SCCP.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/InstVisitor.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetLibraryInfo.h"
39#include "llvm/Transforms/IPO.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <algorithm>
42using namespace llvm;
43
44#define DEBUG_TYPE "sccp"
45
46STATISTIC(NumInstRemoved, "Number of instructions removed");
47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53namespace {
54/// LatticeVal class - This class represents the different lattice values that
55/// an LLVM value may occupy.  It is a simple class with value semantics.
56///
57class LatticeVal {
58  enum LatticeValueTy {
59    /// undefined - This LLVM Value has no known value yet.
60    undefined,
61
62    /// constant - This LLVM Value has a specific constant value.
63    constant,
64
65    /// forcedconstant - This LLVM Value was thought to be undef until
66    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
67    /// with another (different) constant, it goes to overdefined, instead of
68    /// asserting.
69    forcedconstant,
70
71    /// overdefined - This instruction is not known to be constant, and we know
72    /// it has a value.
73    overdefined
74  };
75
76  /// Val: This stores the current lattice value along with the Constant* for
77  /// the constant if this is a 'constant' or 'forcedconstant' value.
78  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
80  LatticeValueTy getLatticeValue() const {
81    return Val.getInt();
82  }
83
84public:
85  LatticeVal() : Val(nullptr, undefined) {}
86
87  bool isUndefined() const { return getLatticeValue() == undefined; }
88  bool isConstant() const {
89    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90  }
91  bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
93  Constant *getConstant() const {
94    assert(isConstant() && "Cannot get the constant of a non-constant!");
95    return Val.getPointer();
96  }
97
98  /// markOverdefined - Return true if this is a change in status.
99  bool markOverdefined() {
100    if (isOverdefined())
101      return false;
102
103    Val.setInt(overdefined);
104    return true;
105  }
106
107  /// markConstant - Return true if this is a change in status.
108  bool markConstant(Constant *V) {
109    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
110      assert(getConstant() == V && "Marking constant with different value");
111      return false;
112    }
113
114    if (isUndefined()) {
115      Val.setInt(constant);
116      assert(V && "Marking constant with NULL");
117      Val.setPointer(V);
118    } else {
119      assert(getLatticeValue() == forcedconstant &&
120             "Cannot move from overdefined to constant!");
121      // Stay at forcedconstant if the constant is the same.
122      if (V == getConstant()) return false;
123
124      // Otherwise, we go to overdefined.  Assumptions made based on the
125      // forced value are possibly wrong.  Assuming this is another constant
126      // could expose a contradiction.
127      Val.setInt(overdefined);
128    }
129    return true;
130  }
131
132  /// getConstantInt - If this is a constant with a ConstantInt value, return it
133  /// otherwise return null.
134  ConstantInt *getConstantInt() const {
135    if (isConstant())
136      return dyn_cast<ConstantInt>(getConstant());
137    return nullptr;
138  }
139
140  void markForcedConstant(Constant *V) {
141    assert(isUndefined() && "Can't force a defined value!");
142    Val.setInt(forcedconstant);
143    Val.setPointer(V);
144  }
145};
146} // end anonymous namespace.
147
148
149namespace {
150
151//===----------------------------------------------------------------------===//
152//
153/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154/// Constant Propagation.
155///
156class SCCPSolver : public InstVisitor<SCCPSolver> {
157  const DataLayout *DL;
158  const TargetLibraryInfo *TLI;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// StructValueState - This maintains ValueState for values that have
163  /// StructType, for example for formal arguments, calls, insertelement, etc.
164  ///
165  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167  /// GlobalValue - If we are tracking any values for the contents of a global
168  /// variable, we keep a mapping from the constant accessor to the element of
169  /// the global, to the currently known value.  If the value becomes
170  /// overdefined, it's entry is simply removed from this map.
171  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173  /// TrackedRetVals - If we are tracking arguments into and the return
174  /// value out of a function, it will have an entry in this map, indicating
175  /// what the known return value for the function is.
176  DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179  /// that return multiple values.
180  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183  /// represented here for efficient lookup.
184  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186  /// TrackingIncomingArguments - This is the set of functions for whose
187  /// arguments we make optimistic assumptions about and try to prove as
188  /// constants.
189  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191  /// The reason for two worklists is that overdefined is the lowest state
192  /// on the lattice, and moving things to overdefined as fast as possible
193  /// makes SCCP converge much faster.
194  ///
195  /// By having a separate worklist, we accomplish this because everything
196  /// possibly overdefined will become overdefined at the soonest possible
197  /// point.
198  SmallVector<Value*, 64> OverdefinedInstWorkList;
199  SmallVector<Value*, 64> InstWorkList;
200
201
202  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204  /// KnownFeasibleEdges - Entries in this set are edges which have already had
205  /// PHI nodes retriggered.
206  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
207  DenseSet<Edge> KnownFeasibleEdges;
208public:
209  SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
210    : DL(DL), TLI(tli) {}
211
212  /// MarkBlockExecutable - This method can be used by clients to mark all of
213  /// the blocks that are known to be intrinsically live in the processed unit.
214  ///
215  /// This returns true if the block was not considered live before.
216  bool MarkBlockExecutable(BasicBlock *BB) {
217    if (!BBExecutable.insert(BB)) return false;
218    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
219    BBWorkList.push_back(BB);  // Add the block to the work list!
220    return true;
221  }
222
223  /// TrackValueOfGlobalVariable - Clients can use this method to
224  /// inform the SCCPSolver that it should track loads and stores to the
225  /// specified global variable if it can.  This is only legal to call if
226  /// performing Interprocedural SCCP.
227  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
228    // We only track the contents of scalar globals.
229    if (GV->getType()->getElementType()->isSingleValueType()) {
230      LatticeVal &IV = TrackedGlobals[GV];
231      if (!isa<UndefValue>(GV->getInitializer()))
232        IV.markConstant(GV->getInitializer());
233    }
234  }
235
236  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
237  /// and out of the specified function (which cannot have its address taken),
238  /// this method must be called.
239  void AddTrackedFunction(Function *F) {
240    // Add an entry, F -> undef.
241    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
242      MRVFunctionsTracked.insert(F);
243      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
244        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
245                                                     LatticeVal()));
246    } else
247      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
248  }
249
250  void AddArgumentTrackedFunction(Function *F) {
251    TrackingIncomingArguments.insert(F);
252  }
253
254  /// Solve - Solve for constants and executable blocks.
255  ///
256  void Solve();
257
258  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
259  /// that branches on undef values cannot reach any of their successors.
260  /// However, this is not a safe assumption.  After we solve dataflow, this
261  /// method should be use to handle this.  If this returns true, the solver
262  /// should be rerun.
263  bool ResolvedUndefsIn(Function &F);
264
265  bool isBlockExecutable(BasicBlock *BB) const {
266    return BBExecutable.count(BB);
267  }
268
269  LatticeVal getLatticeValueFor(Value *V) const {
270    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
271    assert(I != ValueState.end() && "V is not in valuemap!");
272    return I->second;
273  }
274
275  /// getTrackedRetVals - Get the inferred return value map.
276  ///
277  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
278    return TrackedRetVals;
279  }
280
281  /// getTrackedGlobals - Get and return the set of inferred initializers for
282  /// global variables.
283  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
284    return TrackedGlobals;
285  }
286
287  void markOverdefined(Value *V) {
288    assert(!V->getType()->isStructTy() && "Should use other method");
289    markOverdefined(ValueState[V], V);
290  }
291
292  /// markAnythingOverdefined - Mark the specified value overdefined.  This
293  /// works with both scalars and structs.
294  void markAnythingOverdefined(Value *V) {
295    if (StructType *STy = dyn_cast<StructType>(V->getType()))
296      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
297        markOverdefined(getStructValueState(V, i), V);
298    else
299      markOverdefined(V);
300  }
301
302private:
303  // markConstant - Make a value be marked as "constant".  If the value
304  // is not already a constant, add it to the instruction work list so that
305  // the users of the instruction are updated later.
306  //
307  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
308    if (!IV.markConstant(C)) return;
309    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
310    if (IV.isOverdefined())
311      OverdefinedInstWorkList.push_back(V);
312    else
313      InstWorkList.push_back(V);
314  }
315
316  void markConstant(Value *V, Constant *C) {
317    assert(!V->getType()->isStructTy() && "Should use other method");
318    markConstant(ValueState[V], V, C);
319  }
320
321  void markForcedConstant(Value *V, Constant *C) {
322    assert(!V->getType()->isStructTy() && "Should use other method");
323    LatticeVal &IV = ValueState[V];
324    IV.markForcedConstant(C);
325    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
326    if (IV.isOverdefined())
327      OverdefinedInstWorkList.push_back(V);
328    else
329      InstWorkList.push_back(V);
330  }
331
332
333  // markOverdefined - Make a value be marked as "overdefined". If the
334  // value is not already overdefined, add it to the overdefined instruction
335  // work list so that the users of the instruction are updated later.
336  void markOverdefined(LatticeVal &IV, Value *V) {
337    if (!IV.markOverdefined()) return;
338
339    DEBUG(dbgs() << "markOverdefined: ";
340          if (Function *F = dyn_cast<Function>(V))
341            dbgs() << "Function '" << F->getName() << "'\n";
342          else
343            dbgs() << *V << '\n');
344    // Only instructions go on the work list
345    OverdefinedInstWorkList.push_back(V);
346  }
347
348  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
349    if (IV.isOverdefined() || MergeWithV.isUndefined())
350      return;  // Noop.
351    if (MergeWithV.isOverdefined())
352      markOverdefined(IV, V);
353    else if (IV.isUndefined())
354      markConstant(IV, V, MergeWithV.getConstant());
355    else if (IV.getConstant() != MergeWithV.getConstant())
356      markOverdefined(IV, V);
357  }
358
359  void mergeInValue(Value *V, LatticeVal MergeWithV) {
360    assert(!V->getType()->isStructTy() && "Should use other method");
361    mergeInValue(ValueState[V], V, MergeWithV);
362  }
363
364
365  /// getValueState - Return the LatticeVal object that corresponds to the
366  /// value.  This function handles the case when the value hasn't been seen yet
367  /// by properly seeding constants etc.
368  LatticeVal &getValueState(Value *V) {
369    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
370
371    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
372      ValueState.insert(std::make_pair(V, LatticeVal()));
373    LatticeVal &LV = I.first->second;
374
375    if (!I.second)
376      return LV;  // Common case, already in the map.
377
378    if (Constant *C = dyn_cast<Constant>(V)) {
379      // Undef values remain undefined.
380      if (!isa<UndefValue>(V))
381        LV.markConstant(C);          // Constants are constant
382    }
383
384    // All others are underdefined by default.
385    return LV;
386  }
387
388  /// getStructValueState - Return the LatticeVal object that corresponds to the
389  /// value/field pair.  This function handles the case when the value hasn't
390  /// been seen yet by properly seeding constants etc.
391  LatticeVal &getStructValueState(Value *V, unsigned i) {
392    assert(V->getType()->isStructTy() && "Should use getValueState");
393    assert(i < cast<StructType>(V->getType())->getNumElements() &&
394           "Invalid element #");
395
396    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
397              bool> I = StructValueState.insert(
398                        std::make_pair(std::make_pair(V, i), LatticeVal()));
399    LatticeVal &LV = I.first->second;
400
401    if (!I.second)
402      return LV;  // Common case, already in the map.
403
404    if (Constant *C = dyn_cast<Constant>(V)) {
405      Constant *Elt = C->getAggregateElement(i);
406
407      if (!Elt)
408        LV.markOverdefined();      // Unknown sort of constant.
409      else if (isa<UndefValue>(Elt))
410        ; // Undef values remain undefined.
411      else
412        LV.markConstant(Elt);      // Constants are constant.
413    }
414
415    // All others are underdefined by default.
416    return LV;
417  }
418
419
420  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
421  /// work list if it is not already executable.
422  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
423    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
424      return;  // This edge is already known to be executable!
425
426    if (!MarkBlockExecutable(Dest)) {
427      // If the destination is already executable, we just made an *edge*
428      // feasible that wasn't before.  Revisit the PHI nodes in the block
429      // because they have potentially new operands.
430      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
431            << " -> " << Dest->getName() << '\n');
432
433      PHINode *PN;
434      for (BasicBlock::iterator I = Dest->begin();
435           (PN = dyn_cast<PHINode>(I)); ++I)
436        visitPHINode(*PN);
437    }
438  }
439
440  // getFeasibleSuccessors - Return a vector of booleans to indicate which
441  // successors are reachable from a given terminator instruction.
442  //
443  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
444
445  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
446  // block to the 'To' basic block is currently feasible.
447  //
448  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
449
450  // OperandChangedState - This method is invoked on all of the users of an
451  // instruction that was just changed state somehow.  Based on this
452  // information, we need to update the specified user of this instruction.
453  //
454  void OperandChangedState(Instruction *I) {
455    if (BBExecutable.count(I->getParent()))   // Inst is executable?
456      visit(*I);
457  }
458
459private:
460  friend class InstVisitor<SCCPSolver>;
461
462  // visit implementations - Something changed in this instruction.  Either an
463  // operand made a transition, or the instruction is newly executable.  Change
464  // the value type of I to reflect these changes if appropriate.
465  void visitPHINode(PHINode &I);
466
467  // Terminators
468  void visitReturnInst(ReturnInst &I);
469  void visitTerminatorInst(TerminatorInst &TI);
470
471  void visitCastInst(CastInst &I);
472  void visitSelectInst(SelectInst &I);
473  void visitBinaryOperator(Instruction &I);
474  void visitCmpInst(CmpInst &I);
475  void visitExtractElementInst(ExtractElementInst &I);
476  void visitInsertElementInst(InsertElementInst &I);
477  void visitShuffleVectorInst(ShuffleVectorInst &I);
478  void visitExtractValueInst(ExtractValueInst &EVI);
479  void visitInsertValueInst(InsertValueInst &IVI);
480  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
481
482  // Instructions that cannot be folded away.
483  void visitStoreInst     (StoreInst &I);
484  void visitLoadInst      (LoadInst &I);
485  void visitGetElementPtrInst(GetElementPtrInst &I);
486  void visitCallInst      (CallInst &I) {
487    visitCallSite(&I);
488  }
489  void visitInvokeInst    (InvokeInst &II) {
490    visitCallSite(&II);
491    visitTerminatorInst(II);
492  }
493  void visitCallSite      (CallSite CS);
494  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
495  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
496  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
497  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
498    markAnythingOverdefined(&I);
499  }
500  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
501  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
502  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
503
504  void visitInstruction(Instruction &I) {
505    // If a new instruction is added to LLVM that we don't handle.
506    dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
507    markAnythingOverdefined(&I);   // Just in case
508  }
509};
510
511} // end anonymous namespace
512
513
514// getFeasibleSuccessors - Return a vector of booleans to indicate which
515// successors are reachable from a given terminator instruction.
516//
517void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
518                                       SmallVectorImpl<bool> &Succs) {
519  Succs.resize(TI.getNumSuccessors());
520  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
521    if (BI->isUnconditional()) {
522      Succs[0] = true;
523      return;
524    }
525
526    LatticeVal BCValue = getValueState(BI->getCondition());
527    ConstantInt *CI = BCValue.getConstantInt();
528    if (!CI) {
529      // Overdefined condition variables, and branches on unfoldable constant
530      // conditions, mean the branch could go either way.
531      if (!BCValue.isUndefined())
532        Succs[0] = Succs[1] = true;
533      return;
534    }
535
536    // Constant condition variables mean the branch can only go a single way.
537    Succs[CI->isZero()] = true;
538    return;
539  }
540
541  if (isa<InvokeInst>(TI)) {
542    // Invoke instructions successors are always executable.
543    Succs[0] = Succs[1] = true;
544    return;
545  }
546
547  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
548    if (!SI->getNumCases()) {
549      Succs[0] = true;
550      return;
551    }
552    LatticeVal SCValue = getValueState(SI->getCondition());
553    ConstantInt *CI = SCValue.getConstantInt();
554
555    if (!CI) {   // Overdefined or undefined condition?
556      // All destinations are executable!
557      if (!SCValue.isUndefined())
558        Succs.assign(TI.getNumSuccessors(), true);
559      return;
560    }
561
562    Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
563    return;
564  }
565
566  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
567  if (isa<IndirectBrInst>(&TI)) {
568    // Just mark all destinations executable!
569    Succs.assign(TI.getNumSuccessors(), true);
570    return;
571  }
572
573#ifndef NDEBUG
574  dbgs() << "Unknown terminator instruction: " << TI << '\n';
575#endif
576  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
577}
578
579
580// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
581// block to the 'To' basic block is currently feasible.
582//
583bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
584  assert(BBExecutable.count(To) && "Dest should always be alive!");
585
586  // Make sure the source basic block is executable!!
587  if (!BBExecutable.count(From)) return false;
588
589  // Check to make sure this edge itself is actually feasible now.
590  TerminatorInst *TI = From->getTerminator();
591  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
592    if (BI->isUnconditional())
593      return true;
594
595    LatticeVal BCValue = getValueState(BI->getCondition());
596
597    // Overdefined condition variables mean the branch could go either way,
598    // undef conditions mean that neither edge is feasible yet.
599    ConstantInt *CI = BCValue.getConstantInt();
600    if (!CI)
601      return !BCValue.isUndefined();
602
603    // Constant condition variables mean the branch can only go a single way.
604    return BI->getSuccessor(CI->isZero()) == To;
605  }
606
607  // Invoke instructions successors are always executable.
608  if (isa<InvokeInst>(TI))
609    return true;
610
611  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
612    if (SI->getNumCases() < 1)
613      return true;
614
615    LatticeVal SCValue = getValueState(SI->getCondition());
616    ConstantInt *CI = SCValue.getConstantInt();
617
618    if (!CI)
619      return !SCValue.isUndefined();
620
621    return SI->findCaseValue(CI).getCaseSuccessor() == To;
622  }
623
624  // Just mark all destinations executable!
625  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
626  if (isa<IndirectBrInst>(TI))
627    return true;
628
629#ifndef NDEBUG
630  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
631#endif
632  llvm_unreachable(nullptr);
633}
634
635// visit Implementations - Something changed in this instruction, either an
636// operand made a transition, or the instruction is newly executable.  Change
637// the value type of I to reflect these changes if appropriate.  This method
638// makes sure to do the following actions:
639//
640// 1. If a phi node merges two constants in, and has conflicting value coming
641//    from different branches, or if the PHI node merges in an overdefined
642//    value, then the PHI node becomes overdefined.
643// 2. If a phi node merges only constants in, and they all agree on value, the
644//    PHI node becomes a constant value equal to that.
645// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
646// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
647// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
648// 6. If a conditional branch has a value that is constant, make the selected
649//    destination executable
650// 7. If a conditional branch has a value that is overdefined, make all
651//    successors executable.
652//
653void SCCPSolver::visitPHINode(PHINode &PN) {
654  // If this PN returns a struct, just mark the result overdefined.
655  // TODO: We could do a lot better than this if code actually uses this.
656  if (PN.getType()->isStructTy())
657    return markAnythingOverdefined(&PN);
658
659  if (getValueState(&PN).isOverdefined())
660    return;  // Quick exit
661
662  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
663  // and slow us down a lot.  Just mark them overdefined.
664  if (PN.getNumIncomingValues() > 64)
665    return markOverdefined(&PN);
666
667  // Look at all of the executable operands of the PHI node.  If any of them
668  // are overdefined, the PHI becomes overdefined as well.  If they are all
669  // constant, and they agree with each other, the PHI becomes the identical
670  // constant.  If they are constant and don't agree, the PHI is overdefined.
671  // If there are no executable operands, the PHI remains undefined.
672  //
673  Constant *OperandVal = nullptr;
674  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
675    LatticeVal IV = getValueState(PN.getIncomingValue(i));
676    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
677
678    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
679      continue;
680
681    if (IV.isOverdefined())    // PHI node becomes overdefined!
682      return markOverdefined(&PN);
683
684    if (!OperandVal) {   // Grab the first value.
685      OperandVal = IV.getConstant();
686      continue;
687    }
688
689    // There is already a reachable operand.  If we conflict with it,
690    // then the PHI node becomes overdefined.  If we agree with it, we
691    // can continue on.
692
693    // Check to see if there are two different constants merging, if so, the PHI
694    // node is overdefined.
695    if (IV.getConstant() != OperandVal)
696      return markOverdefined(&PN);
697  }
698
699  // If we exited the loop, this means that the PHI node only has constant
700  // arguments that agree with each other(and OperandVal is the constant) or
701  // OperandVal is null because there are no defined incoming arguments.  If
702  // this is the case, the PHI remains undefined.
703  //
704  if (OperandVal)
705    markConstant(&PN, OperandVal);      // Acquire operand value
706}
707
708void SCCPSolver::visitReturnInst(ReturnInst &I) {
709  if (I.getNumOperands() == 0) return;  // ret void
710
711  Function *F = I.getParent()->getParent();
712  Value *ResultOp = I.getOperand(0);
713
714  // If we are tracking the return value of this function, merge it in.
715  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
716    DenseMap<Function*, LatticeVal>::iterator TFRVI =
717      TrackedRetVals.find(F);
718    if (TFRVI != TrackedRetVals.end()) {
719      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
720      return;
721    }
722  }
723
724  // Handle functions that return multiple values.
725  if (!TrackedMultipleRetVals.empty()) {
726    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
727      if (MRVFunctionsTracked.count(F))
728        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
729          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
730                       getStructValueState(ResultOp, i));
731
732  }
733}
734
735void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
736  SmallVector<bool, 16> SuccFeasible;
737  getFeasibleSuccessors(TI, SuccFeasible);
738
739  BasicBlock *BB = TI.getParent();
740
741  // Mark all feasible successors executable.
742  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
743    if (SuccFeasible[i])
744      markEdgeExecutable(BB, TI.getSuccessor(i));
745}
746
747void SCCPSolver::visitCastInst(CastInst &I) {
748  LatticeVal OpSt = getValueState(I.getOperand(0));
749  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
750    markOverdefined(&I);
751  else if (OpSt.isConstant())        // Propagate constant value
752    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
753                                           OpSt.getConstant(), I.getType()));
754}
755
756
757void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
758  // If this returns a struct, mark all elements over defined, we don't track
759  // structs in structs.
760  if (EVI.getType()->isStructTy())
761    return markAnythingOverdefined(&EVI);
762
763  // If this is extracting from more than one level of struct, we don't know.
764  if (EVI.getNumIndices() != 1)
765    return markOverdefined(&EVI);
766
767  Value *AggVal = EVI.getAggregateOperand();
768  if (AggVal->getType()->isStructTy()) {
769    unsigned i = *EVI.idx_begin();
770    LatticeVal EltVal = getStructValueState(AggVal, i);
771    mergeInValue(getValueState(&EVI), &EVI, EltVal);
772  } else {
773    // Otherwise, must be extracting from an array.
774    return markOverdefined(&EVI);
775  }
776}
777
778void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
779  StructType *STy = dyn_cast<StructType>(IVI.getType());
780  if (!STy)
781    return markOverdefined(&IVI);
782
783  // If this has more than one index, we can't handle it, drive all results to
784  // undef.
785  if (IVI.getNumIndices() != 1)
786    return markAnythingOverdefined(&IVI);
787
788  Value *Aggr = IVI.getAggregateOperand();
789  unsigned Idx = *IVI.idx_begin();
790
791  // Compute the result based on what we're inserting.
792  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
793    // This passes through all values that aren't the inserted element.
794    if (i != Idx) {
795      LatticeVal EltVal = getStructValueState(Aggr, i);
796      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
797      continue;
798    }
799
800    Value *Val = IVI.getInsertedValueOperand();
801    if (Val->getType()->isStructTy())
802      // We don't track structs in structs.
803      markOverdefined(getStructValueState(&IVI, i), &IVI);
804    else {
805      LatticeVal InVal = getValueState(Val);
806      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
807    }
808  }
809}
810
811void SCCPSolver::visitSelectInst(SelectInst &I) {
812  // If this select returns a struct, just mark the result overdefined.
813  // TODO: We could do a lot better than this if code actually uses this.
814  if (I.getType()->isStructTy())
815    return markAnythingOverdefined(&I);
816
817  LatticeVal CondValue = getValueState(I.getCondition());
818  if (CondValue.isUndefined())
819    return;
820
821  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
822    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
823    mergeInValue(&I, getValueState(OpVal));
824    return;
825  }
826
827  // Otherwise, the condition is overdefined or a constant we can't evaluate.
828  // See if we can produce something better than overdefined based on the T/F
829  // value.
830  LatticeVal TVal = getValueState(I.getTrueValue());
831  LatticeVal FVal = getValueState(I.getFalseValue());
832
833  // select ?, C, C -> C.
834  if (TVal.isConstant() && FVal.isConstant() &&
835      TVal.getConstant() == FVal.getConstant())
836    return markConstant(&I, FVal.getConstant());
837
838  if (TVal.isUndefined())   // select ?, undef, X -> X.
839    return mergeInValue(&I, FVal);
840  if (FVal.isUndefined())   // select ?, X, undef -> X.
841    return mergeInValue(&I, TVal);
842  markOverdefined(&I);
843}
844
845// Handle Binary Operators.
846void SCCPSolver::visitBinaryOperator(Instruction &I) {
847  LatticeVal V1State = getValueState(I.getOperand(0));
848  LatticeVal V2State = getValueState(I.getOperand(1));
849
850  LatticeVal &IV = ValueState[&I];
851  if (IV.isOverdefined()) return;
852
853  if (V1State.isConstant() && V2State.isConstant())
854    return markConstant(IV, &I,
855                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
856                                          V2State.getConstant()));
857
858  // If something is undef, wait for it to resolve.
859  if (!V1State.isOverdefined() && !V2State.isOverdefined())
860    return;
861
862  // Otherwise, one of our operands is overdefined.  Try to produce something
863  // better than overdefined with some tricks.
864
865  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
866  // operand is overdefined.
867  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
868    LatticeVal *NonOverdefVal = nullptr;
869    if (!V1State.isOverdefined())
870      NonOverdefVal = &V1State;
871    else if (!V2State.isOverdefined())
872      NonOverdefVal = &V2State;
873
874    if (NonOverdefVal) {
875      if (NonOverdefVal->isUndefined()) {
876        // Could annihilate value.
877        if (I.getOpcode() == Instruction::And)
878          markConstant(IV, &I, Constant::getNullValue(I.getType()));
879        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
880          markConstant(IV, &I, Constant::getAllOnesValue(PT));
881        else
882          markConstant(IV, &I,
883                       Constant::getAllOnesValue(I.getType()));
884        return;
885      }
886
887      if (I.getOpcode() == Instruction::And) {
888        // X and 0 = 0
889        if (NonOverdefVal->getConstant()->isNullValue())
890          return markConstant(IV, &I, NonOverdefVal->getConstant());
891      } else {
892        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
893          if (CI->isAllOnesValue())     // X or -1 = -1
894            return markConstant(IV, &I, NonOverdefVal->getConstant());
895      }
896    }
897  }
898
899
900  markOverdefined(&I);
901}
902
903// Handle ICmpInst instruction.
904void SCCPSolver::visitCmpInst(CmpInst &I) {
905  LatticeVal V1State = getValueState(I.getOperand(0));
906  LatticeVal V2State = getValueState(I.getOperand(1));
907
908  LatticeVal &IV = ValueState[&I];
909  if (IV.isOverdefined()) return;
910
911  if (V1State.isConstant() && V2State.isConstant())
912    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
913                                                         V1State.getConstant(),
914                                                        V2State.getConstant()));
915
916  // If operands are still undefined, wait for it to resolve.
917  if (!V1State.isOverdefined() && !V2State.isOverdefined())
918    return;
919
920  markOverdefined(&I);
921}
922
923void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
924  // TODO : SCCP does not handle vectors properly.
925  return markOverdefined(&I);
926
927#if 0
928  LatticeVal &ValState = getValueState(I.getOperand(0));
929  LatticeVal &IdxState = getValueState(I.getOperand(1));
930
931  if (ValState.isOverdefined() || IdxState.isOverdefined())
932    markOverdefined(&I);
933  else if(ValState.isConstant() && IdxState.isConstant())
934    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
935                                                     IdxState.getConstant()));
936#endif
937}
938
939void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
940  // TODO : SCCP does not handle vectors properly.
941  return markOverdefined(&I);
942#if 0
943  LatticeVal &ValState = getValueState(I.getOperand(0));
944  LatticeVal &EltState = getValueState(I.getOperand(1));
945  LatticeVal &IdxState = getValueState(I.getOperand(2));
946
947  if (ValState.isOverdefined() || EltState.isOverdefined() ||
948      IdxState.isOverdefined())
949    markOverdefined(&I);
950  else if(ValState.isConstant() && EltState.isConstant() &&
951          IdxState.isConstant())
952    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
953                                                    EltState.getConstant(),
954                                                    IdxState.getConstant()));
955  else if (ValState.isUndefined() && EltState.isConstant() &&
956           IdxState.isConstant())
957    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
958                                                   EltState.getConstant(),
959                                                   IdxState.getConstant()));
960#endif
961}
962
963void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
964  // TODO : SCCP does not handle vectors properly.
965  return markOverdefined(&I);
966#if 0
967  LatticeVal &V1State   = getValueState(I.getOperand(0));
968  LatticeVal &V2State   = getValueState(I.getOperand(1));
969  LatticeVal &MaskState = getValueState(I.getOperand(2));
970
971  if (MaskState.isUndefined() ||
972      (V1State.isUndefined() && V2State.isUndefined()))
973    return;  // Undefined output if mask or both inputs undefined.
974
975  if (V1State.isOverdefined() || V2State.isOverdefined() ||
976      MaskState.isOverdefined()) {
977    markOverdefined(&I);
978  } else {
979    // A mix of constant/undef inputs.
980    Constant *V1 = V1State.isConstant() ?
981        V1State.getConstant() : UndefValue::get(I.getType());
982    Constant *V2 = V2State.isConstant() ?
983        V2State.getConstant() : UndefValue::get(I.getType());
984    Constant *Mask = MaskState.isConstant() ?
985      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
986    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
987  }
988#endif
989}
990
991// Handle getelementptr instructions.  If all operands are constants then we
992// can turn this into a getelementptr ConstantExpr.
993//
994void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
995  if (ValueState[&I].isOverdefined()) return;
996
997  SmallVector<Constant*, 8> Operands;
998  Operands.reserve(I.getNumOperands());
999
1000  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1001    LatticeVal State = getValueState(I.getOperand(i));
1002    if (State.isUndefined())
1003      return;  // Operands are not resolved yet.
1004
1005    if (State.isOverdefined())
1006      return markOverdefined(&I);
1007
1008    assert(State.isConstant() && "Unknown state!");
1009    Operands.push_back(State.getConstant());
1010  }
1011
1012  Constant *Ptr = Operands[0];
1013  ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1014  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1015}
1016
1017void SCCPSolver::visitStoreInst(StoreInst &SI) {
1018  // If this store is of a struct, ignore it.
1019  if (SI.getOperand(0)->getType()->isStructTy())
1020    return;
1021
1022  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1023    return;
1024
1025  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1026  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1027  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1028
1029  // Get the value we are storing into the global, then merge it.
1030  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1031  if (I->second.isOverdefined())
1032    TrackedGlobals.erase(I);      // No need to keep tracking this!
1033}
1034
1035
1036// Handle load instructions.  If the operand is a constant pointer to a constant
1037// global, we can replace the load with the loaded constant value!
1038void SCCPSolver::visitLoadInst(LoadInst &I) {
1039  // If this load is of a struct, just mark the result overdefined.
1040  if (I.getType()->isStructTy())
1041    return markAnythingOverdefined(&I);
1042
1043  LatticeVal PtrVal = getValueState(I.getOperand(0));
1044  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1045
1046  LatticeVal &IV = ValueState[&I];
1047  if (IV.isOverdefined()) return;
1048
1049  if (!PtrVal.isConstant() || I.isVolatile())
1050    return markOverdefined(IV, &I);
1051
1052  Constant *Ptr = PtrVal.getConstant();
1053
1054  // load null -> null
1055  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1056    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1057
1058  // Transform load (constant global) into the value loaded.
1059  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1060    if (!TrackedGlobals.empty()) {
1061      // If we are tracking this global, merge in the known value for it.
1062      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1063        TrackedGlobals.find(GV);
1064      if (It != TrackedGlobals.end()) {
1065        mergeInValue(IV, &I, It->second);
1066        return;
1067      }
1068    }
1069  }
1070
1071  // Transform load from a constant into a constant if possible.
1072  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1073    return markConstant(IV, &I, C);
1074
1075  // Otherwise we cannot say for certain what value this load will produce.
1076  // Bail out.
1077  markOverdefined(IV, &I);
1078}
1079
1080void SCCPSolver::visitCallSite(CallSite CS) {
1081  Function *F = CS.getCalledFunction();
1082  Instruction *I = CS.getInstruction();
1083
1084  // The common case is that we aren't tracking the callee, either because we
1085  // are not doing interprocedural analysis or the callee is indirect, or is
1086  // external.  Handle these cases first.
1087  if (!F || F->isDeclaration()) {
1088CallOverdefined:
1089    // Void return and not tracking callee, just bail.
1090    if (I->getType()->isVoidTy()) return;
1091
1092    // Otherwise, if we have a single return value case, and if the function is
1093    // a declaration, maybe we can constant fold it.
1094    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1095        canConstantFoldCallTo(F)) {
1096
1097      SmallVector<Constant*, 8> Operands;
1098      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1099           AI != E; ++AI) {
1100        LatticeVal State = getValueState(*AI);
1101
1102        if (State.isUndefined())
1103          return;  // Operands are not resolved yet.
1104        if (State.isOverdefined())
1105          return markOverdefined(I);
1106        assert(State.isConstant() && "Unknown state!");
1107        Operands.push_back(State.getConstant());
1108      }
1109
1110      // If we can constant fold this, mark the result of the call as a
1111      // constant.
1112      if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1113        return markConstant(I, C);
1114    }
1115
1116    // Otherwise, we don't know anything about this call, mark it overdefined.
1117    return markAnythingOverdefined(I);
1118  }
1119
1120  // If this is a local function that doesn't have its address taken, mark its
1121  // entry block executable and merge in the actual arguments to the call into
1122  // the formal arguments of the function.
1123  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1124    MarkBlockExecutable(F->begin());
1125
1126    // Propagate information from this call site into the callee.
1127    CallSite::arg_iterator CAI = CS.arg_begin();
1128    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1129         AI != E; ++AI, ++CAI) {
1130      // If this argument is byval, and if the function is not readonly, there
1131      // will be an implicit copy formed of the input aggregate.
1132      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1133        markOverdefined(AI);
1134        continue;
1135      }
1136
1137      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1138        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1139          LatticeVal CallArg = getStructValueState(*CAI, i);
1140          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1141        }
1142      } else {
1143        mergeInValue(AI, getValueState(*CAI));
1144      }
1145    }
1146  }
1147
1148  // If this is a single/zero retval case, see if we're tracking the function.
1149  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1150    if (!MRVFunctionsTracked.count(F))
1151      goto CallOverdefined;  // Not tracking this callee.
1152
1153    // If we are tracking this callee, propagate the result of the function
1154    // into this call site.
1155    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1156      mergeInValue(getStructValueState(I, i), I,
1157                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1158  } else {
1159    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1160    if (TFRVI == TrackedRetVals.end())
1161      goto CallOverdefined;  // Not tracking this callee.
1162
1163    // If so, propagate the return value of the callee into this call result.
1164    mergeInValue(I, TFRVI->second);
1165  }
1166}
1167
1168void SCCPSolver::Solve() {
1169  // Process the work lists until they are empty!
1170  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1171         !OverdefinedInstWorkList.empty()) {
1172    // Process the overdefined instruction's work list first, which drives other
1173    // things to overdefined more quickly.
1174    while (!OverdefinedInstWorkList.empty()) {
1175      Value *I = OverdefinedInstWorkList.pop_back_val();
1176
1177      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1178
1179      // "I" got into the work list because it either made the transition from
1180      // bottom to constant, or to overdefined.
1181      //
1182      // Anything on this worklist that is overdefined need not be visited
1183      // since all of its users will have already been marked as overdefined
1184      // Update all of the users of this instruction's value.
1185      //
1186      for (User *U : I->users())
1187        if (Instruction *UI = dyn_cast<Instruction>(U))
1188          OperandChangedState(UI);
1189    }
1190
1191    // Process the instruction work list.
1192    while (!InstWorkList.empty()) {
1193      Value *I = InstWorkList.pop_back_val();
1194
1195      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1196
1197      // "I" got into the work list because it made the transition from undef to
1198      // constant.
1199      //
1200      // Anything on this worklist that is overdefined need not be visited
1201      // since all of its users will have already been marked as overdefined.
1202      // Update all of the users of this instruction's value.
1203      //
1204      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1205        for (User *U : I->users())
1206          if (Instruction *UI = dyn_cast<Instruction>(U))
1207            OperandChangedState(UI);
1208    }
1209
1210    // Process the basic block work list.
1211    while (!BBWorkList.empty()) {
1212      BasicBlock *BB = BBWorkList.back();
1213      BBWorkList.pop_back();
1214
1215      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1216
1217      // Notify all instructions in this basic block that they are newly
1218      // executable.
1219      visit(BB);
1220    }
1221  }
1222}
1223
1224/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1225/// that branches on undef values cannot reach any of their successors.
1226/// However, this is not a safe assumption.  After we solve dataflow, this
1227/// method should be use to handle this.  If this returns true, the solver
1228/// should be rerun.
1229///
1230/// This method handles this by finding an unresolved branch and marking it one
1231/// of the edges from the block as being feasible, even though the condition
1232/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1233/// CFG and only slightly pessimizes the analysis results (by marking one,
1234/// potentially infeasible, edge feasible).  This cannot usefully modify the
1235/// constraints on the condition of the branch, as that would impact other users
1236/// of the value.
1237///
1238/// This scan also checks for values that use undefs, whose results are actually
1239/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1240/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1241/// even if X isn't defined.
1242bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1243  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1244    if (!BBExecutable.count(BB))
1245      continue;
1246
1247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1248      // Look for instructions which produce undef values.
1249      if (I->getType()->isVoidTy()) continue;
1250
1251      if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1252        // Only a few things that can be structs matter for undef.
1253
1254        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1255        if (CallSite CS = CallSite(I))
1256          if (Function *F = CS.getCalledFunction())
1257            if (MRVFunctionsTracked.count(F))
1258              continue;
1259
1260        // extractvalue and insertvalue don't need to be marked; they are
1261        // tracked as precisely as their operands.
1262        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1263          continue;
1264
1265        // Send the results of everything else to overdefined.  We could be
1266        // more precise than this but it isn't worth bothering.
1267        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1268          LatticeVal &LV = getStructValueState(I, i);
1269          if (LV.isUndefined())
1270            markOverdefined(LV, I);
1271        }
1272        continue;
1273      }
1274
1275      LatticeVal &LV = getValueState(I);
1276      if (!LV.isUndefined()) continue;
1277
1278      // extractvalue is safe; check here because the argument is a struct.
1279      if (isa<ExtractValueInst>(I))
1280        continue;
1281
1282      // Compute the operand LatticeVals, for convenience below.
1283      // Anything taking a struct is conservatively assumed to require
1284      // overdefined markings.
1285      if (I->getOperand(0)->getType()->isStructTy()) {
1286        markOverdefined(I);
1287        return true;
1288      }
1289      LatticeVal Op0LV = getValueState(I->getOperand(0));
1290      LatticeVal Op1LV;
1291      if (I->getNumOperands() == 2) {
1292        if (I->getOperand(1)->getType()->isStructTy()) {
1293          markOverdefined(I);
1294          return true;
1295        }
1296
1297        Op1LV = getValueState(I->getOperand(1));
1298      }
1299      // If this is an instructions whose result is defined even if the input is
1300      // not fully defined, propagate the information.
1301      Type *ITy = I->getType();
1302      switch (I->getOpcode()) {
1303      case Instruction::Add:
1304      case Instruction::Sub:
1305      case Instruction::Trunc:
1306      case Instruction::FPTrunc:
1307      case Instruction::BitCast:
1308        break; // Any undef -> undef
1309      case Instruction::FSub:
1310      case Instruction::FAdd:
1311      case Instruction::FMul:
1312      case Instruction::FDiv:
1313      case Instruction::FRem:
1314        // Floating-point binary operation: be conservative.
1315        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1316          markForcedConstant(I, Constant::getNullValue(ITy));
1317        else
1318          markOverdefined(I);
1319        return true;
1320      case Instruction::ZExt:
1321      case Instruction::SExt:
1322      case Instruction::FPToUI:
1323      case Instruction::FPToSI:
1324      case Instruction::FPExt:
1325      case Instruction::PtrToInt:
1326      case Instruction::IntToPtr:
1327      case Instruction::SIToFP:
1328      case Instruction::UIToFP:
1329        // undef -> 0; some outputs are impossible
1330        markForcedConstant(I, Constant::getNullValue(ITy));
1331        return true;
1332      case Instruction::Mul:
1333      case Instruction::And:
1334        // Both operands undef -> undef
1335        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1336          break;
1337        // undef * X -> 0.   X could be zero.
1338        // undef & X -> 0.   X could be zero.
1339        markForcedConstant(I, Constant::getNullValue(ITy));
1340        return true;
1341
1342      case Instruction::Or:
1343        // Both operands undef -> undef
1344        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1345          break;
1346        // undef | X -> -1.   X could be -1.
1347        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1348        return true;
1349
1350      case Instruction::Xor:
1351        // undef ^ undef -> 0; strictly speaking, this is not strictly
1352        // necessary, but we try to be nice to people who expect this
1353        // behavior in simple cases
1354        if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1355          markForcedConstant(I, Constant::getNullValue(ITy));
1356          return true;
1357        }
1358        // undef ^ X -> undef
1359        break;
1360
1361      case Instruction::SDiv:
1362      case Instruction::UDiv:
1363      case Instruction::SRem:
1364      case Instruction::URem:
1365        // X / undef -> undef.  No change.
1366        // X % undef -> undef.  No change.
1367        if (Op1LV.isUndefined()) break;
1368
1369        // undef / X -> 0.   X could be maxint.
1370        // undef % X -> 0.   X could be 1.
1371        markForcedConstant(I, Constant::getNullValue(ITy));
1372        return true;
1373
1374      case Instruction::AShr:
1375        // X >>a undef -> undef.
1376        if (Op1LV.isUndefined()) break;
1377
1378        // undef >>a X -> all ones
1379        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1380        return true;
1381      case Instruction::LShr:
1382      case Instruction::Shl:
1383        // X << undef -> undef.
1384        // X >> undef -> undef.
1385        if (Op1LV.isUndefined()) break;
1386
1387        // undef << X -> 0
1388        // undef >> X -> 0
1389        markForcedConstant(I, Constant::getNullValue(ITy));
1390        return true;
1391      case Instruction::Select:
1392        Op1LV = getValueState(I->getOperand(1));
1393        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1394        if (Op0LV.isUndefined()) {
1395          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1396            Op1LV = getValueState(I->getOperand(2));
1397        } else if (Op1LV.isUndefined()) {
1398          // c ? undef : undef -> undef.  No change.
1399          Op1LV = getValueState(I->getOperand(2));
1400          if (Op1LV.isUndefined())
1401            break;
1402          // Otherwise, c ? undef : x -> x.
1403        } else {
1404          // Leave Op1LV as Operand(1)'s LatticeValue.
1405        }
1406
1407        if (Op1LV.isConstant())
1408          markForcedConstant(I, Op1LV.getConstant());
1409        else
1410          markOverdefined(I);
1411        return true;
1412      case Instruction::Load:
1413        // A load here means one of two things: a load of undef from a global,
1414        // a load from an unknown pointer.  Either way, having it return undef
1415        // is okay.
1416        break;
1417      case Instruction::ICmp:
1418        // X == undef -> undef.  Other comparisons get more complicated.
1419        if (cast<ICmpInst>(I)->isEquality())
1420          break;
1421        markOverdefined(I);
1422        return true;
1423      case Instruction::Call:
1424      case Instruction::Invoke: {
1425        // There are two reasons a call can have an undef result
1426        // 1. It could be tracked.
1427        // 2. It could be constant-foldable.
1428        // Because of the way we solve return values, tracked calls must
1429        // never be marked overdefined in ResolvedUndefsIn.
1430        if (Function *F = CallSite(I).getCalledFunction())
1431          if (TrackedRetVals.count(F))
1432            break;
1433
1434        // If the call is constant-foldable, we mark it overdefined because
1435        // we do not know what return values are valid.
1436        markOverdefined(I);
1437        return true;
1438      }
1439      default:
1440        // If we don't know what should happen here, conservatively mark it
1441        // overdefined.
1442        markOverdefined(I);
1443        return true;
1444      }
1445    }
1446
1447    // Check to see if we have a branch or switch on an undefined value.  If so
1448    // we force the branch to go one way or the other to make the successor
1449    // values live.  It doesn't really matter which way we force it.
1450    TerminatorInst *TI = BB->getTerminator();
1451    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1452      if (!BI->isConditional()) continue;
1453      if (!getValueState(BI->getCondition()).isUndefined())
1454        continue;
1455
1456      // If the input to SCCP is actually branch on undef, fix the undef to
1457      // false.
1458      if (isa<UndefValue>(BI->getCondition())) {
1459        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1460        markEdgeExecutable(BB, TI->getSuccessor(1));
1461        return true;
1462      }
1463
1464      // Otherwise, it is a branch on a symbolic value which is currently
1465      // considered to be undef.  Handle this by forcing the input value to the
1466      // branch to false.
1467      markForcedConstant(BI->getCondition(),
1468                         ConstantInt::getFalse(TI->getContext()));
1469      return true;
1470    }
1471
1472    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1473      if (!SI->getNumCases())
1474        continue;
1475      if (!getValueState(SI->getCondition()).isUndefined())
1476        continue;
1477
1478      // If the input to SCCP is actually switch on undef, fix the undef to
1479      // the first constant.
1480      if (isa<UndefValue>(SI->getCondition())) {
1481        SI->setCondition(SI->case_begin().getCaseValue());
1482        markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1483        return true;
1484      }
1485
1486      markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1487      return true;
1488    }
1489  }
1490
1491  return false;
1492}
1493
1494
1495namespace {
1496  //===--------------------------------------------------------------------===//
1497  //
1498  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1499  /// Sparse Conditional Constant Propagator.
1500  ///
1501  struct SCCP : public FunctionPass {
1502    void getAnalysisUsage(AnalysisUsage &AU) const override {
1503      AU.addRequired<TargetLibraryInfo>();
1504    }
1505    static char ID; // Pass identification, replacement for typeid
1506    SCCP() : FunctionPass(ID) {
1507      initializeSCCPPass(*PassRegistry::getPassRegistry());
1508    }
1509
1510    // runOnFunction - Run the Sparse Conditional Constant Propagation
1511    // algorithm, and return true if the function was modified.
1512    //
1513    bool runOnFunction(Function &F) override;
1514  };
1515} // end anonymous namespace
1516
1517char SCCP::ID = 0;
1518INITIALIZE_PASS(SCCP, "sccp",
1519                "Sparse Conditional Constant Propagation", false, false)
1520
1521// createSCCPPass - This is the public interface to this file.
1522FunctionPass *llvm::createSCCPPass() {
1523  return new SCCP();
1524}
1525
1526static void DeleteInstructionInBlock(BasicBlock *BB) {
1527  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1528  ++NumDeadBlocks;
1529
1530  // Check to see if there are non-terminating instructions to delete.
1531  if (isa<TerminatorInst>(BB->begin()))
1532    return;
1533
1534  // Delete the instructions backwards, as it has a reduced likelihood of having
1535  // to update as many def-use and use-def chains.
1536  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1537  while (EndInst != BB->begin()) {
1538    // Delete the next to last instruction.
1539    BasicBlock::iterator I = EndInst;
1540    Instruction *Inst = --I;
1541    if (!Inst->use_empty())
1542      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1543    if (isa<LandingPadInst>(Inst)) {
1544      EndInst = Inst;
1545      continue;
1546    }
1547    BB->getInstList().erase(Inst);
1548    ++NumInstRemoved;
1549  }
1550}
1551
1552// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1553// and return true if the function was modified.
1554//
1555bool SCCP::runOnFunction(Function &F) {
1556  if (skipOptnoneFunction(F))
1557    return false;
1558
1559  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1560  const DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1561  const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1562  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1563  SCCPSolver Solver(DL, TLI);
1564
1565  // Mark the first block of the function as being executable.
1566  Solver.MarkBlockExecutable(F.begin());
1567
1568  // Mark all arguments to the function as being overdefined.
1569  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1570    Solver.markAnythingOverdefined(AI);
1571
1572  // Solve for constants.
1573  bool ResolvedUndefs = true;
1574  while (ResolvedUndefs) {
1575    Solver.Solve();
1576    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1577    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1578  }
1579
1580  bool MadeChanges = false;
1581
1582  // If we decided that there are basic blocks that are dead in this function,
1583  // delete their contents now.  Note that we cannot actually delete the blocks,
1584  // as we cannot modify the CFG of the function.
1585
1586  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1587    if (!Solver.isBlockExecutable(BB)) {
1588      DeleteInstructionInBlock(BB);
1589      MadeChanges = true;
1590      continue;
1591    }
1592
1593    // Iterate over all of the instructions in a function, replacing them with
1594    // constants if we have found them to be of constant values.
1595    //
1596    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1597      Instruction *Inst = BI++;
1598      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1599        continue;
1600
1601      // TODO: Reconstruct structs from their elements.
1602      if (Inst->getType()->isStructTy())
1603        continue;
1604
1605      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1606      if (IV.isOverdefined())
1607        continue;
1608
1609      Constant *Const = IV.isConstant()
1610        ? IV.getConstant() : UndefValue::get(Inst->getType());
1611      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1612
1613      // Replaces all of the uses of a variable with uses of the constant.
1614      Inst->replaceAllUsesWith(Const);
1615
1616      // Delete the instruction.
1617      Inst->eraseFromParent();
1618
1619      // Hey, we just changed something!
1620      MadeChanges = true;
1621      ++NumInstRemoved;
1622    }
1623  }
1624
1625  return MadeChanges;
1626}
1627
1628namespace {
1629  //===--------------------------------------------------------------------===//
1630  //
1631  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1632  /// Constant Propagation.
1633  ///
1634  struct IPSCCP : public ModulePass {
1635    void getAnalysisUsage(AnalysisUsage &AU) const override {
1636      AU.addRequired<TargetLibraryInfo>();
1637    }
1638    static char ID;
1639    IPSCCP() : ModulePass(ID) {
1640      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1641    }
1642    bool runOnModule(Module &M) override;
1643  };
1644} // end anonymous namespace
1645
1646char IPSCCP::ID = 0;
1647INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1648                "Interprocedural Sparse Conditional Constant Propagation",
1649                false, false)
1650INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1651INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1652                "Interprocedural Sparse Conditional Constant Propagation",
1653                false, false)
1654
1655// createIPSCCPPass - This is the public interface to this file.
1656ModulePass *llvm::createIPSCCPPass() {
1657  return new IPSCCP();
1658}
1659
1660
1661static bool AddressIsTaken(const GlobalValue *GV) {
1662  // Delete any dead constantexpr klingons.
1663  GV->removeDeadConstantUsers();
1664
1665  for (const Use &U : GV->uses()) {
1666    const User *UR = U.getUser();
1667    if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1668      if (SI->getOperand(0) == GV || SI->isVolatile())
1669        return true;  // Storing addr of GV.
1670    } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1671      // Make sure we are calling the function, not passing the address.
1672      ImmutableCallSite CS(cast<Instruction>(UR));
1673      if (!CS.isCallee(&U))
1674        return true;
1675    } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1676      if (LI->isVolatile())
1677        return true;
1678    } else if (isa<BlockAddress>(UR)) {
1679      // blockaddress doesn't take the address of the function, it takes addr
1680      // of label.
1681    } else {
1682      return true;
1683    }
1684  }
1685  return false;
1686}
1687
1688bool IPSCCP::runOnModule(Module &M) {
1689  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1690  const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1691  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1692  SCCPSolver Solver(DL, TLI);
1693
1694  // AddressTakenFunctions - This set keeps track of the address-taken functions
1695  // that are in the input.  As IPSCCP runs through and simplifies code,
1696  // functions that were address taken can end up losing their
1697  // address-taken-ness.  Because of this, we keep track of their addresses from
1698  // the first pass so we can use them for the later simplification pass.
1699  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1700
1701  // Loop over all functions, marking arguments to those with their addresses
1702  // taken or that are external as overdefined.
1703  //
1704  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1705    if (F->isDeclaration())
1706      continue;
1707
1708    // If this is a strong or ODR definition of this function, then we can
1709    // propagate information about its result into callsites of it.
1710    if (!F->mayBeOverridden())
1711      Solver.AddTrackedFunction(F);
1712
1713    // If this function only has direct calls that we can see, we can track its
1714    // arguments and return value aggressively, and can assume it is not called
1715    // unless we see evidence to the contrary.
1716    if (F->hasLocalLinkage()) {
1717      if (AddressIsTaken(F))
1718        AddressTakenFunctions.insert(F);
1719      else {
1720        Solver.AddArgumentTrackedFunction(F);
1721        continue;
1722      }
1723    }
1724
1725    // Assume the function is called.
1726    Solver.MarkBlockExecutable(F->begin());
1727
1728    // Assume nothing about the incoming arguments.
1729    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1730         AI != E; ++AI)
1731      Solver.markAnythingOverdefined(AI);
1732  }
1733
1734  // Loop over global variables.  We inform the solver about any internal global
1735  // variables that do not have their 'addresses taken'.  If they don't have
1736  // their addresses taken, we can propagate constants through them.
1737  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1738       G != E; ++G)
1739    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1740      Solver.TrackValueOfGlobalVariable(G);
1741
1742  // Solve for constants.
1743  bool ResolvedUndefs = true;
1744  while (ResolvedUndefs) {
1745    Solver.Solve();
1746
1747    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1748    ResolvedUndefs = false;
1749    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1750      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1751  }
1752
1753  bool MadeChanges = false;
1754
1755  // Iterate over all of the instructions in the module, replacing them with
1756  // constants if we have found them to be of constant values.
1757  //
1758  SmallVector<BasicBlock*, 512> BlocksToErase;
1759
1760  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1761    if (Solver.isBlockExecutable(F->begin())) {
1762      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1763           AI != E; ++AI) {
1764        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1765
1766        // TODO: Could use getStructLatticeValueFor to find out if the entire
1767        // result is a constant and replace it entirely if so.
1768
1769        LatticeVal IV = Solver.getLatticeValueFor(AI);
1770        if (IV.isOverdefined()) continue;
1771
1772        Constant *CST = IV.isConstant() ?
1773        IV.getConstant() : UndefValue::get(AI->getType());
1774        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1775
1776        // Replaces all of the uses of a variable with uses of the
1777        // constant.
1778        AI->replaceAllUsesWith(CST);
1779        ++IPNumArgsElimed;
1780      }
1781    }
1782
1783    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1784      if (!Solver.isBlockExecutable(BB)) {
1785        DeleteInstructionInBlock(BB);
1786        MadeChanges = true;
1787
1788        TerminatorInst *TI = BB->getTerminator();
1789        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1790          BasicBlock *Succ = TI->getSuccessor(i);
1791          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1792            TI->getSuccessor(i)->removePredecessor(BB);
1793        }
1794        if (!TI->use_empty())
1795          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1796        TI->eraseFromParent();
1797
1798        if (&*BB != &F->front())
1799          BlocksToErase.push_back(BB);
1800        else
1801          new UnreachableInst(M.getContext(), BB);
1802        continue;
1803      }
1804
1805      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1806        Instruction *Inst = BI++;
1807        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1808          continue;
1809
1810        // TODO: Could use getStructLatticeValueFor to find out if the entire
1811        // result is a constant and replace it entirely if so.
1812
1813        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1814        if (IV.isOverdefined())
1815          continue;
1816
1817        Constant *Const = IV.isConstant()
1818          ? IV.getConstant() : UndefValue::get(Inst->getType());
1819        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1820
1821        // Replaces all of the uses of a variable with uses of the
1822        // constant.
1823        Inst->replaceAllUsesWith(Const);
1824
1825        // Delete the instruction.
1826        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1827          Inst->eraseFromParent();
1828
1829        // Hey, we just changed something!
1830        MadeChanges = true;
1831        ++IPNumInstRemoved;
1832      }
1833    }
1834
1835    // Now that all instructions in the function are constant folded, erase dead
1836    // blocks, because we can now use ConstantFoldTerminator to get rid of
1837    // in-edges.
1838    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1839      // If there are any PHI nodes in this successor, drop entries for BB now.
1840      BasicBlock *DeadBB = BlocksToErase[i];
1841      for (Value::user_iterator UI = DeadBB->user_begin(),
1842                                UE = DeadBB->user_end();
1843           UI != UE;) {
1844        // Grab the user and then increment the iterator early, as the user
1845        // will be deleted. Step past all adjacent uses from the same user.
1846        Instruction *I = dyn_cast<Instruction>(*UI);
1847        do { ++UI; } while (UI != UE && *UI == I);
1848
1849        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1850        if (!I) continue;
1851
1852        bool Folded = ConstantFoldTerminator(I->getParent());
1853        if (!Folded) {
1854          // The constant folder may not have been able to fold the terminator
1855          // if this is a branch or switch on undef.  Fold it manually as a
1856          // branch to the first successor.
1857#ifndef NDEBUG
1858          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1859            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1860                   "Branch should be foldable!");
1861          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1862            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1863          } else {
1864            llvm_unreachable("Didn't fold away reference to block!");
1865          }
1866#endif
1867
1868          // Make this an uncond branch to the first successor.
1869          TerminatorInst *TI = I->getParent()->getTerminator();
1870          BranchInst::Create(TI->getSuccessor(0), TI);
1871
1872          // Remove entries in successor phi nodes to remove edges.
1873          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1874            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1875
1876          // Remove the old terminator.
1877          TI->eraseFromParent();
1878        }
1879      }
1880
1881      // Finally, delete the basic block.
1882      F->getBasicBlockList().erase(DeadBB);
1883    }
1884    BlocksToErase.clear();
1885  }
1886
1887  // If we inferred constant or undef return values for a function, we replaced
1888  // all call uses with the inferred value.  This means we don't need to bother
1889  // actually returning anything from the function.  Replace all return
1890  // instructions with return undef.
1891  //
1892  // Do this in two stages: first identify the functions we should process, then
1893  // actually zap their returns.  This is important because we can only do this
1894  // if the address of the function isn't taken.  In cases where a return is the
1895  // last use of a function, the order of processing functions would affect
1896  // whether other functions are optimizable.
1897  SmallVector<ReturnInst*, 8> ReturnsToZap;
1898
1899  // TODO: Process multiple value ret instructions also.
1900  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1901  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1902       E = RV.end(); I != E; ++I) {
1903    Function *F = I->first;
1904    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1905      continue;
1906
1907    // We can only do this if we know that nothing else can call the function.
1908    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1909      continue;
1910
1911    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1912      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1913        if (!isa<UndefValue>(RI->getOperand(0)))
1914          ReturnsToZap.push_back(RI);
1915  }
1916
1917  // Zap all returns which we've identified as zap to change.
1918  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1919    Function *F = ReturnsToZap[i]->getParent()->getParent();
1920    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1921  }
1922
1923  // If we inferred constant or undef values for globals variables, we can
1924  // delete the global and any stores that remain to it.
1925  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1926  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1927         E = TG.end(); I != E; ++I) {
1928    GlobalVariable *GV = I->first;
1929    assert(!I->second.isOverdefined() &&
1930           "Overdefined values should have been taken out of the map!");
1931    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1932    while (!GV->use_empty()) {
1933      StoreInst *SI = cast<StoreInst>(GV->user_back());
1934      SI->eraseFromParent();
1935    }
1936    M.getGlobalList().erase(GV);
1937    ++IPNumGlobalConst;
1938  }
1939
1940  return MadeChanges;
1941}
1942