SCCP.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/InstVisitor.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetLibraryInfo.h"
40#include "llvm/Transforms/IPO.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumInstRemoved, "Number of instructions removed");
46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
47
48STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
51
52namespace {
53/// LatticeVal class - This class represents the different lattice values that
54/// an LLVM value may occupy.  It is a simple class with value semantics.
55///
56class LatticeVal {
57  enum LatticeValueTy {
58    /// undefined - This LLVM Value has no known value yet.
59    undefined,
60
61    /// constant - This LLVM Value has a specific constant value.
62    constant,
63
64    /// forcedconstant - This LLVM Value was thought to be undef until
65    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
66    /// with another (different) constant, it goes to overdefined, instead of
67    /// asserting.
68    forcedconstant,
69
70    /// overdefined - This instruction is not known to be constant, and we know
71    /// it has a value.
72    overdefined
73  };
74
75  /// Val: This stores the current lattice value along with the Constant* for
76  /// the constant if this is a 'constant' or 'forcedconstant' value.
77  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
78
79  LatticeValueTy getLatticeValue() const {
80    return Val.getInt();
81  }
82
83public:
84  LatticeVal() : Val(0, undefined) {}
85
86  bool isUndefined() const { return getLatticeValue() == undefined; }
87  bool isConstant() const {
88    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
89  }
90  bool isOverdefined() const { return getLatticeValue() == overdefined; }
91
92  Constant *getConstant() const {
93    assert(isConstant() && "Cannot get the constant of a non-constant!");
94    return Val.getPointer();
95  }
96
97  /// markOverdefined - Return true if this is a change in status.
98  bool markOverdefined() {
99    if (isOverdefined())
100      return false;
101
102    Val.setInt(overdefined);
103    return true;
104  }
105
106  /// markConstant - Return true if this is a change in status.
107  bool markConstant(Constant *V) {
108    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
109      assert(getConstant() == V && "Marking constant with different value");
110      return false;
111    }
112
113    if (isUndefined()) {
114      Val.setInt(constant);
115      assert(V && "Marking constant with NULL");
116      Val.setPointer(V);
117    } else {
118      assert(getLatticeValue() == forcedconstant &&
119             "Cannot move from overdefined to constant!");
120      // Stay at forcedconstant if the constant is the same.
121      if (V == getConstant()) return false;
122
123      // Otherwise, we go to overdefined.  Assumptions made based on the
124      // forced value are possibly wrong.  Assuming this is another constant
125      // could expose a contradiction.
126      Val.setInt(overdefined);
127    }
128    return true;
129  }
130
131  /// getConstantInt - If this is a constant with a ConstantInt value, return it
132  /// otherwise return null.
133  ConstantInt *getConstantInt() const {
134    if (isConstant())
135      return dyn_cast<ConstantInt>(getConstant());
136    return 0;
137  }
138
139  void markForcedConstant(Constant *V) {
140    assert(isUndefined() && "Can't force a defined value!");
141    Val.setInt(forcedconstant);
142    Val.setPointer(V);
143  }
144};
145} // end anonymous namespace.
146
147
148namespace {
149
150//===----------------------------------------------------------------------===//
151//
152/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
153/// Constant Propagation.
154///
155class SCCPSolver : public InstVisitor<SCCPSolver> {
156  const DataLayout *DL;
157  const TargetLibraryInfo *TLI;
158  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
159  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
160
161  /// StructValueState - This maintains ValueState for values that have
162  /// StructType, for example for formal arguments, calls, insertelement, etc.
163  ///
164  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
165
166  /// GlobalValue - If we are tracking any values for the contents of a global
167  /// variable, we keep a mapping from the constant accessor to the element of
168  /// the global, to the currently known value.  If the value becomes
169  /// overdefined, it's entry is simply removed from this map.
170  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
171
172  /// TrackedRetVals - If we are tracking arguments into and the return
173  /// value out of a function, it will have an entry in this map, indicating
174  /// what the known return value for the function is.
175  DenseMap<Function*, LatticeVal> TrackedRetVals;
176
177  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
178  /// that return multiple values.
179  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
180
181  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
182  /// represented here for efficient lookup.
183  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
184
185  /// TrackingIncomingArguments - This is the set of functions for whose
186  /// arguments we make optimistic assumptions about and try to prove as
187  /// constants.
188  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
189
190  /// The reason for two worklists is that overdefined is the lowest state
191  /// on the lattice, and moving things to overdefined as fast as possible
192  /// makes SCCP converge much faster.
193  ///
194  /// By having a separate worklist, we accomplish this because everything
195  /// possibly overdefined will become overdefined at the soonest possible
196  /// point.
197  SmallVector<Value*, 64> OverdefinedInstWorkList;
198  SmallVector<Value*, 64> InstWorkList;
199
200
201  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
202
203  /// KnownFeasibleEdges - Entries in this set are edges which have already had
204  /// PHI nodes retriggered.
205  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
206  DenseSet<Edge> KnownFeasibleEdges;
207public:
208  SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
209    : DL(DL), TLI(tli) {}
210
211  /// MarkBlockExecutable - This method can be used by clients to mark all of
212  /// the blocks that are known to be intrinsically live in the processed unit.
213  ///
214  /// This returns true if the block was not considered live before.
215  bool MarkBlockExecutable(BasicBlock *BB) {
216    if (!BBExecutable.insert(BB)) return false;
217    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
218    BBWorkList.push_back(BB);  // Add the block to the work list!
219    return true;
220  }
221
222  /// TrackValueOfGlobalVariable - Clients can use this method to
223  /// inform the SCCPSolver that it should track loads and stores to the
224  /// specified global variable if it can.  This is only legal to call if
225  /// performing Interprocedural SCCP.
226  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
227    // We only track the contents of scalar globals.
228    if (GV->getType()->getElementType()->isSingleValueType()) {
229      LatticeVal &IV = TrackedGlobals[GV];
230      if (!isa<UndefValue>(GV->getInitializer()))
231        IV.markConstant(GV->getInitializer());
232    }
233  }
234
235  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
236  /// and out of the specified function (which cannot have its address taken),
237  /// this method must be called.
238  void AddTrackedFunction(Function *F) {
239    // Add an entry, F -> undef.
240    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
241      MRVFunctionsTracked.insert(F);
242      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
243        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
244                                                     LatticeVal()));
245    } else
246      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
247  }
248
249  void AddArgumentTrackedFunction(Function *F) {
250    TrackingIncomingArguments.insert(F);
251  }
252
253  /// Solve - Solve for constants and executable blocks.
254  ///
255  void Solve();
256
257  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
258  /// that branches on undef values cannot reach any of their successors.
259  /// However, this is not a safe assumption.  After we solve dataflow, this
260  /// method should be use to handle this.  If this returns true, the solver
261  /// should be rerun.
262  bool ResolvedUndefsIn(Function &F);
263
264  bool isBlockExecutable(BasicBlock *BB) const {
265    return BBExecutable.count(BB);
266  }
267
268  LatticeVal getLatticeValueFor(Value *V) const {
269    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
270    assert(I != ValueState.end() && "V is not in valuemap!");
271    return I->second;
272  }
273
274  /// getTrackedRetVals - Get the inferred return value map.
275  ///
276  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
277    return TrackedRetVals;
278  }
279
280  /// getTrackedGlobals - Get and return the set of inferred initializers for
281  /// global variables.
282  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
283    return TrackedGlobals;
284  }
285
286  void markOverdefined(Value *V) {
287    assert(!V->getType()->isStructTy() && "Should use other method");
288    markOverdefined(ValueState[V], V);
289  }
290
291  /// markAnythingOverdefined - Mark the specified value overdefined.  This
292  /// works with both scalars and structs.
293  void markAnythingOverdefined(Value *V) {
294    if (StructType *STy = dyn_cast<StructType>(V->getType()))
295      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
296        markOverdefined(getStructValueState(V, i), V);
297    else
298      markOverdefined(V);
299  }
300
301private:
302  // markConstant - Make a value be marked as "constant".  If the value
303  // is not already a constant, add it to the instruction work list so that
304  // the users of the instruction are updated later.
305  //
306  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
307    if (!IV.markConstant(C)) return;
308    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
309    if (IV.isOverdefined())
310      OverdefinedInstWorkList.push_back(V);
311    else
312      InstWorkList.push_back(V);
313  }
314
315  void markConstant(Value *V, Constant *C) {
316    assert(!V->getType()->isStructTy() && "Should use other method");
317    markConstant(ValueState[V], V, C);
318  }
319
320  void markForcedConstant(Value *V, Constant *C) {
321    assert(!V->getType()->isStructTy() && "Should use other method");
322    LatticeVal &IV = ValueState[V];
323    IV.markForcedConstant(C);
324    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
325    if (IV.isOverdefined())
326      OverdefinedInstWorkList.push_back(V);
327    else
328      InstWorkList.push_back(V);
329  }
330
331
332  // markOverdefined - Make a value be marked as "overdefined". If the
333  // value is not already overdefined, add it to the overdefined instruction
334  // work list so that the users of the instruction are updated later.
335  void markOverdefined(LatticeVal &IV, Value *V) {
336    if (!IV.markOverdefined()) return;
337
338    DEBUG(dbgs() << "markOverdefined: ";
339          if (Function *F = dyn_cast<Function>(V))
340            dbgs() << "Function '" << F->getName() << "'\n";
341          else
342            dbgs() << *V << '\n');
343    // Only instructions go on the work list
344    OverdefinedInstWorkList.push_back(V);
345  }
346
347  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
348    if (IV.isOverdefined() || MergeWithV.isUndefined())
349      return;  // Noop.
350    if (MergeWithV.isOverdefined())
351      markOverdefined(IV, V);
352    else if (IV.isUndefined())
353      markConstant(IV, V, MergeWithV.getConstant());
354    else if (IV.getConstant() != MergeWithV.getConstant())
355      markOverdefined(IV, V);
356  }
357
358  void mergeInValue(Value *V, LatticeVal MergeWithV) {
359    assert(!V->getType()->isStructTy() && "Should use other method");
360    mergeInValue(ValueState[V], V, MergeWithV);
361  }
362
363
364  /// getValueState - Return the LatticeVal object that corresponds to the
365  /// value.  This function handles the case when the value hasn't been seen yet
366  /// by properly seeding constants etc.
367  LatticeVal &getValueState(Value *V) {
368    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
369
370    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
371      ValueState.insert(std::make_pair(V, LatticeVal()));
372    LatticeVal &LV = I.first->second;
373
374    if (!I.second)
375      return LV;  // Common case, already in the map.
376
377    if (Constant *C = dyn_cast<Constant>(V)) {
378      // Undef values remain undefined.
379      if (!isa<UndefValue>(V))
380        LV.markConstant(C);          // Constants are constant
381    }
382
383    // All others are underdefined by default.
384    return LV;
385  }
386
387  /// getStructValueState - Return the LatticeVal object that corresponds to the
388  /// value/field pair.  This function handles the case when the value hasn't
389  /// been seen yet by properly seeding constants etc.
390  LatticeVal &getStructValueState(Value *V, unsigned i) {
391    assert(V->getType()->isStructTy() && "Should use getValueState");
392    assert(i < cast<StructType>(V->getType())->getNumElements() &&
393           "Invalid element #");
394
395    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
396              bool> I = StructValueState.insert(
397                        std::make_pair(std::make_pair(V, i), LatticeVal()));
398    LatticeVal &LV = I.first->second;
399
400    if (!I.second)
401      return LV;  // Common case, already in the map.
402
403    if (Constant *C = dyn_cast<Constant>(V)) {
404      Constant *Elt = C->getAggregateElement(i);
405
406      if (Elt == 0)
407        LV.markOverdefined();      // Unknown sort of constant.
408      else if (isa<UndefValue>(Elt))
409        ; // Undef values remain undefined.
410      else
411        LV.markConstant(Elt);      // Constants are constant.
412    }
413
414    // All others are underdefined by default.
415    return LV;
416  }
417
418
419  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
420  /// work list if it is not already executable.
421  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
422    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
423      return;  // This edge is already known to be executable!
424
425    if (!MarkBlockExecutable(Dest)) {
426      // If the destination is already executable, we just made an *edge*
427      // feasible that wasn't before.  Revisit the PHI nodes in the block
428      // because they have potentially new operands.
429      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
430            << " -> " << Dest->getName() << '\n');
431
432      PHINode *PN;
433      for (BasicBlock::iterator I = Dest->begin();
434           (PN = dyn_cast<PHINode>(I)); ++I)
435        visitPHINode(*PN);
436    }
437  }
438
439  // getFeasibleSuccessors - Return a vector of booleans to indicate which
440  // successors are reachable from a given terminator instruction.
441  //
442  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
443
444  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
445  // block to the 'To' basic block is currently feasible.
446  //
447  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
448
449  // OperandChangedState - This method is invoked on all of the users of an
450  // instruction that was just changed state somehow.  Based on this
451  // information, we need to update the specified user of this instruction.
452  //
453  void OperandChangedState(Instruction *I) {
454    if (BBExecutable.count(I->getParent()))   // Inst is executable?
455      visit(*I);
456  }
457
458private:
459  friend class InstVisitor<SCCPSolver>;
460
461  // visit implementations - Something changed in this instruction.  Either an
462  // operand made a transition, or the instruction is newly executable.  Change
463  // the value type of I to reflect these changes if appropriate.
464  void visitPHINode(PHINode &I);
465
466  // Terminators
467  void visitReturnInst(ReturnInst &I);
468  void visitTerminatorInst(TerminatorInst &TI);
469
470  void visitCastInst(CastInst &I);
471  void visitSelectInst(SelectInst &I);
472  void visitBinaryOperator(Instruction &I);
473  void visitCmpInst(CmpInst &I);
474  void visitExtractElementInst(ExtractElementInst &I);
475  void visitInsertElementInst(InsertElementInst &I);
476  void visitShuffleVectorInst(ShuffleVectorInst &I);
477  void visitExtractValueInst(ExtractValueInst &EVI);
478  void visitInsertValueInst(InsertValueInst &IVI);
479  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
480
481  // Instructions that cannot be folded away.
482  void visitStoreInst     (StoreInst &I);
483  void visitLoadInst      (LoadInst &I);
484  void visitGetElementPtrInst(GetElementPtrInst &I);
485  void visitCallInst      (CallInst &I) {
486    visitCallSite(&I);
487  }
488  void visitInvokeInst    (InvokeInst &II) {
489    visitCallSite(&II);
490    visitTerminatorInst(II);
491  }
492  void visitCallSite      (CallSite CS);
493  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
494  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
495  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
496  void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
497  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
498  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
499  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
500
501  void visitInstruction(Instruction &I) {
502    // If a new instruction is added to LLVM that we don't handle.
503    dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
504    markAnythingOverdefined(&I);   // Just in case
505  }
506};
507
508} // end anonymous namespace
509
510
511// getFeasibleSuccessors - Return a vector of booleans to indicate which
512// successors are reachable from a given terminator instruction.
513//
514void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
515                                       SmallVectorImpl<bool> &Succs) {
516  Succs.resize(TI.getNumSuccessors());
517  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
518    if (BI->isUnconditional()) {
519      Succs[0] = true;
520      return;
521    }
522
523    LatticeVal BCValue = getValueState(BI->getCondition());
524    ConstantInt *CI = BCValue.getConstantInt();
525    if (CI == 0) {
526      // Overdefined condition variables, and branches on unfoldable constant
527      // conditions, mean the branch could go either way.
528      if (!BCValue.isUndefined())
529        Succs[0] = Succs[1] = true;
530      return;
531    }
532
533    // Constant condition variables mean the branch can only go a single way.
534    Succs[CI->isZero()] = true;
535    return;
536  }
537
538  if (isa<InvokeInst>(TI)) {
539    // Invoke instructions successors are always executable.
540    Succs[0] = Succs[1] = true;
541    return;
542  }
543
544  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
545    if (!SI->getNumCases()) {
546      Succs[0] = true;
547      return;
548    }
549    LatticeVal SCValue = getValueState(SI->getCondition());
550    ConstantInt *CI = SCValue.getConstantInt();
551
552    if (CI == 0) {   // Overdefined or undefined condition?
553      // All destinations are executable!
554      if (!SCValue.isUndefined())
555        Succs.assign(TI.getNumSuccessors(), true);
556      return;
557    }
558
559    Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
560    return;
561  }
562
563  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
564  if (isa<IndirectBrInst>(&TI)) {
565    // Just mark all destinations executable!
566    Succs.assign(TI.getNumSuccessors(), true);
567    return;
568  }
569
570#ifndef NDEBUG
571  dbgs() << "Unknown terminator instruction: " << TI << '\n';
572#endif
573  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
574}
575
576
577// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
578// block to the 'To' basic block is currently feasible.
579//
580bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
581  assert(BBExecutable.count(To) && "Dest should always be alive!");
582
583  // Make sure the source basic block is executable!!
584  if (!BBExecutable.count(From)) return false;
585
586  // Check to make sure this edge itself is actually feasible now.
587  TerminatorInst *TI = From->getTerminator();
588  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
589    if (BI->isUnconditional())
590      return true;
591
592    LatticeVal BCValue = getValueState(BI->getCondition());
593
594    // Overdefined condition variables mean the branch could go either way,
595    // undef conditions mean that neither edge is feasible yet.
596    ConstantInt *CI = BCValue.getConstantInt();
597    if (CI == 0)
598      return !BCValue.isUndefined();
599
600    // Constant condition variables mean the branch can only go a single way.
601    return BI->getSuccessor(CI->isZero()) == To;
602  }
603
604  // Invoke instructions successors are always executable.
605  if (isa<InvokeInst>(TI))
606    return true;
607
608  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
609    if (SI->getNumCases() < 1)
610      return true;
611
612    LatticeVal SCValue = getValueState(SI->getCondition());
613    ConstantInt *CI = SCValue.getConstantInt();
614
615    if (CI == 0)
616      return !SCValue.isUndefined();
617
618    return SI->findCaseValue(CI).getCaseSuccessor() == To;
619  }
620
621  // Just mark all destinations executable!
622  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
623  if (isa<IndirectBrInst>(TI))
624    return true;
625
626#ifndef NDEBUG
627  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
628#endif
629  llvm_unreachable(0);
630}
631
632// visit Implementations - Something changed in this instruction, either an
633// operand made a transition, or the instruction is newly executable.  Change
634// the value type of I to reflect these changes if appropriate.  This method
635// makes sure to do the following actions:
636//
637// 1. If a phi node merges two constants in, and has conflicting value coming
638//    from different branches, or if the PHI node merges in an overdefined
639//    value, then the PHI node becomes overdefined.
640// 2. If a phi node merges only constants in, and they all agree on value, the
641//    PHI node becomes a constant value equal to that.
642// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
643// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
644// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
645// 6. If a conditional branch has a value that is constant, make the selected
646//    destination executable
647// 7. If a conditional branch has a value that is overdefined, make all
648//    successors executable.
649//
650void SCCPSolver::visitPHINode(PHINode &PN) {
651  // If this PN returns a struct, just mark the result overdefined.
652  // TODO: We could do a lot better than this if code actually uses this.
653  if (PN.getType()->isStructTy())
654    return markAnythingOverdefined(&PN);
655
656  if (getValueState(&PN).isOverdefined())
657    return;  // Quick exit
658
659  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
660  // and slow us down a lot.  Just mark them overdefined.
661  if (PN.getNumIncomingValues() > 64)
662    return markOverdefined(&PN);
663
664  // Look at all of the executable operands of the PHI node.  If any of them
665  // are overdefined, the PHI becomes overdefined as well.  If they are all
666  // constant, and they agree with each other, the PHI becomes the identical
667  // constant.  If they are constant and don't agree, the PHI is overdefined.
668  // If there are no executable operands, the PHI remains undefined.
669  //
670  Constant *OperandVal = 0;
671  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
672    LatticeVal IV = getValueState(PN.getIncomingValue(i));
673    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
674
675    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
676      continue;
677
678    if (IV.isOverdefined())    // PHI node becomes overdefined!
679      return markOverdefined(&PN);
680
681    if (OperandVal == 0) {   // Grab the first value.
682      OperandVal = IV.getConstant();
683      continue;
684    }
685
686    // There is already a reachable operand.  If we conflict with it,
687    // then the PHI node becomes overdefined.  If we agree with it, we
688    // can continue on.
689
690    // Check to see if there are two different constants merging, if so, the PHI
691    // node is overdefined.
692    if (IV.getConstant() != OperandVal)
693      return markOverdefined(&PN);
694  }
695
696  // If we exited the loop, this means that the PHI node only has constant
697  // arguments that agree with each other(and OperandVal is the constant) or
698  // OperandVal is null because there are no defined incoming arguments.  If
699  // this is the case, the PHI remains undefined.
700  //
701  if (OperandVal)
702    markConstant(&PN, OperandVal);      // Acquire operand value
703}
704
705void SCCPSolver::visitReturnInst(ReturnInst &I) {
706  if (I.getNumOperands() == 0) return;  // ret void
707
708  Function *F = I.getParent()->getParent();
709  Value *ResultOp = I.getOperand(0);
710
711  // If we are tracking the return value of this function, merge it in.
712  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
713    DenseMap<Function*, LatticeVal>::iterator TFRVI =
714      TrackedRetVals.find(F);
715    if (TFRVI != TrackedRetVals.end()) {
716      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
717      return;
718    }
719  }
720
721  // Handle functions that return multiple values.
722  if (!TrackedMultipleRetVals.empty()) {
723    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
724      if (MRVFunctionsTracked.count(F))
725        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
726          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
727                       getStructValueState(ResultOp, i));
728
729  }
730}
731
732void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
733  SmallVector<bool, 16> SuccFeasible;
734  getFeasibleSuccessors(TI, SuccFeasible);
735
736  BasicBlock *BB = TI.getParent();
737
738  // Mark all feasible successors executable.
739  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
740    if (SuccFeasible[i])
741      markEdgeExecutable(BB, TI.getSuccessor(i));
742}
743
744void SCCPSolver::visitCastInst(CastInst &I) {
745  LatticeVal OpSt = getValueState(I.getOperand(0));
746  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
747    markOverdefined(&I);
748  else if (OpSt.isConstant())        // Propagate constant value
749    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
750                                           OpSt.getConstant(), I.getType()));
751}
752
753
754void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
755  // If this returns a struct, mark all elements over defined, we don't track
756  // structs in structs.
757  if (EVI.getType()->isStructTy())
758    return markAnythingOverdefined(&EVI);
759
760  // If this is extracting from more than one level of struct, we don't know.
761  if (EVI.getNumIndices() != 1)
762    return markOverdefined(&EVI);
763
764  Value *AggVal = EVI.getAggregateOperand();
765  if (AggVal->getType()->isStructTy()) {
766    unsigned i = *EVI.idx_begin();
767    LatticeVal EltVal = getStructValueState(AggVal, i);
768    mergeInValue(getValueState(&EVI), &EVI, EltVal);
769  } else {
770    // Otherwise, must be extracting from an array.
771    return markOverdefined(&EVI);
772  }
773}
774
775void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
776  StructType *STy = dyn_cast<StructType>(IVI.getType());
777  if (STy == 0)
778    return markOverdefined(&IVI);
779
780  // If this has more than one index, we can't handle it, drive all results to
781  // undef.
782  if (IVI.getNumIndices() != 1)
783    return markAnythingOverdefined(&IVI);
784
785  Value *Aggr = IVI.getAggregateOperand();
786  unsigned Idx = *IVI.idx_begin();
787
788  // Compute the result based on what we're inserting.
789  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
790    // This passes through all values that aren't the inserted element.
791    if (i != Idx) {
792      LatticeVal EltVal = getStructValueState(Aggr, i);
793      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
794      continue;
795    }
796
797    Value *Val = IVI.getInsertedValueOperand();
798    if (Val->getType()->isStructTy())
799      // We don't track structs in structs.
800      markOverdefined(getStructValueState(&IVI, i), &IVI);
801    else {
802      LatticeVal InVal = getValueState(Val);
803      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
804    }
805  }
806}
807
808void SCCPSolver::visitSelectInst(SelectInst &I) {
809  // If this select returns a struct, just mark the result overdefined.
810  // TODO: We could do a lot better than this if code actually uses this.
811  if (I.getType()->isStructTy())
812    return markAnythingOverdefined(&I);
813
814  LatticeVal CondValue = getValueState(I.getCondition());
815  if (CondValue.isUndefined())
816    return;
817
818  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
819    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
820    mergeInValue(&I, getValueState(OpVal));
821    return;
822  }
823
824  // Otherwise, the condition is overdefined or a constant we can't evaluate.
825  // See if we can produce something better than overdefined based on the T/F
826  // value.
827  LatticeVal TVal = getValueState(I.getTrueValue());
828  LatticeVal FVal = getValueState(I.getFalseValue());
829
830  // select ?, C, C -> C.
831  if (TVal.isConstant() && FVal.isConstant() &&
832      TVal.getConstant() == FVal.getConstant())
833    return markConstant(&I, FVal.getConstant());
834
835  if (TVal.isUndefined())   // select ?, undef, X -> X.
836    return mergeInValue(&I, FVal);
837  if (FVal.isUndefined())   // select ?, X, undef -> X.
838    return mergeInValue(&I, TVal);
839  markOverdefined(&I);
840}
841
842// Handle Binary Operators.
843void SCCPSolver::visitBinaryOperator(Instruction &I) {
844  LatticeVal V1State = getValueState(I.getOperand(0));
845  LatticeVal V2State = getValueState(I.getOperand(1));
846
847  LatticeVal &IV = ValueState[&I];
848  if (IV.isOverdefined()) return;
849
850  if (V1State.isConstant() && V2State.isConstant())
851    return markConstant(IV, &I,
852                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
853                                          V2State.getConstant()));
854
855  // If something is undef, wait for it to resolve.
856  if (!V1State.isOverdefined() && !V2State.isOverdefined())
857    return;
858
859  // Otherwise, one of our operands is overdefined.  Try to produce something
860  // better than overdefined with some tricks.
861
862  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
863  // operand is overdefined.
864  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
865    LatticeVal *NonOverdefVal = 0;
866    if (!V1State.isOverdefined())
867      NonOverdefVal = &V1State;
868    else if (!V2State.isOverdefined())
869      NonOverdefVal = &V2State;
870
871    if (NonOverdefVal) {
872      if (NonOverdefVal->isUndefined()) {
873        // Could annihilate value.
874        if (I.getOpcode() == Instruction::And)
875          markConstant(IV, &I, Constant::getNullValue(I.getType()));
876        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
877          markConstant(IV, &I, Constant::getAllOnesValue(PT));
878        else
879          markConstant(IV, &I,
880                       Constant::getAllOnesValue(I.getType()));
881        return;
882      }
883
884      if (I.getOpcode() == Instruction::And) {
885        // X and 0 = 0
886        if (NonOverdefVal->getConstant()->isNullValue())
887          return markConstant(IV, &I, NonOverdefVal->getConstant());
888      } else {
889        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
890          if (CI->isAllOnesValue())     // X or -1 = -1
891            return markConstant(IV, &I, NonOverdefVal->getConstant());
892      }
893    }
894  }
895
896
897  markOverdefined(&I);
898}
899
900// Handle ICmpInst instruction.
901void SCCPSolver::visitCmpInst(CmpInst &I) {
902  LatticeVal V1State = getValueState(I.getOperand(0));
903  LatticeVal V2State = getValueState(I.getOperand(1));
904
905  LatticeVal &IV = ValueState[&I];
906  if (IV.isOverdefined()) return;
907
908  if (V1State.isConstant() && V2State.isConstant())
909    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
910                                                         V1State.getConstant(),
911                                                        V2State.getConstant()));
912
913  // If operands are still undefined, wait for it to resolve.
914  if (!V1State.isOverdefined() && !V2State.isOverdefined())
915    return;
916
917  markOverdefined(&I);
918}
919
920void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
921  // TODO : SCCP does not handle vectors properly.
922  return markOverdefined(&I);
923
924#if 0
925  LatticeVal &ValState = getValueState(I.getOperand(0));
926  LatticeVal &IdxState = getValueState(I.getOperand(1));
927
928  if (ValState.isOverdefined() || IdxState.isOverdefined())
929    markOverdefined(&I);
930  else if(ValState.isConstant() && IdxState.isConstant())
931    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
932                                                     IdxState.getConstant()));
933#endif
934}
935
936void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
937  // TODO : SCCP does not handle vectors properly.
938  return markOverdefined(&I);
939#if 0
940  LatticeVal &ValState = getValueState(I.getOperand(0));
941  LatticeVal &EltState = getValueState(I.getOperand(1));
942  LatticeVal &IdxState = getValueState(I.getOperand(2));
943
944  if (ValState.isOverdefined() || EltState.isOverdefined() ||
945      IdxState.isOverdefined())
946    markOverdefined(&I);
947  else if(ValState.isConstant() && EltState.isConstant() &&
948          IdxState.isConstant())
949    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
950                                                    EltState.getConstant(),
951                                                    IdxState.getConstant()));
952  else if (ValState.isUndefined() && EltState.isConstant() &&
953           IdxState.isConstant())
954    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
955                                                   EltState.getConstant(),
956                                                   IdxState.getConstant()));
957#endif
958}
959
960void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
961  // TODO : SCCP does not handle vectors properly.
962  return markOverdefined(&I);
963#if 0
964  LatticeVal &V1State   = getValueState(I.getOperand(0));
965  LatticeVal &V2State   = getValueState(I.getOperand(1));
966  LatticeVal &MaskState = getValueState(I.getOperand(2));
967
968  if (MaskState.isUndefined() ||
969      (V1State.isUndefined() && V2State.isUndefined()))
970    return;  // Undefined output if mask or both inputs undefined.
971
972  if (V1State.isOverdefined() || V2State.isOverdefined() ||
973      MaskState.isOverdefined()) {
974    markOverdefined(&I);
975  } else {
976    // A mix of constant/undef inputs.
977    Constant *V1 = V1State.isConstant() ?
978        V1State.getConstant() : UndefValue::get(I.getType());
979    Constant *V2 = V2State.isConstant() ?
980        V2State.getConstant() : UndefValue::get(I.getType());
981    Constant *Mask = MaskState.isConstant() ?
982      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
983    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
984  }
985#endif
986}
987
988// Handle getelementptr instructions.  If all operands are constants then we
989// can turn this into a getelementptr ConstantExpr.
990//
991void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
992  if (ValueState[&I].isOverdefined()) return;
993
994  SmallVector<Constant*, 8> Operands;
995  Operands.reserve(I.getNumOperands());
996
997  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
998    LatticeVal State = getValueState(I.getOperand(i));
999    if (State.isUndefined())
1000      return;  // Operands are not resolved yet.
1001
1002    if (State.isOverdefined())
1003      return markOverdefined(&I);
1004
1005    assert(State.isConstant() && "Unknown state!");
1006    Operands.push_back(State.getConstant());
1007  }
1008
1009  Constant *Ptr = Operands[0];
1010  ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1011  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1012}
1013
1014void SCCPSolver::visitStoreInst(StoreInst &SI) {
1015  // If this store is of a struct, ignore it.
1016  if (SI.getOperand(0)->getType()->isStructTy())
1017    return;
1018
1019  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1020    return;
1021
1022  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1023  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1024  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1025
1026  // Get the value we are storing into the global, then merge it.
1027  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1028  if (I->second.isOverdefined())
1029    TrackedGlobals.erase(I);      // No need to keep tracking this!
1030}
1031
1032
1033// Handle load instructions.  If the operand is a constant pointer to a constant
1034// global, we can replace the load with the loaded constant value!
1035void SCCPSolver::visitLoadInst(LoadInst &I) {
1036  // If this load is of a struct, just mark the result overdefined.
1037  if (I.getType()->isStructTy())
1038    return markAnythingOverdefined(&I);
1039
1040  LatticeVal PtrVal = getValueState(I.getOperand(0));
1041  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1042
1043  LatticeVal &IV = ValueState[&I];
1044  if (IV.isOverdefined()) return;
1045
1046  if (!PtrVal.isConstant() || I.isVolatile())
1047    return markOverdefined(IV, &I);
1048
1049  Constant *Ptr = PtrVal.getConstant();
1050
1051  // load null -> null
1052  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1053    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1054
1055  // Transform load (constant global) into the value loaded.
1056  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1057    if (!TrackedGlobals.empty()) {
1058      // If we are tracking this global, merge in the known value for it.
1059      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1060        TrackedGlobals.find(GV);
1061      if (It != TrackedGlobals.end()) {
1062        mergeInValue(IV, &I, It->second);
1063        return;
1064      }
1065    }
1066  }
1067
1068  // Transform load from a constant into a constant if possible.
1069  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1070    return markConstant(IV, &I, C);
1071
1072  // Otherwise we cannot say for certain what value this load will produce.
1073  // Bail out.
1074  markOverdefined(IV, &I);
1075}
1076
1077void SCCPSolver::visitCallSite(CallSite CS) {
1078  Function *F = CS.getCalledFunction();
1079  Instruction *I = CS.getInstruction();
1080
1081  // The common case is that we aren't tracking the callee, either because we
1082  // are not doing interprocedural analysis or the callee is indirect, or is
1083  // external.  Handle these cases first.
1084  if (F == 0 || F->isDeclaration()) {
1085CallOverdefined:
1086    // Void return and not tracking callee, just bail.
1087    if (I->getType()->isVoidTy()) return;
1088
1089    // Otherwise, if we have a single return value case, and if the function is
1090    // a declaration, maybe we can constant fold it.
1091    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1092        canConstantFoldCallTo(F)) {
1093
1094      SmallVector<Constant*, 8> Operands;
1095      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1096           AI != E; ++AI) {
1097        LatticeVal State = getValueState(*AI);
1098
1099        if (State.isUndefined())
1100          return;  // Operands are not resolved yet.
1101        if (State.isOverdefined())
1102          return markOverdefined(I);
1103        assert(State.isConstant() && "Unknown state!");
1104        Operands.push_back(State.getConstant());
1105      }
1106
1107      // If we can constant fold this, mark the result of the call as a
1108      // constant.
1109      if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1110        return markConstant(I, C);
1111    }
1112
1113    // Otherwise, we don't know anything about this call, mark it overdefined.
1114    return markAnythingOverdefined(I);
1115  }
1116
1117  // If this is a local function that doesn't have its address taken, mark its
1118  // entry block executable and merge in the actual arguments to the call into
1119  // the formal arguments of the function.
1120  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1121    MarkBlockExecutable(F->begin());
1122
1123    // Propagate information from this call site into the callee.
1124    CallSite::arg_iterator CAI = CS.arg_begin();
1125    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1126         AI != E; ++AI, ++CAI) {
1127      // If this argument is byval, and if the function is not readonly, there
1128      // will be an implicit copy formed of the input aggregate.
1129      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1130        markOverdefined(AI);
1131        continue;
1132      }
1133
1134      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1135        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1136          LatticeVal CallArg = getStructValueState(*CAI, i);
1137          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1138        }
1139      } else {
1140        mergeInValue(AI, getValueState(*CAI));
1141      }
1142    }
1143  }
1144
1145  // If this is a single/zero retval case, see if we're tracking the function.
1146  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1147    if (!MRVFunctionsTracked.count(F))
1148      goto CallOverdefined;  // Not tracking this callee.
1149
1150    // If we are tracking this callee, propagate the result of the function
1151    // into this call site.
1152    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1153      mergeInValue(getStructValueState(I, i), I,
1154                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1155  } else {
1156    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1157    if (TFRVI == TrackedRetVals.end())
1158      goto CallOverdefined;  // Not tracking this callee.
1159
1160    // If so, propagate the return value of the callee into this call result.
1161    mergeInValue(I, TFRVI->second);
1162  }
1163}
1164
1165void SCCPSolver::Solve() {
1166  // Process the work lists until they are empty!
1167  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1168         !OverdefinedInstWorkList.empty()) {
1169    // Process the overdefined instruction's work list first, which drives other
1170    // things to overdefined more quickly.
1171    while (!OverdefinedInstWorkList.empty()) {
1172      Value *I = OverdefinedInstWorkList.pop_back_val();
1173
1174      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1175
1176      // "I" got into the work list because it either made the transition from
1177      // bottom to constant, or to overdefined.
1178      //
1179      // Anything on this worklist that is overdefined need not be visited
1180      // since all of its users will have already been marked as overdefined
1181      // Update all of the users of this instruction's value.
1182      //
1183      for (User *U : I->users())
1184        if (Instruction *UI = dyn_cast<Instruction>(U))
1185          OperandChangedState(UI);
1186    }
1187
1188    // Process the instruction work list.
1189    while (!InstWorkList.empty()) {
1190      Value *I = InstWorkList.pop_back_val();
1191
1192      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1193
1194      // "I" got into the work list because it made the transition from undef to
1195      // constant.
1196      //
1197      // Anything on this worklist that is overdefined need not be visited
1198      // since all of its users will have already been marked as overdefined.
1199      // Update all of the users of this instruction's value.
1200      //
1201      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1202        for (User *U : I->users())
1203          if (Instruction *UI = dyn_cast<Instruction>(U))
1204            OperandChangedState(UI);
1205    }
1206
1207    // Process the basic block work list.
1208    while (!BBWorkList.empty()) {
1209      BasicBlock *BB = BBWorkList.back();
1210      BBWorkList.pop_back();
1211
1212      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1213
1214      // Notify all instructions in this basic block that they are newly
1215      // executable.
1216      visit(BB);
1217    }
1218  }
1219}
1220
1221/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1222/// that branches on undef values cannot reach any of their successors.
1223/// However, this is not a safe assumption.  After we solve dataflow, this
1224/// method should be use to handle this.  If this returns true, the solver
1225/// should be rerun.
1226///
1227/// This method handles this by finding an unresolved branch and marking it one
1228/// of the edges from the block as being feasible, even though the condition
1229/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1230/// CFG and only slightly pessimizes the analysis results (by marking one,
1231/// potentially infeasible, edge feasible).  This cannot usefully modify the
1232/// constraints on the condition of the branch, as that would impact other users
1233/// of the value.
1234///
1235/// This scan also checks for values that use undefs, whose results are actually
1236/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1237/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1238/// even if X isn't defined.
1239bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1240  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1241    if (!BBExecutable.count(BB))
1242      continue;
1243
1244    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1245      // Look for instructions which produce undef values.
1246      if (I->getType()->isVoidTy()) continue;
1247
1248      if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1249        // Only a few things that can be structs matter for undef.
1250
1251        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1252        if (CallSite CS = CallSite(I))
1253          if (Function *F = CS.getCalledFunction())
1254            if (MRVFunctionsTracked.count(F))
1255              continue;
1256
1257        // extractvalue and insertvalue don't need to be marked; they are
1258        // tracked as precisely as their operands.
1259        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1260          continue;
1261
1262        // Send the results of everything else to overdefined.  We could be
1263        // more precise than this but it isn't worth bothering.
1264        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1265          LatticeVal &LV = getStructValueState(I, i);
1266          if (LV.isUndefined())
1267            markOverdefined(LV, I);
1268        }
1269        continue;
1270      }
1271
1272      LatticeVal &LV = getValueState(I);
1273      if (!LV.isUndefined()) continue;
1274
1275      // extractvalue is safe; check here because the argument is a struct.
1276      if (isa<ExtractValueInst>(I))
1277        continue;
1278
1279      // Compute the operand LatticeVals, for convenience below.
1280      // Anything taking a struct is conservatively assumed to require
1281      // overdefined markings.
1282      if (I->getOperand(0)->getType()->isStructTy()) {
1283        markOverdefined(I);
1284        return true;
1285      }
1286      LatticeVal Op0LV = getValueState(I->getOperand(0));
1287      LatticeVal Op1LV;
1288      if (I->getNumOperands() == 2) {
1289        if (I->getOperand(1)->getType()->isStructTy()) {
1290          markOverdefined(I);
1291          return true;
1292        }
1293
1294        Op1LV = getValueState(I->getOperand(1));
1295      }
1296      // If this is an instructions whose result is defined even if the input is
1297      // not fully defined, propagate the information.
1298      Type *ITy = I->getType();
1299      switch (I->getOpcode()) {
1300      case Instruction::Add:
1301      case Instruction::Sub:
1302      case Instruction::Trunc:
1303      case Instruction::FPTrunc:
1304      case Instruction::BitCast:
1305        break; // Any undef -> undef
1306      case Instruction::FSub:
1307      case Instruction::FAdd:
1308      case Instruction::FMul:
1309      case Instruction::FDiv:
1310      case Instruction::FRem:
1311        // Floating-point binary operation: be conservative.
1312        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1313          markForcedConstant(I, Constant::getNullValue(ITy));
1314        else
1315          markOverdefined(I);
1316        return true;
1317      case Instruction::ZExt:
1318      case Instruction::SExt:
1319      case Instruction::FPToUI:
1320      case Instruction::FPToSI:
1321      case Instruction::FPExt:
1322      case Instruction::PtrToInt:
1323      case Instruction::IntToPtr:
1324      case Instruction::SIToFP:
1325      case Instruction::UIToFP:
1326        // undef -> 0; some outputs are impossible
1327        markForcedConstant(I, Constant::getNullValue(ITy));
1328        return true;
1329      case Instruction::Mul:
1330      case Instruction::And:
1331        // Both operands undef -> undef
1332        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1333          break;
1334        // undef * X -> 0.   X could be zero.
1335        // undef & X -> 0.   X could be zero.
1336        markForcedConstant(I, Constant::getNullValue(ITy));
1337        return true;
1338
1339      case Instruction::Or:
1340        // Both operands undef -> undef
1341        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1342          break;
1343        // undef | X -> -1.   X could be -1.
1344        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1345        return true;
1346
1347      case Instruction::Xor:
1348        // undef ^ undef -> 0; strictly speaking, this is not strictly
1349        // necessary, but we try to be nice to people who expect this
1350        // behavior in simple cases
1351        if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1352          markForcedConstant(I, Constant::getNullValue(ITy));
1353          return true;
1354        }
1355        // undef ^ X -> undef
1356        break;
1357
1358      case Instruction::SDiv:
1359      case Instruction::UDiv:
1360      case Instruction::SRem:
1361      case Instruction::URem:
1362        // X / undef -> undef.  No change.
1363        // X % undef -> undef.  No change.
1364        if (Op1LV.isUndefined()) break;
1365
1366        // undef / X -> 0.   X could be maxint.
1367        // undef % X -> 0.   X could be 1.
1368        markForcedConstant(I, Constant::getNullValue(ITy));
1369        return true;
1370
1371      case Instruction::AShr:
1372        // X >>a undef -> undef.
1373        if (Op1LV.isUndefined()) break;
1374
1375        // undef >>a X -> all ones
1376        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1377        return true;
1378      case Instruction::LShr:
1379      case Instruction::Shl:
1380        // X << undef -> undef.
1381        // X >> undef -> undef.
1382        if (Op1LV.isUndefined()) break;
1383
1384        // undef << X -> 0
1385        // undef >> X -> 0
1386        markForcedConstant(I, Constant::getNullValue(ITy));
1387        return true;
1388      case Instruction::Select:
1389        Op1LV = getValueState(I->getOperand(1));
1390        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1391        if (Op0LV.isUndefined()) {
1392          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1393            Op1LV = getValueState(I->getOperand(2));
1394        } else if (Op1LV.isUndefined()) {
1395          // c ? undef : undef -> undef.  No change.
1396          Op1LV = getValueState(I->getOperand(2));
1397          if (Op1LV.isUndefined())
1398            break;
1399          // Otherwise, c ? undef : x -> x.
1400        } else {
1401          // Leave Op1LV as Operand(1)'s LatticeValue.
1402        }
1403
1404        if (Op1LV.isConstant())
1405          markForcedConstant(I, Op1LV.getConstant());
1406        else
1407          markOverdefined(I);
1408        return true;
1409      case Instruction::Load:
1410        // A load here means one of two things: a load of undef from a global,
1411        // a load from an unknown pointer.  Either way, having it return undef
1412        // is okay.
1413        break;
1414      case Instruction::ICmp:
1415        // X == undef -> undef.  Other comparisons get more complicated.
1416        if (cast<ICmpInst>(I)->isEquality())
1417          break;
1418        markOverdefined(I);
1419        return true;
1420      case Instruction::Call:
1421      case Instruction::Invoke: {
1422        // There are two reasons a call can have an undef result
1423        // 1. It could be tracked.
1424        // 2. It could be constant-foldable.
1425        // Because of the way we solve return values, tracked calls must
1426        // never be marked overdefined in ResolvedUndefsIn.
1427        if (Function *F = CallSite(I).getCalledFunction())
1428          if (TrackedRetVals.count(F))
1429            break;
1430
1431        // If the call is constant-foldable, we mark it overdefined because
1432        // we do not know what return values are valid.
1433        markOverdefined(I);
1434        return true;
1435      }
1436      default:
1437        // If we don't know what should happen here, conservatively mark it
1438        // overdefined.
1439        markOverdefined(I);
1440        return true;
1441      }
1442    }
1443
1444    // Check to see if we have a branch or switch on an undefined value.  If so
1445    // we force the branch to go one way or the other to make the successor
1446    // values live.  It doesn't really matter which way we force it.
1447    TerminatorInst *TI = BB->getTerminator();
1448    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1449      if (!BI->isConditional()) continue;
1450      if (!getValueState(BI->getCondition()).isUndefined())
1451        continue;
1452
1453      // If the input to SCCP is actually branch on undef, fix the undef to
1454      // false.
1455      if (isa<UndefValue>(BI->getCondition())) {
1456        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1457        markEdgeExecutable(BB, TI->getSuccessor(1));
1458        return true;
1459      }
1460
1461      // Otherwise, it is a branch on a symbolic value which is currently
1462      // considered to be undef.  Handle this by forcing the input value to the
1463      // branch to false.
1464      markForcedConstant(BI->getCondition(),
1465                         ConstantInt::getFalse(TI->getContext()));
1466      return true;
1467    }
1468
1469    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1470      if (!SI->getNumCases())
1471        continue;
1472      if (!getValueState(SI->getCondition()).isUndefined())
1473        continue;
1474
1475      // If the input to SCCP is actually switch on undef, fix the undef to
1476      // the first constant.
1477      if (isa<UndefValue>(SI->getCondition())) {
1478        SI->setCondition(SI->case_begin().getCaseValue());
1479        markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1480        return true;
1481      }
1482
1483      markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1484      return true;
1485    }
1486  }
1487
1488  return false;
1489}
1490
1491
1492namespace {
1493  //===--------------------------------------------------------------------===//
1494  //
1495  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1496  /// Sparse Conditional Constant Propagator.
1497  ///
1498  struct SCCP : public FunctionPass {
1499    void getAnalysisUsage(AnalysisUsage &AU) const override {
1500      AU.addRequired<TargetLibraryInfo>();
1501    }
1502    static char ID; // Pass identification, replacement for typeid
1503    SCCP() : FunctionPass(ID) {
1504      initializeSCCPPass(*PassRegistry::getPassRegistry());
1505    }
1506
1507    // runOnFunction - Run the Sparse Conditional Constant Propagation
1508    // algorithm, and return true if the function was modified.
1509    //
1510    bool runOnFunction(Function &F) override;
1511  };
1512} // end anonymous namespace
1513
1514char SCCP::ID = 0;
1515INITIALIZE_PASS(SCCP, "sccp",
1516                "Sparse Conditional Constant Propagation", false, false)
1517
1518// createSCCPPass - This is the public interface to this file.
1519FunctionPass *llvm::createSCCPPass() {
1520  return new SCCP();
1521}
1522
1523static void DeleteInstructionInBlock(BasicBlock *BB) {
1524  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1525  ++NumDeadBlocks;
1526
1527  // Check to see if there are non-terminating instructions to delete.
1528  if (isa<TerminatorInst>(BB->begin()))
1529    return;
1530
1531  // Delete the instructions backwards, as it has a reduced likelihood of having
1532  // to update as many def-use and use-def chains.
1533  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1534  while (EndInst != BB->begin()) {
1535    // Delete the next to last instruction.
1536    BasicBlock::iterator I = EndInst;
1537    Instruction *Inst = --I;
1538    if (!Inst->use_empty())
1539      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1540    if (isa<LandingPadInst>(Inst)) {
1541      EndInst = Inst;
1542      continue;
1543    }
1544    BB->getInstList().erase(Inst);
1545    ++NumInstRemoved;
1546  }
1547}
1548
1549// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1550// and return true if the function was modified.
1551//
1552bool SCCP::runOnFunction(Function &F) {
1553  if (skipOptnoneFunction(F))
1554    return false;
1555
1556  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1557  const DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1558  const DataLayout *DL = DLP ? &DLP->getDataLayout() : 0;
1559  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1560  SCCPSolver Solver(DL, TLI);
1561
1562  // Mark the first block of the function as being executable.
1563  Solver.MarkBlockExecutable(F.begin());
1564
1565  // Mark all arguments to the function as being overdefined.
1566  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1567    Solver.markAnythingOverdefined(AI);
1568
1569  // Solve for constants.
1570  bool ResolvedUndefs = true;
1571  while (ResolvedUndefs) {
1572    Solver.Solve();
1573    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1574    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1575  }
1576
1577  bool MadeChanges = false;
1578
1579  // If we decided that there are basic blocks that are dead in this function,
1580  // delete their contents now.  Note that we cannot actually delete the blocks,
1581  // as we cannot modify the CFG of the function.
1582
1583  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1584    if (!Solver.isBlockExecutable(BB)) {
1585      DeleteInstructionInBlock(BB);
1586      MadeChanges = true;
1587      continue;
1588    }
1589
1590    // Iterate over all of the instructions in a function, replacing them with
1591    // constants if we have found them to be of constant values.
1592    //
1593    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1594      Instruction *Inst = BI++;
1595      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1596        continue;
1597
1598      // TODO: Reconstruct structs from their elements.
1599      if (Inst->getType()->isStructTy())
1600        continue;
1601
1602      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1603      if (IV.isOverdefined())
1604        continue;
1605
1606      Constant *Const = IV.isConstant()
1607        ? IV.getConstant() : UndefValue::get(Inst->getType());
1608      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1609
1610      // Replaces all of the uses of a variable with uses of the constant.
1611      Inst->replaceAllUsesWith(Const);
1612
1613      // Delete the instruction.
1614      Inst->eraseFromParent();
1615
1616      // Hey, we just changed something!
1617      MadeChanges = true;
1618      ++NumInstRemoved;
1619    }
1620  }
1621
1622  return MadeChanges;
1623}
1624
1625namespace {
1626  //===--------------------------------------------------------------------===//
1627  //
1628  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1629  /// Constant Propagation.
1630  ///
1631  struct IPSCCP : public ModulePass {
1632    void getAnalysisUsage(AnalysisUsage &AU) const override {
1633      AU.addRequired<TargetLibraryInfo>();
1634    }
1635    static char ID;
1636    IPSCCP() : ModulePass(ID) {
1637      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1638    }
1639    bool runOnModule(Module &M) override;
1640  };
1641} // end anonymous namespace
1642
1643char IPSCCP::ID = 0;
1644INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1645                "Interprocedural Sparse Conditional Constant Propagation",
1646                false, false)
1647INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1648INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1649                "Interprocedural Sparse Conditional Constant Propagation",
1650                false, false)
1651
1652// createIPSCCPPass - This is the public interface to this file.
1653ModulePass *llvm::createIPSCCPPass() {
1654  return new IPSCCP();
1655}
1656
1657
1658static bool AddressIsTaken(const GlobalValue *GV) {
1659  // Delete any dead constantexpr klingons.
1660  GV->removeDeadConstantUsers();
1661
1662  for (const Use &U : GV->uses()) {
1663    const User *UR = U.getUser();
1664    if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1665      if (SI->getOperand(0) == GV || SI->isVolatile())
1666        return true;  // Storing addr of GV.
1667    } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1668      // Make sure we are calling the function, not passing the address.
1669      ImmutableCallSite CS(cast<Instruction>(UR));
1670      if (!CS.isCallee(&U))
1671        return true;
1672    } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1673      if (LI->isVolatile())
1674        return true;
1675    } else if (isa<BlockAddress>(UR)) {
1676      // blockaddress doesn't take the address of the function, it takes addr
1677      // of label.
1678    } else {
1679      return true;
1680    }
1681  }
1682  return false;
1683}
1684
1685bool IPSCCP::runOnModule(Module &M) {
1686  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1687  const DataLayout *DL = DLP ? &DLP->getDataLayout() : 0;
1688  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1689  SCCPSolver Solver(DL, TLI);
1690
1691  // AddressTakenFunctions - This set keeps track of the address-taken functions
1692  // that are in the input.  As IPSCCP runs through and simplifies code,
1693  // functions that were address taken can end up losing their
1694  // address-taken-ness.  Because of this, we keep track of their addresses from
1695  // the first pass so we can use them for the later simplification pass.
1696  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1697
1698  // Loop over all functions, marking arguments to those with their addresses
1699  // taken or that are external as overdefined.
1700  //
1701  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1702    if (F->isDeclaration())
1703      continue;
1704
1705    // If this is a strong or ODR definition of this function, then we can
1706    // propagate information about its result into callsites of it.
1707    if (!F->mayBeOverridden())
1708      Solver.AddTrackedFunction(F);
1709
1710    // If this function only has direct calls that we can see, we can track its
1711    // arguments and return value aggressively, and can assume it is not called
1712    // unless we see evidence to the contrary.
1713    if (F->hasLocalLinkage()) {
1714      if (AddressIsTaken(F))
1715        AddressTakenFunctions.insert(F);
1716      else {
1717        Solver.AddArgumentTrackedFunction(F);
1718        continue;
1719      }
1720    }
1721
1722    // Assume the function is called.
1723    Solver.MarkBlockExecutable(F->begin());
1724
1725    // Assume nothing about the incoming arguments.
1726    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1727         AI != E; ++AI)
1728      Solver.markAnythingOverdefined(AI);
1729  }
1730
1731  // Loop over global variables.  We inform the solver about any internal global
1732  // variables that do not have their 'addresses taken'.  If they don't have
1733  // their addresses taken, we can propagate constants through them.
1734  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1735       G != E; ++G)
1736    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1737      Solver.TrackValueOfGlobalVariable(G);
1738
1739  // Solve for constants.
1740  bool ResolvedUndefs = true;
1741  while (ResolvedUndefs) {
1742    Solver.Solve();
1743
1744    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1745    ResolvedUndefs = false;
1746    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1747      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1748  }
1749
1750  bool MadeChanges = false;
1751
1752  // Iterate over all of the instructions in the module, replacing them with
1753  // constants if we have found them to be of constant values.
1754  //
1755  SmallVector<BasicBlock*, 512> BlocksToErase;
1756
1757  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1758    if (Solver.isBlockExecutable(F->begin())) {
1759      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1760           AI != E; ++AI) {
1761        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1762
1763        // TODO: Could use getStructLatticeValueFor to find out if the entire
1764        // result is a constant and replace it entirely if so.
1765
1766        LatticeVal IV = Solver.getLatticeValueFor(AI);
1767        if (IV.isOverdefined()) continue;
1768
1769        Constant *CST = IV.isConstant() ?
1770        IV.getConstant() : UndefValue::get(AI->getType());
1771        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1772
1773        // Replaces all of the uses of a variable with uses of the
1774        // constant.
1775        AI->replaceAllUsesWith(CST);
1776        ++IPNumArgsElimed;
1777      }
1778    }
1779
1780    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1781      if (!Solver.isBlockExecutable(BB)) {
1782        DeleteInstructionInBlock(BB);
1783        MadeChanges = true;
1784
1785        TerminatorInst *TI = BB->getTerminator();
1786        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1787          BasicBlock *Succ = TI->getSuccessor(i);
1788          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1789            TI->getSuccessor(i)->removePredecessor(BB);
1790        }
1791        if (!TI->use_empty())
1792          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1793        TI->eraseFromParent();
1794
1795        if (&*BB != &F->front())
1796          BlocksToErase.push_back(BB);
1797        else
1798          new UnreachableInst(M.getContext(), BB);
1799        continue;
1800      }
1801
1802      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1803        Instruction *Inst = BI++;
1804        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1805          continue;
1806
1807        // TODO: Could use getStructLatticeValueFor to find out if the entire
1808        // result is a constant and replace it entirely if so.
1809
1810        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1811        if (IV.isOverdefined())
1812          continue;
1813
1814        Constant *Const = IV.isConstant()
1815          ? IV.getConstant() : UndefValue::get(Inst->getType());
1816        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1817
1818        // Replaces all of the uses of a variable with uses of the
1819        // constant.
1820        Inst->replaceAllUsesWith(Const);
1821
1822        // Delete the instruction.
1823        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1824          Inst->eraseFromParent();
1825
1826        // Hey, we just changed something!
1827        MadeChanges = true;
1828        ++IPNumInstRemoved;
1829      }
1830    }
1831
1832    // Now that all instructions in the function are constant folded, erase dead
1833    // blocks, because we can now use ConstantFoldTerminator to get rid of
1834    // in-edges.
1835    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1836      // If there are any PHI nodes in this successor, drop entries for BB now.
1837      BasicBlock *DeadBB = BlocksToErase[i];
1838      for (Value::user_iterator UI = DeadBB->user_begin(),
1839                                UE = DeadBB->user_end();
1840           UI != UE;) {
1841        // Grab the user and then increment the iterator early, as the user
1842        // will be deleted. Step past all adjacent uses from the same user.
1843        Instruction *I = dyn_cast<Instruction>(*UI);
1844        do { ++UI; } while (UI != UE && *UI == I);
1845
1846        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1847        if (!I) continue;
1848
1849        bool Folded = ConstantFoldTerminator(I->getParent());
1850        if (!Folded) {
1851          // The constant folder may not have been able to fold the terminator
1852          // if this is a branch or switch on undef.  Fold it manually as a
1853          // branch to the first successor.
1854#ifndef NDEBUG
1855          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1856            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1857                   "Branch should be foldable!");
1858          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1859            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1860          } else {
1861            llvm_unreachable("Didn't fold away reference to block!");
1862          }
1863#endif
1864
1865          // Make this an uncond branch to the first successor.
1866          TerminatorInst *TI = I->getParent()->getTerminator();
1867          BranchInst::Create(TI->getSuccessor(0), TI);
1868
1869          // Remove entries in successor phi nodes to remove edges.
1870          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1871            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1872
1873          // Remove the old terminator.
1874          TI->eraseFromParent();
1875        }
1876      }
1877
1878      // Finally, delete the basic block.
1879      F->getBasicBlockList().erase(DeadBB);
1880    }
1881    BlocksToErase.clear();
1882  }
1883
1884  // If we inferred constant or undef return values for a function, we replaced
1885  // all call uses with the inferred value.  This means we don't need to bother
1886  // actually returning anything from the function.  Replace all return
1887  // instructions with return undef.
1888  //
1889  // Do this in two stages: first identify the functions we should process, then
1890  // actually zap their returns.  This is important because we can only do this
1891  // if the address of the function isn't taken.  In cases where a return is the
1892  // last use of a function, the order of processing functions would affect
1893  // whether other functions are optimizable.
1894  SmallVector<ReturnInst*, 8> ReturnsToZap;
1895
1896  // TODO: Process multiple value ret instructions also.
1897  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1898  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1899       E = RV.end(); I != E; ++I) {
1900    Function *F = I->first;
1901    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1902      continue;
1903
1904    // We can only do this if we know that nothing else can call the function.
1905    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1906      continue;
1907
1908    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1909      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1910        if (!isa<UndefValue>(RI->getOperand(0)))
1911          ReturnsToZap.push_back(RI);
1912  }
1913
1914  // Zap all returns which we've identified as zap to change.
1915  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1916    Function *F = ReturnsToZap[i]->getParent()->getParent();
1917    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1918  }
1919
1920  // If we inferred constant or undef values for globals variables, we can
1921  // delete the global and any stores that remain to it.
1922  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1923  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1924         E = TG.end(); I != E; ++I) {
1925    GlobalVariable *GV = I->first;
1926    assert(!I->second.isOverdefined() &&
1927           "Overdefined values should have been taken out of the map!");
1928    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1929    while (!GV->use_empty()) {
1930      StoreInst *SI = cast<StoreInst>(GV->user_back());
1931      SI->eraseFromParent();
1932    }
1933    M.getGlobalList().erase(GV);
1934    ++IPNumGlobalConst;
1935  }
1936
1937  return MadeChanges;
1938}
1939