriate.  This method
500// makes sure to do the following actions:
501//
502// 1. If a phi node merges two constants in, and has conflicting value coming
503//    from different branches, or if the PHI node merges in an overdefined
504//    value, then the PHI node becomes overdefined.
505// 2. If a phi node merges only constants in, and they all agree on value, the
506//    PHI node becomes a constant value equal to that.
507// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
508// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
509// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
510// 6. If a conditional branch has a value that is constant, make the selected
511//    destination executable
512// 7. If a conditional branch has a value that is overdefined, make all
513//    successors executable.
514//
515void SCCP::visitPHINode(PHINode &PN) {
516  InstVal &PNIV = getValueState(&PN);
517  if (PNIV.isOverdefined()) {
518    // There may be instructions using this PHI node that are not overdefined
519    // themselves.  If so, make sure that they know that the PHI node operand
520    // changed.
521    std::multimap<PHINode*, Instruction*>::iterator I, E;
522    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
523    if (I != E) {
524      std::vector<Instruction*> Users;
525      Users.reserve(std::distance(I, E));
526      for (; I != E; ++I) Users.push_back(I->second);
527      while (!Users.empty()) {
528        visit(Users.back());
529        Users.pop_back();
530      }
531    }
532    return;  // Quick exit
533  }
534
535  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
536  // and slow us down a lot.  Just mark them overdefined.
537  if (PN.getNumIncomingValues() > 64) {
538    markOverdefined(PNIV, &PN);
539    return;
540  }
541
542  // Look at all of the executable operands of the PHI node.  If any of them
543  // are overdefined, the PHI becomes overdefined as well.  If they are all
544  // constant, and they agree with each other, the PHI becomes the identical
545  // constant.  If they are constant and don't agree, the PHI is overdefined.
546  // If there are no executable operands, the PHI remains undefined.
547  //
548  Constant *OperandVal = 0;
549  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
550    InstVal &IV = getValueState(PN.getIncomingValue(i));
551    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
552
553    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
554      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
555        markOverdefined(PNIV, &PN);
556        return;
557      }
558
559      if (OperandVal == 0) {   // Grab the first value...
560        OperandVal = IV.getConstant();
561      } else {                // Another value is being merged in!
562        // There is already a reachable operand.  If we conflict with it,
563        // then the PHI node becomes overdefined.  If we agree with it, we
564        // can continue on.
565
566        // Check to see if there are two different constants merging...
567        if (IV.getConstant() != OperandVal) {
568          // Yes there is.  This means the PHI node is not constant.
569          // You must be overdefined poor PHI.
570          //
571          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
572          return;    // I'm done analyzing you
573        }
574      }
575    }
576  }
577
578  // If we exited the loop, this means that the PHI node only has constant
579  // arguments that agree with each other(and OperandVal is the constant) or
580  // OperandVal is null because there are no defined incoming arguments.  If
581  // this is the case, the PHI remains undefined.
582  //
583  if (OperandVal)
584    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
585}
586
587void SCCP::visitTerminatorInst(TerminatorInst &TI) {
588  std::vector<bool> SuccFeasible;
589  getFeasibleSuccessors(TI, SuccFeasible);
590
591  BasicBlock *BB = TI.getParent();
592
593  // Mark all feasible successors executable...
594  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
595    if (SuccFeasible[i])
596      markEdgeExecutable(BB, TI.getSuccessor(i));
597}
598
599void SCCP::visitCastInst(CastInst &I) {
600  Value *V = I.getOperand(0);
601  InstVal &VState = getValueState(V);
602  if (VState.isOverdefined())          // Inherit overdefinedness of operand
603    markOverdefined(&I);
604  else if (VState.isConstant())        // Propagate constant value
605    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
606}
607
608void SCCP::visitSelectInst(SelectInst &I) {
609  InstVal &CondValue = getValueState(I.getCondition());
610  if (CondValue.isOverdefined())
611    markOverdefined(&I);
612  else if (CondValue.isConstant()) {
613    if (CondValue.getConstant() == ConstantBool::True) {
614      InstVal &Val = getValueState(I.getTrueValue());
615      if (Val.isOverdefined())
616        markOverdefined(&I);
617      else if (Val.isConstant())
618        markConstant(&I, Val.getConstant());
619    } else if (CondValue.getConstant() == ConstantBool::False) {
620      InstVal &Val = getValueState(I.getFalseValue());
621      if (Val.isOverdefined())
622        markOverdefined(&I);
623      else if (Val.isConstant())
624        markConstant(&I, Val.getConstant());
625    } else
626      markOverdefined(&I);
627  }
628}
629
630// Handle BinaryOperators and Shift Instructions...
631void SCCP::visitBinaryOperator(Instruction &I) {
632  InstVal &IV = ValueState[&I];
633  if (IV.isOverdefined()) return;
634
635  InstVal &V1State = getValueState(I.getOperand(0));
636  InstVal &V2State = getValueState(I.getOperand(1));
637
638  if (V1State.isOverdefined() || V2State.isOverdefined()) {
639    // If both operands are PHI nodes, it is possible that this instruction has
640    // a constant value, despite the fact that the PHI node doesn't.  Check for
641    // this condition now.
642    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
643      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
644        if (PN1->getParent() == PN2->getParent()) {
645          // Since the two PHI nodes are in the same basic block, they must have
646          // entries for the same predecessors.  Walk the predecessor list, and
647          // if all of the incoming values are constants, and the result of
648          // evaluating this expression with all incoming value pairs is the
649          // same, then this expression is a constant even though the PHI node
650          // is not a constant!
651          InstVal Result;
652          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
653            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
654            BasicBlock *InBlock = PN1->getIncomingBlock(i);
655            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
656
657            if (In1.isOverdefined() || In2.isOverdefined()) {
658              Result.markOverdefined();
659              break;  // Cannot fold this operation over the PHI nodes!
660            } else if (In1.isConstant() && In2.isConstant()) {
661              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
662                                              In2.getConstant());
663              if (Result.isUndefined())
664                Result.markConstant(V);
665              else if (Result.isConstant() && Result.getConstant() != V) {
666                Result.markOverdefined();
667                break;
668              }
669            }
670          }
671
672          // If we found a constant value here, then we know the instruction is
673          // constant despite the fact that the PHI nodes are overdefined.
674          if (Result.isConstant()) {
675            markConstant(IV, &I, Result.getConstant());
676            // Remember that this instruction is virtually using the PHI node
677            // operands.
678            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
679            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
680            return;
681          } else if (Result.isUndefined()) {
682            return;
683          }
684
685          // Okay, this really is overdefined now.  Since we might have
686          // speculatively thought that this was not overdefined before, and
687          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
688          // make sure to clean out any entries that we put there, for
689          // efficiency.
690          std::multimap<PHINode*, Instruction*>::iterator It, E;
691          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
692          while (It != E) {
693            if (It->second == &I) {
694              UsersOfOverdefinedPHIs.erase(It++);
695            } else
696              ++It;
697          }
698          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
699          while (It != E) {
700            if (It->second == &I) {
701              UsersOfOverdefinedPHIs.erase(It++);
702            } else
703              ++It;
704          }
705        }
706
707    markOverdefined(IV, &I);
708  } else if (V1State.isConstant() && V2State.isConstant()) {
709    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
710                                           V2State.getConstant()));
711  }
712}
713
714// Handle getelementptr instructions... if all operands are constants then we
715// can turn this into a getelementptr ConstantExpr.
716//
717void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
718  InstVal &IV = ValueState[&I];
719  if (IV.isOverdefined()) return;
720
721  std::vector<Constant*> Operands;
722  Operands.reserve(I.getNumOperands());
723
724  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
725    InstVal &State = getValueState(I.getOperand(i));
726    if (State.isUndefined())
727      return;  // Operands are not resolved yet...
728    else if (State.isOverdefined()) {
729      markOverdefined(IV, &I);
730      return;
731    }
732    assert(State.isConstant() && "Unknown state!");
733    Operands.push_back(State.getConstant());
734  }
735
736  Constant *Ptr = Operands[0];
737  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
738
739  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
740}
741
742/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
743/// return the constant value being addressed by the constant expression, or
744/// null if something is funny.
745///
746static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
747  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
748    return 0;  // Do not allow stepping over the value!
749
750  // Loop over all of the operands, tracking down which value we are
751  // addressing...
752  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
753    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
754      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
755      if (CS == 0) return 0;
756      if (CU->getValue() >= CS->getNumOperands()) return 0;
757      C = CS->getOperand(CU->getValue());
758    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
759      ConstantArray *CA = dyn_cast<ConstantArray>(C);
760      if (CA == 0) return 0;
761      if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0;
762      C = CA->getOperand(CS->getValue());
763    } else
764      return 0;
765  return C;
766}
767
768// Handle load instructions.  If the operand is a constant pointer to a constant
769// global, we can replace the load with the loaded constant value!
770void SCCP::visitLoadInst(LoadInst &I) {
771  InstVal &IV = ValueState[&I];
772  if (IV.isOverdefined()) return;
773
774  InstVal &PtrVal = getValueState(I.getOperand(0));
775  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
776  if (PtrVal.isConstant() && !I.isVolatile()) {
777    Value *Ptr = PtrVal.getConstant();
778    if (isa<ConstantPointerNull>(Ptr)) {
779      // load null -> null
780      markConstant(IV, &I, Constant::getNullValue(I.getType()));
781      return;
782    }
783
784    // Transform load (constant global) into the value loaded.
785    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
786      if (GV->isConstant() && !GV->isExternal()) {
787        markConstant(IV, &I, GV->getInitializer());
788        return;
789      }
790
791    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
792    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
793      if (CE->getOpcode() == Instruction::GetElementPtr)
794	if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
795	  if (GV->isConstant() && !GV->isExternal())
796	    if (Constant *V =
797		GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
798	      markConstant(IV, &I, V);
799	      return;
800	    }
801  }
802
803  // Otherwise we cannot say for certain what value this load will produce.
804  // Bail out.
805  markOverdefined(IV, &I);
806}
807
808void SCCP::visitCallInst(CallInst &I) {
809  InstVal &IV = ValueState[&I];
810  if (IV.isOverdefined()) return;
811
812  Function *F = I.getCalledFunction();
813  if (F == 0 || !canConstantFoldCallTo(F)) {
814    markOverdefined(IV, &I);
815    return;
816  }
817
818  std::vector<Constant*> Operands;
819  Operands.reserve(I.getNumOperands()-1);
820
821  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
822    InstVal &State = getValueState(I.getOperand(i));
823    if (State.isUndefined())
824      return;  // Operands are not resolved yet...
825    else if (State.isOverdefined()) {
826      markOverdefined(IV, &I);
827      return;
828    }
829    assert(State.isConstant() && "Unknown state!");
830    Operands.push_back(State.getConstant());
831  }
832
833  if (Constant *C = ConstantFoldCall(F, Operands))
834    markConstant(IV, &I, C);
835  else
836    markOverdefined(IV, &I);
837}
838