SCCP.cpp revision 5defacc6e605f4651c6300237cef8e9bb2eb6d0e
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <map>
49using namespace llvm;
50
51STATISTIC(NumInstRemoved, "Number of instructions removed");
52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
53
54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
58
59namespace {
60/// LatticeVal class - This class represents the different lattice values that
61/// an LLVM value may occupy.  It is a simple class with value semantics.
62///
63class VISIBILITY_HIDDEN LatticeVal {
64  enum {
65    /// undefined - This LLVM Value has no known value yet.
66    undefined,
67
68    /// constant - This LLVM Value has a specific constant value.
69    constant,
70
71    /// forcedconstant - This LLVM Value was thought to be undef until
72    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
73    /// with another (different) constant, it goes to overdefined, instead of
74    /// asserting.
75    forcedconstant,
76
77    /// overdefined - This instruction is not known to be constant, and we know
78    /// it has a value.
79    overdefined
80  } LatticeValue;    // The current lattice position
81
82  Constant *ConstantVal; // If Constant value, the current value
83public:
84  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
85
86  // markOverdefined - Return true if this is a new status to be in...
87  inline bool markOverdefined() {
88    if (LatticeValue != overdefined) {
89      LatticeValue = overdefined;
90      return true;
91    }
92    return false;
93  }
94
95  // markConstant - Return true if this is a new status for us.
96  inline bool markConstant(Constant *V) {
97    if (LatticeValue != constant) {
98      if (LatticeValue == undefined) {
99        LatticeValue = constant;
100        assert(V && "Marking constant with NULL");
101        ConstantVal = V;
102      } else {
103        assert(LatticeValue == forcedconstant &&
104               "Cannot move from overdefined to constant!");
105        // Stay at forcedconstant if the constant is the same.
106        if (V == ConstantVal) return false;
107
108        // Otherwise, we go to overdefined.  Assumptions made based on the
109        // forced value are possibly wrong.  Assuming this is another constant
110        // could expose a contradiction.
111        LatticeValue = overdefined;
112      }
113      return true;
114    } else {
115      assert(ConstantVal == V && "Marking constant with different value");
116    }
117    return false;
118  }
119
120  inline void markForcedConstant(Constant *V) {
121    assert(LatticeValue == undefined && "Can't force a defined value!");
122    LatticeValue = forcedconstant;
123    ConstantVal = V;
124  }
125
126  inline bool isUndefined() const { return LatticeValue == undefined; }
127  inline bool isConstant() const {
128    return LatticeValue == constant || LatticeValue == forcedconstant;
129  }
130  inline bool isOverdefined() const { return LatticeValue == overdefined; }
131
132  inline Constant *getConstant() const {
133    assert(isConstant() && "Cannot get the constant of a non-constant!");
134    return ConstantVal;
135  }
136};
137
138//===----------------------------------------------------------------------===//
139//
140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141/// Constant Propagation.
142///
143class SCCPSolver : public InstVisitor<SCCPSolver> {
144  LLVMContext *Context;
145  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
146  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
147
148  /// GlobalValue - If we are tracking any values for the contents of a global
149  /// variable, we keep a mapping from the constant accessor to the element of
150  /// the global, to the currently known value.  If the value becomes
151  /// overdefined, it's entry is simply removed from this map.
152  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
153
154  /// TrackedRetVals - If we are tracking arguments into and the return
155  /// value out of a function, it will have an entry in this map, indicating
156  /// what the known return value for the function is.
157  DenseMap<Function*, LatticeVal> TrackedRetVals;
158
159  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160  /// that return multiple values.
161  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
162
163  // The reason for two worklists is that overdefined is the lowest state
164  // on the lattice, and moving things to overdefined as fast as possible
165  // makes SCCP converge much faster.
166  // By having a separate worklist, we accomplish this because everything
167  // possibly overdefined will become overdefined at the soonest possible
168  // point.
169  SmallVector<Value*, 64> OverdefinedInstWorkList;
170  SmallVector<Value*, 64> InstWorkList;
171
172
173  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
174
175  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176  /// overdefined, despite the fact that the PHI node is overdefined.
177  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
178
179  /// KnownFeasibleEdges - Entries in this set are edges which have already had
180  /// PHI nodes retriggered.
181  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
182  DenseSet<Edge> KnownFeasibleEdges;
183public:
184  void setContext(LLVMContext *C) { Context = C; }
185
186  /// MarkBlockExecutable - This method can be used by clients to mark all of
187  /// the blocks that are known to be intrinsically live in the processed unit.
188  void MarkBlockExecutable(BasicBlock *BB) {
189    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
190    BBExecutable.insert(BB);   // Basic block is executable!
191    BBWorkList.push_back(BB);  // Add the block to the work list!
192  }
193
194  /// TrackValueOfGlobalVariable - Clients can use this method to
195  /// inform the SCCPSolver that it should track loads and stores to the
196  /// specified global variable if it can.  This is only legal to call if
197  /// performing Interprocedural SCCP.
198  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
199    const Type *ElTy = GV->getType()->getElementType();
200    if (ElTy->isFirstClassType()) {
201      LatticeVal &IV = TrackedGlobals[GV];
202      if (!isa<UndefValue>(GV->getInitializer()))
203        IV.markConstant(GV->getInitializer());
204    }
205  }
206
207  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208  /// and out of the specified function (which cannot have its address taken),
209  /// this method must be called.
210  void AddTrackedFunction(Function *F) {
211    assert(F->hasLocalLinkage() && "Can only track internal functions!");
212    // Add an entry, F -> undef.
213    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
214      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
215        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
216                                                     LatticeVal()));
217    } else
218      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
219  }
220
221  /// Solve - Solve for constants and executable blocks.
222  ///
223  void Solve();
224
225  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226  /// that branches on undef values cannot reach any of their successors.
227  /// However, this is not a safe assumption.  After we solve dataflow, this
228  /// method should be use to handle this.  If this returns true, the solver
229  /// should be rerun.
230  bool ResolvedUndefsIn(Function &F);
231
232  bool isBlockExecutable(BasicBlock *BB) const {
233    return BBExecutable.count(BB);
234  }
235
236  /// getValueMapping - Once we have solved for constants, return the mapping of
237  /// LLVM values to LatticeVals.
238  std::map<Value*, LatticeVal> &getValueMapping() {
239    return ValueState;
240  }
241
242  /// getTrackedRetVals - Get the inferred return value map.
243  ///
244  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
245    return TrackedRetVals;
246  }
247
248  /// getTrackedGlobals - Get and return the set of inferred initializers for
249  /// global variables.
250  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
251    return TrackedGlobals;
252  }
253
254  inline void markOverdefined(Value *V) {
255    markOverdefined(ValueState[V], V);
256  }
257
258private:
259  // markConstant - Make a value be marked as "constant".  If the value
260  // is not already a constant, add it to the instruction work list so that
261  // the users of the instruction are updated later.
262  //
263  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
264    if (IV.markConstant(C)) {
265      DEBUG(errs() << "markConstant: " << *C << ": " << *V);
266      InstWorkList.push_back(V);
267    }
268  }
269
270  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
271    IV.markForcedConstant(C);
272    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V);
273    InstWorkList.push_back(V);
274  }
275
276  inline void markConstant(Value *V, Constant *C) {
277    markConstant(ValueState[V], V, C);
278  }
279
280  // markOverdefined - Make a value be marked as "overdefined". If the
281  // value is not already overdefined, add it to the overdefined instruction
282  // work list so that the users of the instruction are updated later.
283  inline void markOverdefined(LatticeVal &IV, Value *V) {
284    if (IV.markOverdefined()) {
285      DEBUG(errs() << "markOverdefined: ";
286            if (Function *F = dyn_cast<Function>(V))
287              errs() << "Function '" << F->getName() << "'\n";
288            else
289              errs() << *V);
290      // Only instructions go on the work list
291      OverdefinedInstWorkList.push_back(V);
292    }
293  }
294
295  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
296    if (IV.isOverdefined() || MergeWithV.isUndefined())
297      return;  // Noop.
298    if (MergeWithV.isOverdefined())
299      markOverdefined(IV, V);
300    else if (IV.isUndefined())
301      markConstant(IV, V, MergeWithV.getConstant());
302    else if (IV.getConstant() != MergeWithV.getConstant())
303      markOverdefined(IV, V);
304  }
305
306  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
307    return mergeInValue(ValueState[V], V, MergeWithV);
308  }
309
310
311  // getValueState - Return the LatticeVal object that corresponds to the value.
312  // This function is necessary because not all values should start out in the
313  // underdefined state... Argument's should be overdefined, and
314  // constants should be marked as constants.  If a value is not known to be an
315  // Instruction object, then use this accessor to get its value from the map.
316  //
317  inline LatticeVal &getValueState(Value *V) {
318    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
319    if (I != ValueState.end()) return I->second;  // Common case, in the map
320
321    if (Constant *C = dyn_cast<Constant>(V)) {
322      if (isa<UndefValue>(V)) {
323        // Nothing to do, remain undefined.
324      } else {
325        LatticeVal &LV = ValueState[C];
326        LV.markConstant(C);          // Constants are constant
327        return LV;
328      }
329    }
330    // All others are underdefined by default...
331    return ValueState[V];
332  }
333
334  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335  // work list if it is not already executable...
336  //
337  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
338    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
339      return;  // This edge is already known to be executable!
340
341    if (BBExecutable.count(Dest)) {
342      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
343            << " -> " << Dest->getName() << "\n");
344
345      // The destination is already executable, but we just made an edge
346      // feasible that wasn't before.  Revisit the PHI nodes in the block
347      // because they have potentially new operands.
348      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
349        visitPHINode(*cast<PHINode>(I));
350
351    } else {
352      MarkBlockExecutable(Dest);
353    }
354  }
355
356  // getFeasibleSuccessors - Return a vector of booleans to indicate which
357  // successors are reachable from a given terminator instruction.
358  //
359  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
360
361  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362  // block to the 'To' basic block is currently feasible...
363  //
364  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
365
366  // OperandChangedState - This method is invoked on all of the users of an
367  // instruction that was just changed state somehow....  Based on this
368  // information, we need to update the specified user of this instruction.
369  //
370  void OperandChangedState(User *U) {
371    // Only instructions use other variable values!
372    Instruction &I = cast<Instruction>(*U);
373    if (BBExecutable.count(I.getParent()))   // Inst is executable?
374      visit(I);
375  }
376
377private:
378  friend class InstVisitor<SCCPSolver>;
379
380  // visit implementations - Something changed in this instruction... Either an
381  // operand made a transition, or the instruction is newly executable.  Change
382  // the value type of I to reflect these changes if appropriate.
383  //
384  void visitPHINode(PHINode &I);
385
386  // Terminators
387  void visitReturnInst(ReturnInst &I);
388  void visitTerminatorInst(TerminatorInst &TI);
389
390  void visitCastInst(CastInst &I);
391  void visitSelectInst(SelectInst &I);
392  void visitBinaryOperator(Instruction &I);
393  void visitCmpInst(CmpInst &I);
394  void visitExtractElementInst(ExtractElementInst &I);
395  void visitInsertElementInst(InsertElementInst &I);
396  void visitShuffleVectorInst(ShuffleVectorInst &I);
397  void visitExtractValueInst(ExtractValueInst &EVI);
398  void visitInsertValueInst(InsertValueInst &IVI);
399
400  // Instructions that cannot be folded away...
401  void visitStoreInst     (Instruction &I);
402  void visitLoadInst      (LoadInst &I);
403  void visitGetElementPtrInst(GetElementPtrInst &I);
404  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
405  void visitInvokeInst    (InvokeInst &II) {
406    visitCallSite(CallSite::get(&II));
407    visitTerminatorInst(II);
408  }
409  void visitCallSite      (CallSite CS);
410  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
411  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
412  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
413  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
414  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
415  void visitFreeInst      (Instruction &I) { /*returns void*/ }
416
417  void visitInstruction(Instruction &I) {
418    // If a new instruction is added to LLVM that we don't handle...
419    cerr << "SCCP: Don't know how to handle: " << I;
420    markOverdefined(&I);   // Just in case
421  }
422};
423
424} // end anonymous namespace
425
426
427// getFeasibleSuccessors - Return a vector of booleans to indicate which
428// successors are reachable from a given terminator instruction.
429//
430void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
431                                       SmallVector<bool, 16> &Succs) {
432  Succs.resize(TI.getNumSuccessors());
433  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
434    if (BI->isUnconditional()) {
435      Succs[0] = true;
436    } else {
437      LatticeVal &BCValue = getValueState(BI->getCondition());
438      if (BCValue.isOverdefined() ||
439          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
440        // Overdefined condition variables, and branches on unfoldable constant
441        // conditions, mean the branch could go either way.
442        Succs[0] = Succs[1] = true;
443      } else if (BCValue.isConstant()) {
444        // Constant condition variables mean the branch can only go a single way
445        Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
446      }
447    }
448  } else if (isa<InvokeInst>(&TI)) {
449    // Invoke instructions successors are always executable.
450    Succs[0] = Succs[1] = true;
451  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
452    LatticeVal &SCValue = getValueState(SI->getCondition());
453    if (SCValue.isOverdefined() ||   // Overdefined condition?
454        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
455      // All destinations are executable!
456      Succs.assign(TI.getNumSuccessors(), true);
457    } else if (SCValue.isConstant())
458      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
459  } else {
460    llvm_unreachable("SCCP: Don't know how to handle this terminator!");
461  }
462}
463
464
465// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
466// block to the 'To' basic block is currently feasible...
467//
468bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
469  assert(BBExecutable.count(To) && "Dest should always be alive!");
470
471  // Make sure the source basic block is executable!!
472  if (!BBExecutable.count(From)) return false;
473
474  // Check to make sure this edge itself is actually feasible now...
475  TerminatorInst *TI = From->getTerminator();
476  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
477    if (BI->isUnconditional())
478      return true;
479    else {
480      LatticeVal &BCValue = getValueState(BI->getCondition());
481      if (BCValue.isOverdefined()) {
482        // Overdefined condition variables mean the branch could go either way.
483        return true;
484      } else if (BCValue.isConstant()) {
485        // Not branching on an evaluatable constant?
486        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
487
488        // Constant condition variables mean the branch can only go a single way
489        return BI->getSuccessor(BCValue.getConstant() ==
490                                       ConstantInt::getFalse(*Context)) == To;
491      }
492      return false;
493    }
494  } else if (isa<InvokeInst>(TI)) {
495    // Invoke instructions successors are always executable.
496    return true;
497  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
498    LatticeVal &SCValue = getValueState(SI->getCondition());
499    if (SCValue.isOverdefined()) {  // Overdefined condition?
500      // All destinations are executable!
501      return true;
502    } else if (SCValue.isConstant()) {
503      Constant *CPV = SCValue.getConstant();
504      if (!isa<ConstantInt>(CPV))
505        return true;  // not a foldable constant?
506
507      // Make sure to skip the "default value" which isn't a value
508      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
509        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
510          return SI->getSuccessor(i) == To;
511
512      // Constant value not equal to any of the branches... must execute
513      // default branch then...
514      return SI->getDefaultDest() == To;
515    }
516    return false;
517  } else {
518#ifndef NDEBUG
519    cerr << "Unknown terminator instruction: " << *TI;
520#endif
521    llvm_unreachable(0);
522  }
523}
524
525// visit Implementations - Something changed in this instruction... Either an
526// operand made a transition, or the instruction is newly executable.  Change
527// the value type of I to reflect these changes if appropriate.  This method
528// makes sure to do the following actions:
529//
530// 1. If a phi node merges two constants in, and has conflicting value coming
531//    from different branches, or if the PHI node merges in an overdefined
532//    value, then the PHI node becomes overdefined.
533// 2. If a phi node merges only constants in, and they all agree on value, the
534//    PHI node becomes a constant value equal to that.
535// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
536// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
537// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
538// 6. If a conditional branch has a value that is constant, make the selected
539//    destination executable
540// 7. If a conditional branch has a value that is overdefined, make all
541//    successors executable.
542//
543void SCCPSolver::visitPHINode(PHINode &PN) {
544  LatticeVal &PNIV = getValueState(&PN);
545  if (PNIV.isOverdefined()) {
546    // There may be instructions using this PHI node that are not overdefined
547    // themselves.  If so, make sure that they know that the PHI node operand
548    // changed.
549    std::multimap<PHINode*, Instruction*>::iterator I, E;
550    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
551    if (I != E) {
552      SmallVector<Instruction*, 16> Users;
553      for (; I != E; ++I) Users.push_back(I->second);
554      while (!Users.empty()) {
555        visit(Users.back());
556        Users.pop_back();
557      }
558    }
559    return;  // Quick exit
560  }
561
562  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
563  // and slow us down a lot.  Just mark them overdefined.
564  if (PN.getNumIncomingValues() > 64) {
565    markOverdefined(PNIV, &PN);
566    return;
567  }
568
569  // Look at all of the executable operands of the PHI node.  If any of them
570  // are overdefined, the PHI becomes overdefined as well.  If they are all
571  // constant, and they agree with each other, the PHI becomes the identical
572  // constant.  If they are constant and don't agree, the PHI is overdefined.
573  // If there are no executable operands, the PHI remains undefined.
574  //
575  Constant *OperandVal = 0;
576  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
577    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
578    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
579
580    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
581      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
582        markOverdefined(&PN);
583        return;
584      }
585
586      if (OperandVal == 0) {   // Grab the first value...
587        OperandVal = IV.getConstant();
588      } else {                // Another value is being merged in!
589        // There is already a reachable operand.  If we conflict with it,
590        // then the PHI node becomes overdefined.  If we agree with it, we
591        // can continue on.
592
593        // Check to see if there are two different constants merging...
594        if (IV.getConstant() != OperandVal) {
595          // Yes there is.  This means the PHI node is not constant.
596          // You must be overdefined poor PHI.
597          //
598          markOverdefined(&PN);    // The PHI node now becomes overdefined
599          return;    // I'm done analyzing you
600        }
601      }
602    }
603  }
604
605  // If we exited the loop, this means that the PHI node only has constant
606  // arguments that agree with each other(and OperandVal is the constant) or
607  // OperandVal is null because there are no defined incoming arguments.  If
608  // this is the case, the PHI remains undefined.
609  //
610  if (OperandVal)
611    markConstant(&PN, OperandVal);      // Acquire operand value
612}
613
614void SCCPSolver::visitReturnInst(ReturnInst &I) {
615  if (I.getNumOperands() == 0) return;  // Ret void
616
617  Function *F = I.getParent()->getParent();
618  // If we are tracking the return value of this function, merge it in.
619  if (!F->hasLocalLinkage())
620    return;
621
622  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
623    DenseMap<Function*, LatticeVal>::iterator TFRVI =
624      TrackedRetVals.find(F);
625    if (TFRVI != TrackedRetVals.end() &&
626        !TFRVI->second.isOverdefined()) {
627      LatticeVal &IV = getValueState(I.getOperand(0));
628      mergeInValue(TFRVI->second, F, IV);
629      return;
630    }
631  }
632
633  // Handle functions that return multiple values.
634  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
635    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
636      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
637        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
638      if (It == TrackedMultipleRetVals.end()) break;
639      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
640    }
641  } else if (!TrackedMultipleRetVals.empty() &&
642             I.getNumOperands() == 1 &&
643             isa<StructType>(I.getOperand(0)->getType())) {
644    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
645         i != e; ++i) {
646      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
647        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
648      if (It == TrackedMultipleRetVals.end()) break;
649      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
650        mergeInValue(It->second, F, getValueState(Val));
651    }
652  }
653}
654
655void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
656  SmallVector<bool, 16> SuccFeasible;
657  getFeasibleSuccessors(TI, SuccFeasible);
658
659  BasicBlock *BB = TI.getParent();
660
661  // Mark all feasible successors executable...
662  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
663    if (SuccFeasible[i])
664      markEdgeExecutable(BB, TI.getSuccessor(i));
665}
666
667void SCCPSolver::visitCastInst(CastInst &I) {
668  Value *V = I.getOperand(0);
669  LatticeVal &VState = getValueState(V);
670  if (VState.isOverdefined())          // Inherit overdefinedness of operand
671    markOverdefined(&I);
672  else if (VState.isConstant())        // Propagate constant value
673    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
674                                           VState.getConstant(), I.getType()));
675}
676
677void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
678  Value *Aggr = EVI.getAggregateOperand();
679
680  // If the operand to the extractvalue is an undef, the result is undef.
681  if (isa<UndefValue>(Aggr))
682    return;
683
684  // Currently only handle single-index extractvalues.
685  if (EVI.getNumIndices() != 1) {
686    markOverdefined(&EVI);
687    return;
688  }
689
690  Function *F = 0;
691  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
692    F = CI->getCalledFunction();
693  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
694    F = II->getCalledFunction();
695
696  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
697  // result back!
698  if (F == 0 || TrackedMultipleRetVals.empty()) {
699    markOverdefined(&EVI);
700    return;
701  }
702
703  // See if we are tracking the result of the callee.  If not tracking this
704  // function (for example, it is a declaration) just move to overdefined.
705  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
706    markOverdefined(&EVI);
707    return;
708  }
709
710  // Otherwise, the value will be merged in here as a result of CallSite
711  // handling.
712}
713
714void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
715  Value *Aggr = IVI.getAggregateOperand();
716  Value *Val = IVI.getInsertedValueOperand();
717
718  // If the operands to the insertvalue are undef, the result is undef.
719  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
720    return;
721
722  // Currently only handle single-index insertvalues.
723  if (IVI.getNumIndices() != 1) {
724    markOverdefined(&IVI);
725    return;
726  }
727
728  // Currently only handle insertvalue instructions that are in a single-use
729  // chain that builds up a return value.
730  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
731    if (!TmpIVI->hasOneUse()) {
732      markOverdefined(&IVI);
733      return;
734    }
735    const Value *V = *TmpIVI->use_begin();
736    if (isa<ReturnInst>(V))
737      break;
738    TmpIVI = dyn_cast<InsertValueInst>(V);
739    if (!TmpIVI) {
740      markOverdefined(&IVI);
741      return;
742    }
743  }
744
745  // See if we are tracking the result of the callee.
746  Function *F = IVI.getParent()->getParent();
747  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
748    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
749
750  // Merge in the inserted member value.
751  if (It != TrackedMultipleRetVals.end())
752    mergeInValue(It->second, F, getValueState(Val));
753
754  // Mark the aggregate result of the IVI overdefined; any tracking that we do
755  // will be done on the individual member values.
756  markOverdefined(&IVI);
757}
758
759void SCCPSolver::visitSelectInst(SelectInst &I) {
760  LatticeVal &CondValue = getValueState(I.getCondition());
761  if (CondValue.isUndefined())
762    return;
763  if (CondValue.isConstant()) {
764    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
765      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
766                                                          : I.getFalseValue()));
767      return;
768    }
769  }
770
771  // Otherwise, the condition is overdefined or a constant we can't evaluate.
772  // See if we can produce something better than overdefined based on the T/F
773  // value.
774  LatticeVal &TVal = getValueState(I.getTrueValue());
775  LatticeVal &FVal = getValueState(I.getFalseValue());
776
777  // select ?, C, C -> C.
778  if (TVal.isConstant() && FVal.isConstant() &&
779      TVal.getConstant() == FVal.getConstant()) {
780    markConstant(&I, FVal.getConstant());
781    return;
782  }
783
784  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
785    mergeInValue(&I, FVal);
786  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
787    mergeInValue(&I, TVal);
788  } else {
789    markOverdefined(&I);
790  }
791}
792
793// Handle BinaryOperators and Shift Instructions...
794void SCCPSolver::visitBinaryOperator(Instruction &I) {
795  LatticeVal &IV = ValueState[&I];
796  if (IV.isOverdefined()) return;
797
798  LatticeVal &V1State = getValueState(I.getOperand(0));
799  LatticeVal &V2State = getValueState(I.getOperand(1));
800
801  if (V1State.isOverdefined() || V2State.isOverdefined()) {
802    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
803    // operand is overdefined.
804    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
805      LatticeVal *NonOverdefVal = 0;
806      if (!V1State.isOverdefined()) {
807        NonOverdefVal = &V1State;
808      } else if (!V2State.isOverdefined()) {
809        NonOverdefVal = &V2State;
810      }
811
812      if (NonOverdefVal) {
813        if (NonOverdefVal->isUndefined()) {
814          // Could annihilate value.
815          if (I.getOpcode() == Instruction::And)
816            markConstant(IV, &I, Context->getNullValue(I.getType()));
817          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
818            markConstant(IV, &I, Context->getAllOnesValue(PT));
819          else
820            markConstant(IV, &I,
821                         Context->getAllOnesValue(I.getType()));
822          return;
823        } else {
824          if (I.getOpcode() == Instruction::And) {
825            if (NonOverdefVal->getConstant()->isNullValue()) {
826              markConstant(IV, &I, NonOverdefVal->getConstant());
827              return;      // X and 0 = 0
828            }
829          } else {
830            if (ConstantInt *CI =
831                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
832              if (CI->isAllOnesValue()) {
833                markConstant(IV, &I, NonOverdefVal->getConstant());
834                return;    // X or -1 = -1
835              }
836          }
837        }
838      }
839    }
840
841
842    // If both operands are PHI nodes, it is possible that this instruction has
843    // a constant value, despite the fact that the PHI node doesn't.  Check for
844    // this condition now.
845    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
846      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
847        if (PN1->getParent() == PN2->getParent()) {
848          // Since the two PHI nodes are in the same basic block, they must have
849          // entries for the same predecessors.  Walk the predecessor list, and
850          // if all of the incoming values are constants, and the result of
851          // evaluating this expression with all incoming value pairs is the
852          // same, then this expression is a constant even though the PHI node
853          // is not a constant!
854          LatticeVal Result;
855          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
856            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
857            BasicBlock *InBlock = PN1->getIncomingBlock(i);
858            LatticeVal &In2 =
859              getValueState(PN2->getIncomingValueForBlock(InBlock));
860
861            if (In1.isOverdefined() || In2.isOverdefined()) {
862              Result.markOverdefined();
863              break;  // Cannot fold this operation over the PHI nodes!
864            } else if (In1.isConstant() && In2.isConstant()) {
865              Constant *V =
866                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
867                                              In2.getConstant());
868              if (Result.isUndefined())
869                Result.markConstant(V);
870              else if (Result.isConstant() && Result.getConstant() != V) {
871                Result.markOverdefined();
872                break;
873              }
874            }
875          }
876
877          // If we found a constant value here, then we know the instruction is
878          // constant despite the fact that the PHI nodes are overdefined.
879          if (Result.isConstant()) {
880            markConstant(IV, &I, Result.getConstant());
881            // Remember that this instruction is virtually using the PHI node
882            // operands.
883            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
884            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
885            return;
886          } else if (Result.isUndefined()) {
887            return;
888          }
889
890          // Okay, this really is overdefined now.  Since we might have
891          // speculatively thought that this was not overdefined before, and
892          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
893          // make sure to clean out any entries that we put there, for
894          // efficiency.
895          std::multimap<PHINode*, Instruction*>::iterator It, E;
896          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
897          while (It != E) {
898            if (It->second == &I) {
899              UsersOfOverdefinedPHIs.erase(It++);
900            } else
901              ++It;
902          }
903          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
904          while (It != E) {
905            if (It->second == &I) {
906              UsersOfOverdefinedPHIs.erase(It++);
907            } else
908              ++It;
909          }
910        }
911
912    markOverdefined(IV, &I);
913  } else if (V1State.isConstant() && V2State.isConstant()) {
914    markConstant(IV, &I,
915                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
916                                           V2State.getConstant()));
917  }
918}
919
920// Handle ICmpInst instruction...
921void SCCPSolver::visitCmpInst(CmpInst &I) {
922  LatticeVal &IV = ValueState[&I];
923  if (IV.isOverdefined()) return;
924
925  LatticeVal &V1State = getValueState(I.getOperand(0));
926  LatticeVal &V2State = getValueState(I.getOperand(1));
927
928  if (V1State.isOverdefined() || V2State.isOverdefined()) {
929    // If both operands are PHI nodes, it is possible that this instruction has
930    // a constant value, despite the fact that the PHI node doesn't.  Check for
931    // this condition now.
932    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
933      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
934        if (PN1->getParent() == PN2->getParent()) {
935          // Since the two PHI nodes are in the same basic block, they must have
936          // entries for the same predecessors.  Walk the predecessor list, and
937          // if all of the incoming values are constants, and the result of
938          // evaluating this expression with all incoming value pairs is the
939          // same, then this expression is a constant even though the PHI node
940          // is not a constant!
941          LatticeVal Result;
942          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
943            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
944            BasicBlock *InBlock = PN1->getIncomingBlock(i);
945            LatticeVal &In2 =
946              getValueState(PN2->getIncomingValueForBlock(InBlock));
947
948            if (In1.isOverdefined() || In2.isOverdefined()) {
949              Result.markOverdefined();
950              break;  // Cannot fold this operation over the PHI nodes!
951            } else if (In1.isConstant() && In2.isConstant()) {
952              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
953                                                     In1.getConstant(),
954                                                     In2.getConstant());
955              if (Result.isUndefined())
956                Result.markConstant(V);
957              else if (Result.isConstant() && Result.getConstant() != V) {
958                Result.markOverdefined();
959                break;
960              }
961            }
962          }
963
964          // If we found a constant value here, then we know the instruction is
965          // constant despite the fact that the PHI nodes are overdefined.
966          if (Result.isConstant()) {
967            markConstant(IV, &I, Result.getConstant());
968            // Remember that this instruction is virtually using the PHI node
969            // operands.
970            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
971            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
972            return;
973          } else if (Result.isUndefined()) {
974            return;
975          }
976
977          // Okay, this really is overdefined now.  Since we might have
978          // speculatively thought that this was not overdefined before, and
979          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
980          // make sure to clean out any entries that we put there, for
981          // efficiency.
982          std::multimap<PHINode*, Instruction*>::iterator It, E;
983          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
984          while (It != E) {
985            if (It->second == &I) {
986              UsersOfOverdefinedPHIs.erase(It++);
987            } else
988              ++It;
989          }
990          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
991          while (It != E) {
992            if (It->second == &I) {
993              UsersOfOverdefinedPHIs.erase(It++);
994            } else
995              ++It;
996          }
997        }
998
999    markOverdefined(IV, &I);
1000  } else if (V1State.isConstant() && V2State.isConstant()) {
1001    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1002                                                  V1State.getConstant(),
1003                                                  V2State.getConstant()));
1004  }
1005}
1006
1007void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1008  // FIXME : SCCP does not handle vectors properly.
1009  markOverdefined(&I);
1010  return;
1011
1012#if 0
1013  LatticeVal &ValState = getValueState(I.getOperand(0));
1014  LatticeVal &IdxState = getValueState(I.getOperand(1));
1015
1016  if (ValState.isOverdefined() || IdxState.isOverdefined())
1017    markOverdefined(&I);
1018  else if(ValState.isConstant() && IdxState.isConstant())
1019    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1020                                                     IdxState.getConstant()));
1021#endif
1022}
1023
1024void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1025  // FIXME : SCCP does not handle vectors properly.
1026  markOverdefined(&I);
1027  return;
1028#if 0
1029  LatticeVal &ValState = getValueState(I.getOperand(0));
1030  LatticeVal &EltState = getValueState(I.getOperand(1));
1031  LatticeVal &IdxState = getValueState(I.getOperand(2));
1032
1033  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1034      IdxState.isOverdefined())
1035    markOverdefined(&I);
1036  else if(ValState.isConstant() && EltState.isConstant() &&
1037          IdxState.isConstant())
1038    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1039                                                    EltState.getConstant(),
1040                                                    IdxState.getConstant()));
1041  else if (ValState.isUndefined() && EltState.isConstant() &&
1042           IdxState.isConstant())
1043    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1044                                                   EltState.getConstant(),
1045                                                   IdxState.getConstant()));
1046#endif
1047}
1048
1049void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1050  // FIXME : SCCP does not handle vectors properly.
1051  markOverdefined(&I);
1052  return;
1053#if 0
1054  LatticeVal &V1State   = getValueState(I.getOperand(0));
1055  LatticeVal &V2State   = getValueState(I.getOperand(1));
1056  LatticeVal &MaskState = getValueState(I.getOperand(2));
1057
1058  if (MaskState.isUndefined() ||
1059      (V1State.isUndefined() && V2State.isUndefined()))
1060    return;  // Undefined output if mask or both inputs undefined.
1061
1062  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1063      MaskState.isOverdefined()) {
1064    markOverdefined(&I);
1065  } else {
1066    // A mix of constant/undef inputs.
1067    Constant *V1 = V1State.isConstant() ?
1068        V1State.getConstant() : UndefValue::get(I.getType());
1069    Constant *V2 = V2State.isConstant() ?
1070        V2State.getConstant() : UndefValue::get(I.getType());
1071    Constant *Mask = MaskState.isConstant() ?
1072      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1073    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1074  }
1075#endif
1076}
1077
1078// Handle getelementptr instructions... if all operands are constants then we
1079// can turn this into a getelementptr ConstantExpr.
1080//
1081void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1082  LatticeVal &IV = ValueState[&I];
1083  if (IV.isOverdefined()) return;
1084
1085  SmallVector<Constant*, 8> Operands;
1086  Operands.reserve(I.getNumOperands());
1087
1088  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1089    LatticeVal &State = getValueState(I.getOperand(i));
1090    if (State.isUndefined())
1091      return;  // Operands are not resolved yet...
1092    else if (State.isOverdefined()) {
1093      markOverdefined(IV, &I);
1094      return;
1095    }
1096    assert(State.isConstant() && "Unknown state!");
1097    Operands.push_back(State.getConstant());
1098  }
1099
1100  Constant *Ptr = Operands[0];
1101  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1102
1103  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1104                                                      Operands.size()));
1105}
1106
1107void SCCPSolver::visitStoreInst(Instruction &SI) {
1108  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1109    return;
1110  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1111  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1112  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1113
1114  // Get the value we are storing into the global.
1115  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1116
1117  mergeInValue(I->second, GV, PtrVal);
1118  if (I->second.isOverdefined())
1119    TrackedGlobals.erase(I);      // No need to keep tracking this!
1120}
1121
1122
1123// Handle load instructions.  If the operand is a constant pointer to a constant
1124// global, we can replace the load with the loaded constant value!
1125void SCCPSolver::visitLoadInst(LoadInst &I) {
1126  LatticeVal &IV = ValueState[&I];
1127  if (IV.isOverdefined()) return;
1128
1129  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1130  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1131  if (PtrVal.isConstant() && !I.isVolatile()) {
1132    Value *Ptr = PtrVal.getConstant();
1133    // TODO: Consider a target hook for valid address spaces for this xform.
1134    if (isa<ConstantPointerNull>(Ptr) &&
1135        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1136      // load null -> null
1137      markConstant(IV, &I, Context->getNullValue(I.getType()));
1138      return;
1139    }
1140
1141    // Transform load (constant global) into the value loaded.
1142    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1143      if (GV->isConstant()) {
1144        if (GV->hasDefinitiveInitializer()) {
1145          markConstant(IV, &I, GV->getInitializer());
1146          return;
1147        }
1148      } else if (!TrackedGlobals.empty()) {
1149        // If we are tracking this global, merge in the known value for it.
1150        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1151          TrackedGlobals.find(GV);
1152        if (It != TrackedGlobals.end()) {
1153          mergeInValue(IV, &I, It->second);
1154          return;
1155        }
1156      }
1157    }
1158
1159    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1160    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1161      if (CE->getOpcode() == Instruction::GetElementPtr)
1162    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1163      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1164        if (Constant *V =
1165             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1166                                                    *Context)) {
1167          markConstant(IV, &I, V);
1168          return;
1169        }
1170  }
1171
1172  // Otherwise we cannot say for certain what value this load will produce.
1173  // Bail out.
1174  markOverdefined(IV, &I);
1175}
1176
1177void SCCPSolver::visitCallSite(CallSite CS) {
1178  Function *F = CS.getCalledFunction();
1179  Instruction *I = CS.getInstruction();
1180
1181  // The common case is that we aren't tracking the callee, either because we
1182  // are not doing interprocedural analysis or the callee is indirect, or is
1183  // external.  Handle these cases first.
1184  if (F == 0 || !F->hasLocalLinkage()) {
1185CallOverdefined:
1186    // Void return and not tracking callee, just bail.
1187    if (I->getType() == Type::VoidTy) return;
1188
1189    // Otherwise, if we have a single return value case, and if the function is
1190    // a declaration, maybe we can constant fold it.
1191    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1192        canConstantFoldCallTo(F)) {
1193
1194      SmallVector<Constant*, 8> Operands;
1195      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1196           AI != E; ++AI) {
1197        LatticeVal &State = getValueState(*AI);
1198        if (State.isUndefined())
1199          return;  // Operands are not resolved yet.
1200        else if (State.isOverdefined()) {
1201          markOverdefined(I);
1202          return;
1203        }
1204        assert(State.isConstant() && "Unknown state!");
1205        Operands.push_back(State.getConstant());
1206      }
1207
1208      // If we can constant fold this, mark the result of the call as a
1209      // constant.
1210      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1211        markConstant(I, C);
1212        return;
1213      }
1214    }
1215
1216    // Otherwise, we don't know anything about this call, mark it overdefined.
1217    markOverdefined(I);
1218    return;
1219  }
1220
1221  // If this is a single/zero retval case, see if we're tracking the function.
1222  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1223  if (TFRVI != TrackedRetVals.end()) {
1224    // If so, propagate the return value of the callee into this call result.
1225    mergeInValue(I, TFRVI->second);
1226  } else if (isa<StructType>(I->getType())) {
1227    // Check to see if we're tracking this callee, if not, handle it in the
1228    // common path above.
1229    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1230    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1231    if (TMRVI == TrackedMultipleRetVals.end())
1232      goto CallOverdefined;
1233
1234    // If we are tracking this callee, propagate the return values of the call
1235    // into this call site.  We do this by walking all the uses. Single-index
1236    // ExtractValueInst uses can be tracked; anything more complicated is
1237    // currently handled conservatively.
1238    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1239         UI != E; ++UI) {
1240      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1241        if (EVI->getNumIndices() == 1) {
1242          mergeInValue(EVI,
1243                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1244          continue;
1245        }
1246      }
1247      // The aggregate value is used in a way not handled here. Assume nothing.
1248      markOverdefined(*UI);
1249    }
1250  } else {
1251    // Otherwise we're not tracking this callee, so handle it in the
1252    // common path above.
1253    goto CallOverdefined;
1254  }
1255
1256  // Finally, if this is the first call to the function hit, mark its entry
1257  // block executable.
1258  if (!BBExecutable.count(F->begin()))
1259    MarkBlockExecutable(F->begin());
1260
1261  // Propagate information from this call site into the callee.
1262  CallSite::arg_iterator CAI = CS.arg_begin();
1263  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1264       AI != E; ++AI, ++CAI) {
1265    LatticeVal &IV = ValueState[AI];
1266    if (!IV.isOverdefined())
1267      mergeInValue(IV, AI, getValueState(*CAI));
1268  }
1269}
1270
1271
1272void SCCPSolver::Solve() {
1273  // Process the work lists until they are empty!
1274  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1275         !OverdefinedInstWorkList.empty()) {
1276    // Process the instruction work list...
1277    while (!OverdefinedInstWorkList.empty()) {
1278      Value *I = OverdefinedInstWorkList.back();
1279      OverdefinedInstWorkList.pop_back();
1280
1281      DEBUG(errs() << "\nPopped off OI-WL: " << *I);
1282
1283      // "I" got into the work list because it either made the transition from
1284      // bottom to constant
1285      //
1286      // Anything on this worklist that is overdefined need not be visited
1287      // since all of its users will have already been marked as overdefined
1288      // Update all of the users of this instruction's value...
1289      //
1290      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1291           UI != E; ++UI)
1292        OperandChangedState(*UI);
1293    }
1294    // Process the instruction work list...
1295    while (!InstWorkList.empty()) {
1296      Value *I = InstWorkList.back();
1297      InstWorkList.pop_back();
1298
1299      DEBUG(errs() << "\nPopped off I-WL: " << *I);
1300
1301      // "I" got into the work list because it either made the transition from
1302      // bottom to constant
1303      //
1304      // Anything on this worklist that is overdefined need not be visited
1305      // since all of its users will have already been marked as overdefined.
1306      // Update all of the users of this instruction's value...
1307      //
1308      if (!getValueState(I).isOverdefined())
1309        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1310             UI != E; ++UI)
1311          OperandChangedState(*UI);
1312    }
1313
1314    // Process the basic block work list...
1315    while (!BBWorkList.empty()) {
1316      BasicBlock *BB = BBWorkList.back();
1317      BBWorkList.pop_back();
1318
1319      DEBUG(errs() << "\nPopped off BBWL: " << *BB);
1320
1321      // Notify all instructions in this basic block that they are newly
1322      // executable.
1323      visit(BB);
1324    }
1325  }
1326}
1327
1328/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1329/// that branches on undef values cannot reach any of their successors.
1330/// However, this is not a safe assumption.  After we solve dataflow, this
1331/// method should be use to handle this.  If this returns true, the solver
1332/// should be rerun.
1333///
1334/// This method handles this by finding an unresolved branch and marking it one
1335/// of the edges from the block as being feasible, even though the condition
1336/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1337/// CFG and only slightly pessimizes the analysis results (by marking one,
1338/// potentially infeasible, edge feasible).  This cannot usefully modify the
1339/// constraints on the condition of the branch, as that would impact other users
1340/// of the value.
1341///
1342/// This scan also checks for values that use undefs, whose results are actually
1343/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1344/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1345/// even if X isn't defined.
1346bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1347  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1348    if (!BBExecutable.count(BB))
1349      continue;
1350
1351    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1352      // Look for instructions which produce undef values.
1353      if (I->getType() == Type::VoidTy) continue;
1354
1355      LatticeVal &LV = getValueState(I);
1356      if (!LV.isUndefined()) continue;
1357
1358      // Get the lattice values of the first two operands for use below.
1359      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1360      LatticeVal Op1LV;
1361      if (I->getNumOperands() == 2) {
1362        // If this is a two-operand instruction, and if both operands are
1363        // undefs, the result stays undef.
1364        Op1LV = getValueState(I->getOperand(1));
1365        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1366          continue;
1367      }
1368
1369      // If this is an instructions whose result is defined even if the input is
1370      // not fully defined, propagate the information.
1371      const Type *ITy = I->getType();
1372      switch (I->getOpcode()) {
1373      default: break;          // Leave the instruction as an undef.
1374      case Instruction::ZExt:
1375        // After a zero extend, we know the top part is zero.  SExt doesn't have
1376        // to be handled here, because we don't know whether the top part is 1's
1377        // or 0's.
1378        assert(Op0LV.isUndefined());
1379        markForcedConstant(LV, I, Context->getNullValue(ITy));
1380        return true;
1381      case Instruction::Mul:
1382      case Instruction::And:
1383        // undef * X -> 0.   X could be zero.
1384        // undef & X -> 0.   X could be zero.
1385        markForcedConstant(LV, I, Context->getNullValue(ITy));
1386        return true;
1387
1388      case Instruction::Or:
1389        // undef | X -> -1.   X could be -1.
1390        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1391          markForcedConstant(LV, I,
1392                             Context->getAllOnesValue(PTy));
1393        else
1394          markForcedConstant(LV, I, Context->getAllOnesValue(ITy));
1395        return true;
1396
1397      case Instruction::SDiv:
1398      case Instruction::UDiv:
1399      case Instruction::SRem:
1400      case Instruction::URem:
1401        // X / undef -> undef.  No change.
1402        // X % undef -> undef.  No change.
1403        if (Op1LV.isUndefined()) break;
1404
1405        // undef / X -> 0.   X could be maxint.
1406        // undef % X -> 0.   X could be 1.
1407        markForcedConstant(LV, I, Context->getNullValue(ITy));
1408        return true;
1409
1410      case Instruction::AShr:
1411        // undef >>s X -> undef.  No change.
1412        if (Op0LV.isUndefined()) break;
1413
1414        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1415        if (Op0LV.isConstant())
1416          markForcedConstant(LV, I, Op0LV.getConstant());
1417        else
1418          markOverdefined(LV, I);
1419        return true;
1420      case Instruction::LShr:
1421      case Instruction::Shl:
1422        // undef >> X -> undef.  No change.
1423        // undef << X -> undef.  No change.
1424        if (Op0LV.isUndefined()) break;
1425
1426        // X >> undef -> 0.  X could be 0.
1427        // X << undef -> 0.  X could be 0.
1428        markForcedConstant(LV, I, Context->getNullValue(ITy));
1429        return true;
1430      case Instruction::Select:
1431        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1432        if (Op0LV.isUndefined()) {
1433          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1434            Op1LV = getValueState(I->getOperand(2));
1435        } else if (Op1LV.isUndefined()) {
1436          // c ? undef : undef -> undef.  No change.
1437          Op1LV = getValueState(I->getOperand(2));
1438          if (Op1LV.isUndefined())
1439            break;
1440          // Otherwise, c ? undef : x -> x.
1441        } else {
1442          // Leave Op1LV as Operand(1)'s LatticeValue.
1443        }
1444
1445        if (Op1LV.isConstant())
1446          markForcedConstant(LV, I, Op1LV.getConstant());
1447        else
1448          markOverdefined(LV, I);
1449        return true;
1450      case Instruction::Call:
1451        // If a call has an undef result, it is because it is constant foldable
1452        // but one of the inputs was undef.  Just force the result to
1453        // overdefined.
1454        markOverdefined(LV, I);
1455        return true;
1456      }
1457    }
1458
1459    TerminatorInst *TI = BB->getTerminator();
1460    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1461      if (!BI->isConditional()) continue;
1462      if (!getValueState(BI->getCondition()).isUndefined())
1463        continue;
1464    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1465      if (SI->getNumSuccessors()<2)   // no cases
1466        continue;
1467      if (!getValueState(SI->getCondition()).isUndefined())
1468        continue;
1469    } else {
1470      continue;
1471    }
1472
1473    // If the edge to the second successor isn't thought to be feasible yet,
1474    // mark it so now.  We pick the second one so that this goes to some
1475    // enumerated value in a switch instead of going to the default destination.
1476    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1477      continue;
1478
1479    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1480    // and return.  This will make other blocks reachable, which will allow new
1481    // values to be discovered and existing ones to be moved in the lattice.
1482    markEdgeExecutable(BB, TI->getSuccessor(1));
1483
1484    // This must be a conditional branch of switch on undef.  At this point,
1485    // force the old terminator to branch to the first successor.  This is
1486    // required because we are now influencing the dataflow of the function with
1487    // the assumption that this edge is taken.  If we leave the branch condition
1488    // as undef, then further analysis could think the undef went another way
1489    // leading to an inconsistent set of conclusions.
1490    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1491      BI->setCondition(ConstantInt::getFalse(*Context));
1492    } else {
1493      SwitchInst *SI = cast<SwitchInst>(TI);
1494      SI->setCondition(SI->getCaseValue(1));
1495    }
1496
1497    return true;
1498  }
1499
1500  return false;
1501}
1502
1503
1504namespace {
1505  //===--------------------------------------------------------------------===//
1506  //
1507  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1508  /// Sparse Conditional Constant Propagator.
1509  ///
1510  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1511    static char ID; // Pass identification, replacement for typeid
1512    SCCP() : FunctionPass(&ID) {}
1513
1514    // runOnFunction - Run the Sparse Conditional Constant Propagation
1515    // algorithm, and return true if the function was modified.
1516    //
1517    bool runOnFunction(Function &F);
1518
1519    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1520      AU.setPreservesCFG();
1521    }
1522  };
1523} // end anonymous namespace
1524
1525char SCCP::ID = 0;
1526static RegisterPass<SCCP>
1527X("sccp", "Sparse Conditional Constant Propagation");
1528
1529// createSCCPPass - This is the public interface to this file...
1530FunctionPass *llvm::createSCCPPass() {
1531  return new SCCP();
1532}
1533
1534
1535// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1536// and return true if the function was modified.
1537//
1538bool SCCP::runOnFunction(Function &F) {
1539  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1540  SCCPSolver Solver;
1541  Solver.setContext(&F.getContext());
1542
1543  // Mark the first block of the function as being executable.
1544  Solver.MarkBlockExecutable(F.begin());
1545
1546  // Mark all arguments to the function as being overdefined.
1547  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1548    Solver.markOverdefined(AI);
1549
1550  // Solve for constants.
1551  bool ResolvedUndefs = true;
1552  while (ResolvedUndefs) {
1553    Solver.Solve();
1554    DEBUG(errs() << "RESOLVING UNDEFs\n");
1555    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1556  }
1557
1558  bool MadeChanges = false;
1559
1560  // If we decided that there are basic blocks that are dead in this function,
1561  // delete their contents now.  Note that we cannot actually delete the blocks,
1562  // as we cannot modify the CFG of the function.
1563  //
1564  SmallVector<Instruction*, 512> Insts;
1565  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1566
1567  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1568    if (!Solver.isBlockExecutable(BB)) {
1569      DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1570      ++NumDeadBlocks;
1571
1572      // Delete the instructions backwards, as it has a reduced likelihood of
1573      // having to update as many def-use and use-def chains.
1574      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1575           I != E; ++I)
1576        Insts.push_back(I);
1577      while (!Insts.empty()) {
1578        Instruction *I = Insts.back();
1579        Insts.pop_back();
1580        if (!I->use_empty())
1581          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1582        BB->getInstList().erase(I);
1583        MadeChanges = true;
1584        ++NumInstRemoved;
1585      }
1586    } else {
1587      // Iterate over all of the instructions in a function, replacing them with
1588      // constants if we have found them to be of constant values.
1589      //
1590      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1591        Instruction *Inst = BI++;
1592        if (Inst->getType() == Type::VoidTy ||
1593            isa<TerminatorInst>(Inst))
1594          continue;
1595
1596        LatticeVal &IV = Values[Inst];
1597        if (!IV.isConstant() && !IV.isUndefined())
1598          continue;
1599
1600        Constant *Const = IV.isConstant()
1601          ? IV.getConstant() : UndefValue::get(Inst->getType());
1602        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1603
1604        // Replaces all of the uses of a variable with uses of the constant.
1605        Inst->replaceAllUsesWith(Const);
1606
1607        // Delete the instruction.
1608        Inst->eraseFromParent();
1609
1610        // Hey, we just changed something!
1611        MadeChanges = true;
1612        ++NumInstRemoved;
1613      }
1614    }
1615
1616  return MadeChanges;
1617}
1618
1619namespace {
1620  //===--------------------------------------------------------------------===//
1621  //
1622  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1623  /// Constant Propagation.
1624  ///
1625  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1626    static char ID;
1627    IPSCCP() : ModulePass(&ID) {}
1628    bool runOnModule(Module &M);
1629  };
1630} // end anonymous namespace
1631
1632char IPSCCP::ID = 0;
1633static RegisterPass<IPSCCP>
1634Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1635
1636// createIPSCCPPass - This is the public interface to this file...
1637ModulePass *llvm::createIPSCCPPass() {
1638  return new IPSCCP();
1639}
1640
1641
1642static bool AddressIsTaken(GlobalValue *GV) {
1643  // Delete any dead constantexpr klingons.
1644  GV->removeDeadConstantUsers();
1645
1646  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1647       UI != E; ++UI)
1648    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1649      if (SI->getOperand(0) == GV || SI->isVolatile())
1650        return true;  // Storing addr of GV.
1651    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1652      // Make sure we are calling the function, not passing the address.
1653      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1654      if (CS.hasArgument(GV))
1655        return true;
1656    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1657      if (LI->isVolatile())
1658        return true;
1659    } else {
1660      return true;
1661    }
1662  return false;
1663}
1664
1665bool IPSCCP::runOnModule(Module &M) {
1666  LLVMContext *Context = &M.getContext();
1667
1668  SCCPSolver Solver;
1669  Solver.setContext(Context);
1670
1671  // Loop over all functions, marking arguments to those with their addresses
1672  // taken or that are external as overdefined.
1673  //
1674  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1675    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1676      if (!F->isDeclaration())
1677        Solver.MarkBlockExecutable(F->begin());
1678      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1679           AI != E; ++AI)
1680        Solver.markOverdefined(AI);
1681    } else {
1682      Solver.AddTrackedFunction(F);
1683    }
1684
1685  // Loop over global variables.  We inform the solver about any internal global
1686  // variables that do not have their 'addresses taken'.  If they don't have
1687  // their addresses taken, we can propagate constants through them.
1688  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1689       G != E; ++G)
1690    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1691      Solver.TrackValueOfGlobalVariable(G);
1692
1693  // Solve for constants.
1694  bool ResolvedUndefs = true;
1695  while (ResolvedUndefs) {
1696    Solver.Solve();
1697
1698    DEBUG(errs() << "RESOLVING UNDEFS\n");
1699    ResolvedUndefs = false;
1700    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1701      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1702  }
1703
1704  bool MadeChanges = false;
1705
1706  // Iterate over all of the instructions in the module, replacing them with
1707  // constants if we have found them to be of constant values.
1708  //
1709  SmallVector<Instruction*, 512> Insts;
1710  SmallVector<BasicBlock*, 512> BlocksToErase;
1711  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1712
1713  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1714    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1715         AI != E; ++AI)
1716      if (!AI->use_empty()) {
1717        LatticeVal &IV = Values[AI];
1718        if (IV.isConstant() || IV.isUndefined()) {
1719          Constant *CST = IV.isConstant() ?
1720            IV.getConstant() : UndefValue::get(AI->getType());
1721          DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1722
1723          // Replaces all of the uses of a variable with uses of the
1724          // constant.
1725          AI->replaceAllUsesWith(CST);
1726          ++IPNumArgsElimed;
1727        }
1728      }
1729
1730    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1731      if (!Solver.isBlockExecutable(BB)) {
1732        DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1733        ++IPNumDeadBlocks;
1734
1735        // Delete the instructions backwards, as it has a reduced likelihood of
1736        // having to update as many def-use and use-def chains.
1737        TerminatorInst *TI = BB->getTerminator();
1738        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1739          Insts.push_back(I);
1740
1741        while (!Insts.empty()) {
1742          Instruction *I = Insts.back();
1743          Insts.pop_back();
1744          if (!I->use_empty())
1745            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1746          BB->getInstList().erase(I);
1747          MadeChanges = true;
1748          ++IPNumInstRemoved;
1749        }
1750
1751        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1752          BasicBlock *Succ = TI->getSuccessor(i);
1753          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1754            TI->getSuccessor(i)->removePredecessor(BB);
1755        }
1756        if (!TI->use_empty())
1757          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1758        BB->getInstList().erase(TI);
1759
1760        if (&*BB != &F->front())
1761          BlocksToErase.push_back(BB);
1762        else
1763          new UnreachableInst(BB);
1764
1765      } else {
1766        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1767          Instruction *Inst = BI++;
1768          if (Inst->getType() == Type::VoidTy)
1769            continue;
1770
1771          LatticeVal &IV = Values[Inst];
1772          if (!IV.isConstant() && !IV.isUndefined())
1773            continue;
1774
1775          Constant *Const = IV.isConstant()
1776            ? IV.getConstant() : UndefValue::get(Inst->getType());
1777          DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1778
1779          // Replaces all of the uses of a variable with uses of the
1780          // constant.
1781          Inst->replaceAllUsesWith(Const);
1782
1783          // Delete the instruction.
1784          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1785            Inst->eraseFromParent();
1786
1787          // Hey, we just changed something!
1788          MadeChanges = true;
1789          ++IPNumInstRemoved;
1790        }
1791      }
1792
1793    // Now that all instructions in the function are constant folded, erase dead
1794    // blocks, because we can now use ConstantFoldTerminator to get rid of
1795    // in-edges.
1796    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1797      // If there are any PHI nodes in this successor, drop entries for BB now.
1798      BasicBlock *DeadBB = BlocksToErase[i];
1799      while (!DeadBB->use_empty()) {
1800        Instruction *I = cast<Instruction>(DeadBB->use_back());
1801        bool Folded = ConstantFoldTerminator(I->getParent());
1802        if (!Folded) {
1803          // The constant folder may not have been able to fold the terminator
1804          // if this is a branch or switch on undef.  Fold it manually as a
1805          // branch to the first successor.
1806#ifndef NDEBUG
1807          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1808            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1809                   "Branch should be foldable!");
1810          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1811            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1812          } else {
1813            llvm_unreachable("Didn't fold away reference to block!");
1814          }
1815#endif
1816
1817          // Make this an uncond branch to the first successor.
1818          TerminatorInst *TI = I->getParent()->getTerminator();
1819          BranchInst::Create(TI->getSuccessor(0), TI);
1820
1821          // Remove entries in successor phi nodes to remove edges.
1822          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1823            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1824
1825          // Remove the old terminator.
1826          TI->eraseFromParent();
1827        }
1828      }
1829
1830      // Finally, delete the basic block.
1831      F->getBasicBlockList().erase(DeadBB);
1832    }
1833    BlocksToErase.clear();
1834  }
1835
1836  // If we inferred constant or undef return values for a function, we replaced
1837  // all call uses with the inferred value.  This means we don't need to bother
1838  // actually returning anything from the function.  Replace all return
1839  // instructions with return undef.
1840  // TODO: Process multiple value ret instructions also.
1841  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1842  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1843         E = RV.end(); I != E; ++I)
1844    if (!I->second.isOverdefined() &&
1845        I->first->getReturnType() != Type::VoidTy) {
1846      Function *F = I->first;
1847      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1848        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1849          if (!isa<UndefValue>(RI->getOperand(0)))
1850            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1851    }
1852
1853  // If we infered constant or undef values for globals variables, we can delete
1854  // the global and any stores that remain to it.
1855  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1856  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1857         E = TG.end(); I != E; ++I) {
1858    GlobalVariable *GV = I->first;
1859    assert(!I->second.isOverdefined() &&
1860           "Overdefined values should have been taken out of the map!");
1861    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1862    while (!GV->use_empty()) {
1863      StoreInst *SI = cast<StoreInst>(GV->use_back());
1864      SI->eraseFromParent();
1865    }
1866    M.getGlobalList().erase(GV);
1867    ++IPNumGlobalConst;
1868  }
1869
1870  return MadeChanges;
1871}
1872