SCCP.cpp revision a41f50dea8573e4a610b5aa5e45b5c368559b084
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
2//
3// This file implements sparse conditional constant propogation and merging:
4//
5// Specifically, this:
6//   * Assumes values are constant unless proven otherwise
7//   * Assumes BasicBlocks are dead unless proven otherwise
8//   * Proves values to be constant, and replaces them with constants
9//   . Proves conditional branches constant, and unconditionalizes them
10//   * Folds multiple identical constants in the constant pool together
11//
12// Notice that:
13//   * This pass has a habit of making definitions be dead.  It is a good idea
14//     to to run a DCE pass sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Optimizations/ConstantProp.h"
19#include "llvm/Optimizations/ConstantHandling.h"
20#include "llvm/Method.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/ConstPoolVals.h"
23#include "llvm/ConstantPool.h"
24#include "llvm/InstrTypes.h"
25#include "llvm/iOther.h"
26#include "llvm/iTerminators.h"
27#include "llvm/Tools/STLExtras.h"
28//#include "llvm/Assembly/Writer.h"
29#include <algorithm>
30#include <map>
31#include <set>
32
33// InstVal class - This class represents the different lattice values that an
34// instruction may occupy.  It is a simple class with value semantics.  The
35// potential constant value that is pointed to is owned by the constant pool
36// for the method being optimized.
37//
38class InstVal {
39  enum {
40    Undefined,           // This instruction has no known value
41    Constant,            // This instruction has a constant value
42    // Range,            // This instruction is known to fall within a range
43    Overdefined          // This instruction has an unknown value
44  } LatticeValue;    // The current lattice position
45  ConstPoolVal *ConstantVal;     // If Constant value, the current value
46public:
47  inline InstVal() : LatticeValue(Undefined), ConstantVal(0) {}
48
49  // markOverdefined - Return true if this is a new status to be in...
50  inline bool markOverdefined() {
51    if (LatticeValue != Overdefined) {
52      LatticeValue = Overdefined;
53      return true;
54    }
55    return false;
56  }
57
58  // markConstant - Return true if this is a new status for us...
59  inline bool markConstant(ConstPoolVal *V) {
60    if (LatticeValue != Constant) {
61      LatticeValue = Constant;
62      ConstantVal = V;
63      return true;
64    } else {
65      assert(ConstantVal->equals(V) && "Marking constant with different value");
66    }
67    return false;
68  }
69
70  inline bool isUndefined()   const { return LatticeValue == Undefined; }
71  inline bool isConstant()    const { return LatticeValue == Constant; }
72  inline bool isOverdefined() const { return LatticeValue == Overdefined; }
73
74  inline ConstPoolVal *getConstant() const { return ConstantVal; }
75};
76
77
78
79//===----------------------------------------------------------------------===//
80// SCCP Class
81//
82// This class does all of the work of Sparse Conditional Constant Propogation.
83// It's public interface consists of a constructor and a doSCCP() method.
84//
85class SCCP {
86  Method *M;                            // The method that we are working on...
87
88  set<BasicBlock*>       BBExecutable;  // The basic blocks that are executable
89  map<Value*, InstVal>   ValueState;    // The state each value is in...
90
91  vector<Instruction*>   InstWorkList;  // The instruction work list
92  vector<BasicBlock*>    BBWorkList;    // The BasicBlock work list
93
94  //===--------------------------------------------------------------------===//
95  // The public interface for this class
96  //
97public:
98
99  // SCCP Ctor - Save the method to operate on...
100  inline SCCP(Method *m) : M(m) {}
101
102  // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
103  // return true if the method was modified.
104  bool doSCCP();
105
106  //===--------------------------------------------------------------------===//
107  // The implementation of this class
108  //
109private:
110
111  // markValueOverdefined - Make a value be marked as "constant".  If the value
112  // is not already a constant, add it to the instruction work list so that
113  // the users of the instruction are updated later.
114  //
115  inline bool markConstant(Instruction *I, ConstPoolVal *V) {
116    //cerr << "markConstant: " << V << " = " << I;
117    if (ValueState[I].markConstant(V)) {
118      InstWorkList.push_back(I);
119      return true;
120    }
121    return false;
122  }
123
124  // markValueOverdefined - Make a value be marked as "overdefined". If the
125  // value is not already overdefined, add it to the instruction work list so
126  // that the users of the instruction are updated later.
127  //
128  inline bool markOverdefined(Value *V) {
129    if (ValueState[V].markOverdefined()) {
130      if (Instruction *I = V->castInstruction()) {
131	//cerr << "markOverdefined: " << V;
132	InstWorkList.push_back(I);  // Only instructions go on the work list
133      }
134      return true;
135    }
136    return false;
137  }
138
139  // getValueState - Return the InstVal object that corresponds to the value.
140  // This function is neccesary because not all values should start out in the
141  // underdefined state... MethodArgument's should be overdefined, and constants
142  // should be marked as constants.  If a value is not known to be an
143  // Instruction object, then use this accessor to get its value from the map.
144  //
145  inline InstVal &getValueState(Value *V) {
146    map<Value*, InstVal>::iterator I = ValueState.find(V);
147    if (I != ValueState.end()) return I->second;  // Common case, in the map
148
149    if (ConstPoolVal *CPV = V->castConstant()) {  // Constants are constant
150      ValueState[CPV].markConstant(CPV);
151    } else if (V->isMethodArgument()) {           // MethodArgs are overdefined
152      ValueState[V].markOverdefined();
153    }
154    // All others are underdefined by default...
155    return ValueState[V];
156  }
157
158  // markExecutable - Mark a basic block as executable, adding it to the BB
159  // work list if it is not already executable...
160  //
161  void markExecutable(BasicBlock *BB) {
162    if (BBExecutable.count(BB)) return;
163    //cerr << "Marking BB Executable: " << BB;
164    BBExecutable.insert(BB);   // Basic block is executable!
165    BBWorkList.push_back(BB);  // Add the block to the work list!
166  }
167
168
169  // UpdateInstruction - Something changed in this instruction... Either an
170  // operand made a transition, or the instruction is newly executable.  Change
171  // the value type of I to reflect these changes if appropriate.
172  //
173  void UpdateInstruction(Instruction *I);
174
175  // OperandChangedState - This method is invoked on all of the users of an
176  // instruction that was just changed state somehow....  Based on this
177  // information, we need to update the specified user of this instruction.
178  //
179  void OperandChangedState(User *U);
180};
181
182
183//===----------------------------------------------------------------------===//
184// SCCP Class Implementation
185
186
187// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
188// return true if the method was modified.
189//
190bool SCCP::doSCCP() {
191  // Mark the first block of the method as being executable...
192  markExecutable(M->front());
193
194  // Process the work lists until their are empty!
195  while (!BBWorkList.empty() || !InstWorkList.empty()) {
196    // Process the instruction work list...
197    while (!InstWorkList.empty()) {
198      Instruction *I = InstWorkList.back();
199      InstWorkList.pop_back();
200
201      //cerr << "\nPopped off I-WL: " << I;
202
203
204      // "I" got into the work list because it either made the transition from
205      // bottom to constant, or to Overdefined.
206      //
207      // Update all of the users of this instruction's value...
208      //
209      for_each(I->use_begin(), I->use_end(),
210	       bind_obj(this, &SCCP::OperandChangedState));
211    }
212
213    // Process the basic block work list...
214    while (!BBWorkList.empty()) {
215      BasicBlock *BB = BBWorkList.back();
216      BBWorkList.pop_back();
217
218      //cerr << "\nPopped off BBWL: " << BB;
219
220      // If this block only has a single successor, mark it as executable as
221      // well... if not, terminate the do loop.
222      //
223      if (BB->getTerminator()->getNumSuccessors() == 1)
224	markExecutable(BB->getTerminator()->getSuccessor(0));
225
226      // Loop over all of the instructions and notify them that they are newly
227      // executable...
228      for_each(BB->begin(), BB->end(),
229	       bind_obj(this, &SCCP::UpdateInstruction));
230    }
231  }
232
233#if 0
234  for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI)
235    if (!BBExecutable.count(*BBI))
236      cerr << "BasicBlock Dead:" << *BBI;
237#endif
238
239
240  // Iterate over all of the instructions in a method, replacing them with
241  // constants if we have found them to be of constant values.
242  //
243  bool MadeChanges = false;
244  for (Method::inst_iterator II = M->inst_begin(); II != M->inst_end(); ) {
245    Instruction *Inst = *II;
246    InstVal &IV = ValueState[Inst];
247    if (IV.isConstant()) {
248      ConstPoolVal *Const = IV.getConstant();
249      // cerr << "Constant: " << Inst << "  is: " << Const;
250
251      // Replaces all of the uses of a variable with uses of the constant.
252      Inst->replaceAllUsesWith(Const);
253
254      // Remove the operator from the list of definitions...
255      Inst->getParent()->getInstList().remove(II.getInstructionIterator());
256
257      // The new constant inherits the old name of the operator...
258      if (Inst->hasName() && !Const->hasName())
259	Const->setName(Inst->getName());
260
261      // Delete the operator now...
262      delete Inst;
263
264      // Incrementing the iterator in an unchecked manner could mess up the
265      // internals of 'II'.  To make sure everything is happy, tell it we might
266      // have broken it.
267      II.resyncInstructionIterator();
268
269      // Hey, we just changed something!
270      MadeChanges = true;
271      continue;   // Skip the ++II at the end of the loop here...
272    } else if (Inst->isTerminator()) {
273      MadeChanges |= opt::ConstantFoldTerminator((TerminatorInst*)Inst);
274    }
275
276    ++II;
277  }
278
279  // Merge identical constants last: this is important because we may have just
280  // introduced constants that already exist, and we don't want to pollute later
281  // stages with extraneous constants.
282  //
283  return MadeChanges | opt::DoConstantPoolMerging(M->getConstantPool());
284}
285
286
287// UpdateInstruction - Something changed in this instruction... Either an
288// operand made a transition, or the instruction is newly executable.  Change
289// the value type of I to reflect these changes if appropriate.  This method
290// makes sure to do the following actions:
291//
292// 1. If a phi node merges two constants in, and has conflicting value coming
293//    from different branches, or if the PHI node merges in an overdefined
294//    value, then the PHI node becomes overdefined.
295// 2. If a phi node merges only constants in, and they all agree on value, the
296//    PHI node becomes a constant value equal to that.
297// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
298// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
299// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
300// 6. If a conditional branch has a value that is constant, make the selected
301//    destination executable
302// 7. If a conditional branch has a value that is overdefined, make all
303//    successors executable.
304//
305void SCCP::UpdateInstruction(Instruction *I) {
306  InstVal &IValue = ValueState[I];
307  if (IValue.isOverdefined())
308    return; // If already overdefined, we aren't going to effect anything
309
310  switch (I->getOpcode()) {
311    //===-----------------------------------------------------------------===//
312    // Handle PHI nodes...
313    //
314  case Instruction::PHINode: {
315    PHINode *PN = (PHINode*)I;
316    unsigned NumValues = PN->getNumIncomingValues(), i;
317    InstVal *OperandIV = 0;
318
319    // Look at all of the executable operands of the PHI node.  If any of them
320    // are overdefined, the PHI becomes overdefined as well.  If they are all
321    // constant, and they agree with each other, the PHI becomes the identical
322    // constant.  If they are constant and don't agree, the PHI is overdefined.
323    // If there are no executable operands, the PHI remains undefined.
324    //
325    for (i = 0; i < NumValues; ++i) {
326      if (BBExecutable.count(PN->getIncomingBlock(i))) {
327	InstVal &IV = getValueState(PN->getIncomingValue(i));
328	if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
329	if (IV.isOverdefined()) {   // PHI node becomes overdefined!
330	  markOverdefined(PN);
331	  return;
332	}
333
334	if (OperandIV == 0) {   // Grab the first value...
335	  OperandIV = &IV;
336	} else {                // Another value is being merged in!
337	  // There is already a reachable operand.  If we conflict with it,
338	  // then the PHI node becomes overdefined.  If we agree with it, we
339	  // can continue on.
340
341	  // Check to see if there are two different constants merging...
342	  if (!IV.getConstant()->equals(OperandIV->getConstant())) {
343	    // Yes there is.  This means the PHI node is not constant.
344	    // You must be overdefined poor PHI.
345	    //
346	    markOverdefined(I);         // The PHI node now becomes overdefined
347	    return;    // I'm done analyzing you
348	  }
349	}
350      }
351    }
352
353    // If we exited the loop, this means that the PHI node only has constant
354    // arguments that agree with each other(and OperandIV is a pointer to one
355    // of their InstVal's) or OperandIV is null because there are no defined
356    // incoming arguments.  If this is the case, the PHI remains undefined.
357    //
358    if (OperandIV) {
359      assert(OperandIV->isConstant() && "Should only be here for constants!");
360      markConstant(I, OperandIV->getConstant());  // Aquire operand value
361    }
362    return;
363  }
364
365    //===-----------------------------------------------------------------===//
366    // Handle instructions that unconditionally provide overdefined values...
367    //
368  case Instruction::Malloc:
369  case Instruction::Free:
370  case Instruction::Alloca:
371  case Instruction::Load:
372  case Instruction::Store:
373    // TODO: getfield/putfield?
374  case Instruction::Call:
375    markOverdefined(I);          // Memory and call's are all overdefined
376    return;
377
378    //===-----------------------------------------------------------------===//
379    // Handle Terminator instructions...
380    //
381  case Instruction::Ret: return;  // Method return doesn't affect anything
382  case Instruction::Br: {        // Handle conditional branches...
383    BranchInst *BI = (BranchInst*)I;
384    if (BI->isUnconditional())
385      return; // Unconditional branches are already handled!
386
387    InstVal &BCValue = getValueState(BI->getCondition());
388    if (BCValue.isOverdefined()) {
389      // Overdefined condition variables mean the branch could go either way.
390      markExecutable(BI->getSuccessor(0));
391      markExecutable(BI->getSuccessor(1));
392    } else if (BCValue.isConstant()) {
393      // Constant condition variables mean the branch can only go a single way.
394      ConstPoolBool *CPB = (ConstPoolBool*)BCValue.getConstant();
395      if (CPB->getValue())       // If the branch condition is TRUE...
396	markExecutable(BI->getSuccessor(0));
397      else                       // Else if the br cond is FALSE...
398	markExecutable(BI->getSuccessor(1));
399    }
400    return;
401  }
402
403  case Instruction::Switch: {
404    SwitchInst *SI = (SwitchInst*)I;
405    InstVal &SCValue = getValueState(SI->getCondition());
406    if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
407      for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i)
408	markExecutable(Succ);
409    } else if (SCValue.isConstant()) {
410      ConstPoolVal *CPV = SCValue.getConstant();
411      // Make sure to skip the "default value" which isn't a value
412      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
413	if (SI->getSuccessorValue(i)->equals(CPV)) {// Found the right branch...
414	  markExecutable(SI->getSuccessor(i));
415	  return;
416	}
417      }
418
419      // Constant value not equal to any of the branches... must execute
420      // default branch then...
421      markExecutable(SI->getDefaultDest());
422    }
423    return;
424  }
425
426  default: break;  // Handle math operators as groups.
427  } // end switch(I->getOpcode())
428
429
430  //===-------------------------------------------------------------------===//
431  // Handle Unary instructions...
432  //
433  if (I->isUnaryOp()) {
434    Value *V = I->getOperand(0);
435    InstVal &VState = getValueState(V);
436    if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
437      markOverdefined(I);
438    } else if (VState.isConstant()) {    // Propogate constant value
439      ConstPoolVal *Result =
440	opt::ConstantFoldUnaryInstruction(I->getOpcode(),
441					  VState.getConstant());
442
443      if (Result) {
444	// This instruction constant folds!  The only problem is that the value
445	// returned is newly allocated.  Make sure to stick it into the methods
446	// constant pool...
447	M->getConstantPool().insert(Result);
448	markConstant(I, Result);
449      } else {
450	markOverdefined(I);   // Don't know how to fold this instruction.  :(
451      }
452    }
453    return;
454  }
455
456  //===-----------------------------------------------------------------===//
457  // Handle Binary instructions...
458  //
459  if (I->isBinaryOp()) {
460    Value *V1 = I->getOperand(0);
461    Value *V2 = I->getOperand(1);
462
463    InstVal &V1State = getValueState(V1);
464    InstVal &V2State = getValueState(V2);
465    if (V1State.isOverdefined() || V2State.isOverdefined()) {
466      markOverdefined(I);
467    } else if (V1State.isConstant() && V2State.isConstant()) {
468      ConstPoolVal *Result =
469	opt::ConstantFoldBinaryInstruction(I->getOpcode(),
470					   V1State.getConstant(),
471					   V2State.getConstant());
472      if (Result) {
473	// This instruction constant folds!  The only problem is that the value
474	// returned is newly allocated.  Make sure to stick it into the methods
475	// constant pool...
476	M->getConstantPool().insert(Result);
477	markConstant(I, Result);
478      } else {
479	markOverdefined(I);   // Don't know how to fold this instruction.  :(
480      }
481    }
482    return;
483  }
484
485  // Shouldn't get here... either the switch statement or one of the group
486  // handlers should have kicked in...
487  //
488  cerr << "SCCP: Don't know how to handle: " << I;
489  markOverdefined(I);   // Just in case
490}
491
492
493
494// OperandChangedState - This method is invoked on all of the users of an
495// instruction that was just changed state somehow....  Based on this
496// information, we need to update the specified user of this instruction.
497//
498void SCCP::OperandChangedState(User *U) {
499  // Only instructions use other variable values!
500  Instruction *I = U->castInstructionAsserting();
501  if (!BBExecutable.count(I->getParent())) return;  // Inst not executable yet!
502
503  UpdateInstruction(I);
504}
505
506
507// DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation
508// to prove whether a value is constant and whether blocks are used.
509//
510bool opt::DoSCCP(Method *M) {
511  SCCP S(M);
512  return S.doSCCP();
513}
514