SCCP.cpp revision cf0fe8d813727383d630055bb9d1cde21b00b7e7
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/InstVisitor.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/DenseSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <map>
48using namespace llvm;
49
50STATISTIC(NumInstRemoved, "Number of instructions removed");
51STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
52
53STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
54STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
55STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
56STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
57
58namespace {
59/// LatticeVal class - This class represents the different lattice values that
60/// an LLVM value may occupy.  It is a simple class with value semantics.
61///
62class LatticeVal {
63  enum {
64    /// undefined - This LLVM Value has no known value yet.
65    undefined,
66
67    /// constant - This LLVM Value has a specific constant value.
68    constant,
69
70    /// forcedconstant - This LLVM Value was thought to be undef until
71    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
72    /// with another (different) constant, it goes to overdefined, instead of
73    /// asserting.
74    forcedconstant,
75
76    /// overdefined - This instruction is not known to be constant, and we know
77    /// it has a value.
78    overdefined
79  } LatticeValue;    // The current lattice position
80
81  Constant *ConstantVal; // If Constant value, the current value
82public:
83  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
84
85  // markOverdefined - Return true if this is a new status to be in...
86  inline bool markOverdefined() {
87    if (LatticeValue != overdefined) {
88      LatticeValue = overdefined;
89      return true;
90    }
91    return false;
92  }
93
94  // markConstant - Return true if this is a new status for us.
95  inline bool markConstant(Constant *V) {
96    if (LatticeValue != constant) {
97      if (LatticeValue == undefined) {
98        LatticeValue = constant;
99        assert(V && "Marking constant with NULL");
100        ConstantVal = V;
101      } else {
102        assert(LatticeValue == forcedconstant &&
103               "Cannot move from overdefined to constant!");
104        // Stay at forcedconstant if the constant is the same.
105        if (V == ConstantVal) return false;
106
107        // Otherwise, we go to overdefined.  Assumptions made based on the
108        // forced value are possibly wrong.  Assuming this is another constant
109        // could expose a contradiction.
110        LatticeValue = overdefined;
111      }
112      return true;
113    } else {
114      assert(ConstantVal == V && "Marking constant with different value");
115    }
116    return false;
117  }
118
119  inline void markForcedConstant(Constant *V) {
120    assert(LatticeValue == undefined && "Can't force a defined value!");
121    LatticeValue = forcedconstant;
122    ConstantVal = V;
123  }
124
125  inline bool isUndefined() const { return LatticeValue == undefined; }
126  inline bool isConstant() const {
127    return LatticeValue == constant || LatticeValue == forcedconstant;
128  }
129  inline bool isOverdefined() const { return LatticeValue == overdefined; }
130
131  inline Constant *getConstant() const {
132    assert(isConstant() && "Cannot get the constant of a non-constant!");
133    return ConstantVal;
134  }
135};
136
137//===----------------------------------------------------------------------===//
138//
139/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
140/// Constant Propagation.
141///
142class SCCPSolver : public InstVisitor<SCCPSolver> {
143  LLVMContext *Context;
144  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
145  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
146
147  /// GlobalValue - If we are tracking any values for the contents of a global
148  /// variable, we keep a mapping from the constant accessor to the element of
149  /// the global, to the currently known value.  If the value becomes
150  /// overdefined, it's entry is simply removed from this map.
151  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
152
153  /// TrackedRetVals - If we are tracking arguments into and the return
154  /// value out of a function, it will have an entry in this map, indicating
155  /// what the known return value for the function is.
156  DenseMap<Function*, LatticeVal> TrackedRetVals;
157
158  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
159  /// that return multiple values.
160  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
161
162  // The reason for two worklists is that overdefined is the lowest state
163  // on the lattice, and moving things to overdefined as fast as possible
164  // makes SCCP converge much faster.
165  // By having a separate worklist, we accomplish this because everything
166  // possibly overdefined will become overdefined at the soonest possible
167  // point.
168  SmallVector<Value*, 64> OverdefinedInstWorkList;
169  SmallVector<Value*, 64> InstWorkList;
170
171
172  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
173
174  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
175  /// overdefined, despite the fact that the PHI node is overdefined.
176  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
177
178  /// KnownFeasibleEdges - Entries in this set are edges which have already had
179  /// PHI nodes retriggered.
180  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
181  DenseSet<Edge> KnownFeasibleEdges;
182public:
183  void setContext(LLVMContext *C) { Context = C; }
184
185  /// MarkBlockExecutable - This method can be used by clients to mark all of
186  /// the blocks that are known to be intrinsically live in the processed unit.
187  void MarkBlockExecutable(BasicBlock *BB) {
188    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
189    BBExecutable.insert(BB);   // Basic block is executable!
190    BBWorkList.push_back(BB);  // Add the block to the work list!
191  }
192
193  /// TrackValueOfGlobalVariable - Clients can use this method to
194  /// inform the SCCPSolver that it should track loads and stores to the
195  /// specified global variable if it can.  This is only legal to call if
196  /// performing Interprocedural SCCP.
197  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
198    const Type *ElTy = GV->getType()->getElementType();
199    if (ElTy->isFirstClassType()) {
200      LatticeVal &IV = TrackedGlobals[GV];
201      if (!isa<UndefValue>(GV->getInitializer()))
202        IV.markConstant(GV->getInitializer());
203    }
204  }
205
206  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
207  /// and out of the specified function (which cannot have its address taken),
208  /// this method must be called.
209  void AddTrackedFunction(Function *F) {
210    assert(F->hasLocalLinkage() && "Can only track internal functions!");
211    // Add an entry, F -> undef.
212    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
213      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
214        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
215                                                     LatticeVal()));
216    } else
217      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
218  }
219
220  /// Solve - Solve for constants and executable blocks.
221  ///
222  void Solve();
223
224  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
225  /// that branches on undef values cannot reach any of their successors.
226  /// However, this is not a safe assumption.  After we solve dataflow, this
227  /// method should be use to handle this.  If this returns true, the solver
228  /// should be rerun.
229  bool ResolvedUndefsIn(Function &F);
230
231  bool isBlockExecutable(BasicBlock *BB) const {
232    return BBExecutable.count(BB);
233  }
234
235  /// getValueMapping - Once we have solved for constants, return the mapping of
236  /// LLVM values to LatticeVals.
237  std::map<Value*, LatticeVal> &getValueMapping() {
238    return ValueState;
239  }
240
241  /// getTrackedRetVals - Get the inferred return value map.
242  ///
243  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
244    return TrackedRetVals;
245  }
246
247  /// getTrackedGlobals - Get and return the set of inferred initializers for
248  /// global variables.
249  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
250    return TrackedGlobals;
251  }
252
253  inline void markOverdefined(Value *V) {
254    markOverdefined(ValueState[V], V);
255  }
256
257private:
258  // markConstant - Make a value be marked as "constant".  If the value
259  // is not already a constant, add it to the instruction work list so that
260  // the users of the instruction are updated later.
261  //
262  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
263    if (IV.markConstant(C)) {
264      DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
265      InstWorkList.push_back(V);
266    }
267  }
268
269  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
270    IV.markForcedConstant(C);
271    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
272    InstWorkList.push_back(V);
273  }
274
275  inline void markConstant(Value *V, Constant *C) {
276    markConstant(ValueState[V], V, C);
277  }
278
279  // markOverdefined - Make a value be marked as "overdefined". If the
280  // value is not already overdefined, add it to the overdefined instruction
281  // work list so that the users of the instruction are updated later.
282  inline void markOverdefined(LatticeVal &IV, Value *V) {
283    if (IV.markOverdefined()) {
284      DEBUG(errs() << "markOverdefined: ";
285            if (Function *F = dyn_cast<Function>(V))
286              errs() << "Function '" << F->getName() << "'\n";
287            else
288              errs() << *V << '\n');
289      // Only instructions go on the work list
290      OverdefinedInstWorkList.push_back(V);
291    }
292  }
293
294  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
295    if (IV.isOverdefined() || MergeWithV.isUndefined())
296      return;  // Noop.
297    if (MergeWithV.isOverdefined())
298      markOverdefined(IV, V);
299    else if (IV.isUndefined())
300      markConstant(IV, V, MergeWithV.getConstant());
301    else if (IV.getConstant() != MergeWithV.getConstant())
302      markOverdefined(IV, V);
303  }
304
305  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
306    return mergeInValue(ValueState[V], V, MergeWithV);
307  }
308
309
310  // getValueState - Return the LatticeVal object that corresponds to the value.
311  // This function is necessary because not all values should start out in the
312  // underdefined state... Argument's should be overdefined, and
313  // constants should be marked as constants.  If a value is not known to be an
314  // Instruction object, then use this accessor to get its value from the map.
315  //
316  inline LatticeVal &getValueState(Value *V) {
317    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
318    if (I != ValueState.end()) return I->second;  // Common case, in the map
319
320    if (Constant *C = dyn_cast<Constant>(V)) {
321      if (isa<UndefValue>(V)) {
322        // Nothing to do, remain undefined.
323      } else {
324        LatticeVal &LV = ValueState[C];
325        LV.markConstant(C);          // Constants are constant
326        return LV;
327      }
328    }
329    // All others are underdefined by default...
330    return ValueState[V];
331  }
332
333  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
334  // work list if it is not already executable...
335  //
336  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
337    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
338      return;  // This edge is already known to be executable!
339
340    if (BBExecutable.count(Dest)) {
341      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
342            << " -> " << Dest->getName() << "\n");
343
344      // The destination is already executable, but we just made an edge
345      // feasible that wasn't before.  Revisit the PHI nodes in the block
346      // because they have potentially new operands.
347      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
348        visitPHINode(*cast<PHINode>(I));
349
350    } else {
351      MarkBlockExecutable(Dest);
352    }
353  }
354
355  // getFeasibleSuccessors - Return a vector of booleans to indicate which
356  // successors are reachable from a given terminator instruction.
357  //
358  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
359
360  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
361  // block to the 'To' basic block is currently feasible...
362  //
363  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
364
365  // OperandChangedState - This method is invoked on all of the users of an
366  // instruction that was just changed state somehow....  Based on this
367  // information, we need to update the specified user of this instruction.
368  //
369  void OperandChangedState(User *U) {
370    // Only instructions use other variable values!
371    Instruction &I = cast<Instruction>(*U);
372    if (BBExecutable.count(I.getParent()))   // Inst is executable?
373      visit(I);
374  }
375
376private:
377  friend class InstVisitor<SCCPSolver>;
378
379  // visit implementations - Something changed in this instruction... Either an
380  // operand made a transition, or the instruction is newly executable.  Change
381  // the value type of I to reflect these changes if appropriate.
382  //
383  void visitPHINode(PHINode &I);
384
385  // Terminators
386  void visitReturnInst(ReturnInst &I);
387  void visitTerminatorInst(TerminatorInst &TI);
388
389  void visitCastInst(CastInst &I);
390  void visitSelectInst(SelectInst &I);
391  void visitBinaryOperator(Instruction &I);
392  void visitCmpInst(CmpInst &I);
393  void visitExtractElementInst(ExtractElementInst &I);
394  void visitInsertElementInst(InsertElementInst &I);
395  void visitShuffleVectorInst(ShuffleVectorInst &I);
396  void visitExtractValueInst(ExtractValueInst &EVI);
397  void visitInsertValueInst(InsertValueInst &IVI);
398
399  // Instructions that cannot be folded away...
400  void visitStoreInst     (Instruction &I);
401  void visitLoadInst      (LoadInst &I);
402  void visitGetElementPtrInst(GetElementPtrInst &I);
403  void visitCallInst      (CallInst &I) {
404    visitCallSite(CallSite::get(&I));
405  }
406  void visitInvokeInst    (InvokeInst &II) {
407    visitCallSite(CallSite::get(&II));
408    visitTerminatorInst(II);
409  }
410  void visitCallSite      (CallSite CS);
411  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
412  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
413  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
414  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
415  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
416  void visitFreeInst      (Instruction &I) { /*returns void*/ }
417
418  void visitInstruction(Instruction &I) {
419    // If a new instruction is added to LLVM that we don't handle...
420    errs() << "SCCP: Don't know how to handle: " << I;
421    markOverdefined(&I);   // Just in case
422  }
423};
424
425} // end anonymous namespace
426
427
428// getFeasibleSuccessors - Return a vector of booleans to indicate which
429// successors are reachable from a given terminator instruction.
430//
431void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
432                                       SmallVector<bool, 16> &Succs) {
433  Succs.resize(TI.getNumSuccessors());
434  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
435    if (BI->isUnconditional()) {
436      Succs[0] = true;
437    } else {
438      LatticeVal &BCValue = getValueState(BI->getCondition());
439      if (BCValue.isOverdefined() ||
440          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
441        // Overdefined condition variables, and branches on unfoldable constant
442        // conditions, mean the branch could go either way.
443        Succs[0] = Succs[1] = true;
444      } else if (BCValue.isConstant()) {
445        // Constant condition variables mean the branch can only go a single way
446        Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
447      }
448    }
449  } else if (isa<InvokeInst>(&TI)) {
450    // Invoke instructions successors are always executable.
451    Succs[0] = Succs[1] = true;
452  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
453    LatticeVal &SCValue = getValueState(SI->getCondition());
454    if (SCValue.isOverdefined() ||   // Overdefined condition?
455        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
456      // All destinations are executable!
457      Succs.assign(TI.getNumSuccessors(), true);
458    } else if (SCValue.isConstant())
459      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
460  } else {
461    llvm_unreachable("SCCP: Don't know how to handle this terminator!");
462  }
463}
464
465
466// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
467// block to the 'To' basic block is currently feasible...
468//
469bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
470  assert(BBExecutable.count(To) && "Dest should always be alive!");
471
472  // Make sure the source basic block is executable!!
473  if (!BBExecutable.count(From)) return false;
474
475  // Check to make sure this edge itself is actually feasible now...
476  TerminatorInst *TI = From->getTerminator();
477  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
478    if (BI->isUnconditional())
479      return true;
480    else {
481      LatticeVal &BCValue = getValueState(BI->getCondition());
482      if (BCValue.isOverdefined()) {
483        // Overdefined condition variables mean the branch could go either way.
484        return true;
485      } else if (BCValue.isConstant()) {
486        // Not branching on an evaluatable constant?
487        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
488
489        // Constant condition variables mean the branch can only go a single way
490        return BI->getSuccessor(BCValue.getConstant() ==
491                                       ConstantInt::getFalse(*Context)) == To;
492      }
493      return false;
494    }
495  } else if (isa<InvokeInst>(TI)) {
496    // Invoke instructions successors are always executable.
497    return true;
498  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
499    LatticeVal &SCValue = getValueState(SI->getCondition());
500    if (SCValue.isOverdefined()) {  // Overdefined condition?
501      // All destinations are executable!
502      return true;
503    } else if (SCValue.isConstant()) {
504      Constant *CPV = SCValue.getConstant();
505      if (!isa<ConstantInt>(CPV))
506        return true;  // not a foldable constant?
507
508      // Make sure to skip the "default value" which isn't a value
509      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
510        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
511          return SI->getSuccessor(i) == To;
512
513      // Constant value not equal to any of the branches... must execute
514      // default branch then...
515      return SI->getDefaultDest() == To;
516    }
517    return false;
518  } else {
519#ifndef NDEBUG
520    errs() << "Unknown terminator instruction: " << *TI << '\n';
521#endif
522    llvm_unreachable(0);
523  }
524}
525
526// visit Implementations - Something changed in this instruction... Either an
527// operand made a transition, or the instruction is newly executable.  Change
528// the value type of I to reflect these changes if appropriate.  This method
529// makes sure to do the following actions:
530//
531// 1. If a phi node merges two constants in, and has conflicting value coming
532//    from different branches, or if the PHI node merges in an overdefined
533//    value, then the PHI node becomes overdefined.
534// 2. If a phi node merges only constants in, and they all agree on value, the
535//    PHI node becomes a constant value equal to that.
536// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
537// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
538// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
539// 6. If a conditional branch has a value that is constant, make the selected
540//    destination executable
541// 7. If a conditional branch has a value that is overdefined, make all
542//    successors executable.
543//
544void SCCPSolver::visitPHINode(PHINode &PN) {
545  LatticeVal &PNIV = getValueState(&PN);
546  if (PNIV.isOverdefined()) {
547    // There may be instructions using this PHI node that are not overdefined
548    // themselves.  If so, make sure that they know that the PHI node operand
549    // changed.
550    std::multimap<PHINode*, Instruction*>::iterator I, E;
551    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
552    if (I != E) {
553      SmallVector<Instruction*, 16> Users;
554      for (; I != E; ++I) Users.push_back(I->second);
555      while (!Users.empty()) {
556        visit(Users.back());
557        Users.pop_back();
558      }
559    }
560    return;  // Quick exit
561  }
562
563  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
564  // and slow us down a lot.  Just mark them overdefined.
565  if (PN.getNumIncomingValues() > 64) {
566    markOverdefined(PNIV, &PN);
567    return;
568  }
569
570  // Look at all of the executable operands of the PHI node.  If any of them
571  // are overdefined, the PHI becomes overdefined as well.  If they are all
572  // constant, and they agree with each other, the PHI becomes the identical
573  // constant.  If they are constant and don't agree, the PHI is overdefined.
574  // If there are no executable operands, the PHI remains undefined.
575  //
576  Constant *OperandVal = 0;
577  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
578    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
579    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
580
581    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
582      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
583        markOverdefined(&PN);
584        return;
585      }
586
587      if (OperandVal == 0) {   // Grab the first value...
588        OperandVal = IV.getConstant();
589      } else {                // Another value is being merged in!
590        // There is already a reachable operand.  If we conflict with it,
591        // then the PHI node becomes overdefined.  If we agree with it, we
592        // can continue on.
593
594        // Check to see if there are two different constants merging...
595        if (IV.getConstant() != OperandVal) {
596          // Yes there is.  This means the PHI node is not constant.
597          // You must be overdefined poor PHI.
598          //
599          markOverdefined(&PN);    // The PHI node now becomes overdefined
600          return;    // I'm done analyzing you
601        }
602      }
603    }
604  }
605
606  // If we exited the loop, this means that the PHI node only has constant
607  // arguments that agree with each other(and OperandVal is the constant) or
608  // OperandVal is null because there are no defined incoming arguments.  If
609  // this is the case, the PHI remains undefined.
610  //
611  if (OperandVal)
612    markConstant(&PN, OperandVal);      // Acquire operand value
613}
614
615void SCCPSolver::visitReturnInst(ReturnInst &I) {
616  if (I.getNumOperands() == 0) return;  // Ret void
617
618  Function *F = I.getParent()->getParent();
619  // If we are tracking the return value of this function, merge it in.
620  if (!F->hasLocalLinkage())
621    return;
622
623  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
624    DenseMap<Function*, LatticeVal>::iterator TFRVI =
625      TrackedRetVals.find(F);
626    if (TFRVI != TrackedRetVals.end() &&
627        !TFRVI->second.isOverdefined()) {
628      LatticeVal &IV = getValueState(I.getOperand(0));
629      mergeInValue(TFRVI->second, F, IV);
630      return;
631    }
632  }
633
634  // Handle functions that return multiple values.
635  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
636    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
637      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
638        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
639      if (It == TrackedMultipleRetVals.end()) break;
640      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
641    }
642  } else if (!TrackedMultipleRetVals.empty() &&
643             I.getNumOperands() == 1 &&
644             isa<StructType>(I.getOperand(0)->getType())) {
645    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
646         i != e; ++i) {
647      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
648        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
649      if (It == TrackedMultipleRetVals.end()) break;
650      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
651        mergeInValue(It->second, F, getValueState(Val));
652    }
653  }
654}
655
656void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
657  SmallVector<bool, 16> SuccFeasible;
658  getFeasibleSuccessors(TI, SuccFeasible);
659
660  BasicBlock *BB = TI.getParent();
661
662  // Mark all feasible successors executable...
663  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
664    if (SuccFeasible[i])
665      markEdgeExecutable(BB, TI.getSuccessor(i));
666}
667
668void SCCPSolver::visitCastInst(CastInst &I) {
669  Value *V = I.getOperand(0);
670  LatticeVal &VState = getValueState(V);
671  if (VState.isOverdefined())          // Inherit overdefinedness of operand
672    markOverdefined(&I);
673  else if (VState.isConstant())        // Propagate constant value
674    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
675                                           VState.getConstant(), I.getType()));
676}
677
678void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
679  Value *Aggr = EVI.getAggregateOperand();
680
681  // If the operand to the extractvalue is an undef, the result is undef.
682  if (isa<UndefValue>(Aggr))
683    return;
684
685  // Currently only handle single-index extractvalues.
686  if (EVI.getNumIndices() != 1) {
687    markOverdefined(&EVI);
688    return;
689  }
690
691  Function *F = 0;
692  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
693    F = CI->getCalledFunction();
694  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
695    F = II->getCalledFunction();
696
697  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
698  // result back!
699  if (F == 0 || TrackedMultipleRetVals.empty()) {
700    markOverdefined(&EVI);
701    return;
702  }
703
704  // See if we are tracking the result of the callee.  If not tracking this
705  // function (for example, it is a declaration) just move to overdefined.
706  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
707    markOverdefined(&EVI);
708    return;
709  }
710
711  // Otherwise, the value will be merged in here as a result of CallSite
712  // handling.
713}
714
715void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
716  Value *Aggr = IVI.getAggregateOperand();
717  Value *Val = IVI.getInsertedValueOperand();
718
719  // If the operands to the insertvalue are undef, the result is undef.
720  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
721    return;
722
723  // Currently only handle single-index insertvalues.
724  if (IVI.getNumIndices() != 1) {
725    markOverdefined(&IVI);
726    return;
727  }
728
729  // Currently only handle insertvalue instructions that are in a single-use
730  // chain that builds up a return value.
731  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
732    if (!TmpIVI->hasOneUse()) {
733      markOverdefined(&IVI);
734      return;
735    }
736    const Value *V = *TmpIVI->use_begin();
737    if (isa<ReturnInst>(V))
738      break;
739    TmpIVI = dyn_cast<InsertValueInst>(V);
740    if (!TmpIVI) {
741      markOverdefined(&IVI);
742      return;
743    }
744  }
745
746  // See if we are tracking the result of the callee.
747  Function *F = IVI.getParent()->getParent();
748  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
749    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
750
751  // Merge in the inserted member value.
752  if (It != TrackedMultipleRetVals.end())
753    mergeInValue(It->second, F, getValueState(Val));
754
755  // Mark the aggregate result of the IVI overdefined; any tracking that we do
756  // will be done on the individual member values.
757  markOverdefined(&IVI);
758}
759
760void SCCPSolver::visitSelectInst(SelectInst &I) {
761  LatticeVal &CondValue = getValueState(I.getCondition());
762  if (CondValue.isUndefined())
763    return;
764  if (CondValue.isConstant()) {
765    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
766      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
767                                                          : I.getFalseValue()));
768      return;
769    }
770  }
771
772  // Otherwise, the condition is overdefined or a constant we can't evaluate.
773  // See if we can produce something better than overdefined based on the T/F
774  // value.
775  LatticeVal &TVal = getValueState(I.getTrueValue());
776  LatticeVal &FVal = getValueState(I.getFalseValue());
777
778  // select ?, C, C -> C.
779  if (TVal.isConstant() && FVal.isConstant() &&
780      TVal.getConstant() == FVal.getConstant()) {
781    markConstant(&I, FVal.getConstant());
782    return;
783  }
784
785  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
786    mergeInValue(&I, FVal);
787  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
788    mergeInValue(&I, TVal);
789  } else {
790    markOverdefined(&I);
791  }
792}
793
794// Handle BinaryOperators and Shift Instructions...
795void SCCPSolver::visitBinaryOperator(Instruction &I) {
796  LatticeVal &IV = ValueState[&I];
797  if (IV.isOverdefined()) return;
798
799  LatticeVal &V1State = getValueState(I.getOperand(0));
800  LatticeVal &V2State = getValueState(I.getOperand(1));
801
802  if (V1State.isOverdefined() || V2State.isOverdefined()) {
803    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
804    // operand is overdefined.
805    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
806      LatticeVal *NonOverdefVal = 0;
807      if (!V1State.isOverdefined()) {
808        NonOverdefVal = &V1State;
809      } else if (!V2State.isOverdefined()) {
810        NonOverdefVal = &V2State;
811      }
812
813      if (NonOverdefVal) {
814        if (NonOverdefVal->isUndefined()) {
815          // Could annihilate value.
816          if (I.getOpcode() == Instruction::And)
817            markConstant(IV, &I, Constant::getNullValue(I.getType()));
818          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
819            markConstant(IV, &I, Constant::getAllOnesValue(PT));
820          else
821            markConstant(IV, &I,
822                         Constant::getAllOnesValue(I.getType()));
823          return;
824        } else {
825          if (I.getOpcode() == Instruction::And) {
826            if (NonOverdefVal->getConstant()->isNullValue()) {
827              markConstant(IV, &I, NonOverdefVal->getConstant());
828              return;      // X and 0 = 0
829            }
830          } else {
831            if (ConstantInt *CI =
832                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
833              if (CI->isAllOnesValue()) {
834                markConstant(IV, &I, NonOverdefVal->getConstant());
835                return;    // X or -1 = -1
836              }
837          }
838        }
839      }
840    }
841
842
843    // If both operands are PHI nodes, it is possible that this instruction has
844    // a constant value, despite the fact that the PHI node doesn't.  Check for
845    // this condition now.
846    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
847      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
848        if (PN1->getParent() == PN2->getParent()) {
849          // Since the two PHI nodes are in the same basic block, they must have
850          // entries for the same predecessors.  Walk the predecessor list, and
851          // if all of the incoming values are constants, and the result of
852          // evaluating this expression with all incoming value pairs is the
853          // same, then this expression is a constant even though the PHI node
854          // is not a constant!
855          LatticeVal Result;
856          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
857            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
858            BasicBlock *InBlock = PN1->getIncomingBlock(i);
859            LatticeVal &In2 =
860              getValueState(PN2->getIncomingValueForBlock(InBlock));
861
862            if (In1.isOverdefined() || In2.isOverdefined()) {
863              Result.markOverdefined();
864              break;  // Cannot fold this operation over the PHI nodes!
865            } else if (In1.isConstant() && In2.isConstant()) {
866              Constant *V =
867                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
868                                              In2.getConstant());
869              if (Result.isUndefined())
870                Result.markConstant(V);
871              else if (Result.isConstant() && Result.getConstant() != V) {
872                Result.markOverdefined();
873                break;
874              }
875            }
876          }
877
878          // If we found a constant value here, then we know the instruction is
879          // constant despite the fact that the PHI nodes are overdefined.
880          if (Result.isConstant()) {
881            markConstant(IV, &I, Result.getConstant());
882            // Remember that this instruction is virtually using the PHI node
883            // operands.
884            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
885            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
886            return;
887          } else if (Result.isUndefined()) {
888            return;
889          }
890
891          // Okay, this really is overdefined now.  Since we might have
892          // speculatively thought that this was not overdefined before, and
893          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
894          // make sure to clean out any entries that we put there, for
895          // efficiency.
896          std::multimap<PHINode*, Instruction*>::iterator It, E;
897          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
898          while (It != E) {
899            if (It->second == &I) {
900              UsersOfOverdefinedPHIs.erase(It++);
901            } else
902              ++It;
903          }
904          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
905          while (It != E) {
906            if (It->second == &I) {
907              UsersOfOverdefinedPHIs.erase(It++);
908            } else
909              ++It;
910          }
911        }
912
913    markOverdefined(IV, &I);
914  } else if (V1State.isConstant() && V2State.isConstant()) {
915    markConstant(IV, &I,
916                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
917                                           V2State.getConstant()));
918  }
919}
920
921// Handle ICmpInst instruction...
922void SCCPSolver::visitCmpInst(CmpInst &I) {
923  LatticeVal &IV = ValueState[&I];
924  if (IV.isOverdefined()) return;
925
926  LatticeVal &V1State = getValueState(I.getOperand(0));
927  LatticeVal &V2State = getValueState(I.getOperand(1));
928
929  if (V1State.isOverdefined() || V2State.isOverdefined()) {
930    // If both operands are PHI nodes, it is possible that this instruction has
931    // a constant value, despite the fact that the PHI node doesn't.  Check for
932    // this condition now.
933    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
934      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
935        if (PN1->getParent() == PN2->getParent()) {
936          // Since the two PHI nodes are in the same basic block, they must have
937          // entries for the same predecessors.  Walk the predecessor list, and
938          // if all of the incoming values are constants, and the result of
939          // evaluating this expression with all incoming value pairs is the
940          // same, then this expression is a constant even though the PHI node
941          // is not a constant!
942          LatticeVal Result;
943          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
944            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
945            BasicBlock *InBlock = PN1->getIncomingBlock(i);
946            LatticeVal &In2 =
947              getValueState(PN2->getIncomingValueForBlock(InBlock));
948
949            if (In1.isOverdefined() || In2.isOverdefined()) {
950              Result.markOverdefined();
951              break;  // Cannot fold this operation over the PHI nodes!
952            } else if (In1.isConstant() && In2.isConstant()) {
953              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
954                                                     In1.getConstant(),
955                                                     In2.getConstant());
956              if (Result.isUndefined())
957                Result.markConstant(V);
958              else if (Result.isConstant() && Result.getConstant() != V) {
959                Result.markOverdefined();
960                break;
961              }
962            }
963          }
964
965          // If we found a constant value here, then we know the instruction is
966          // constant despite the fact that the PHI nodes are overdefined.
967          if (Result.isConstant()) {
968            markConstant(IV, &I, Result.getConstant());
969            // Remember that this instruction is virtually using the PHI node
970            // operands.
971            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
972            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
973            return;
974          } else if (Result.isUndefined()) {
975            return;
976          }
977
978          // Okay, this really is overdefined now.  Since we might have
979          // speculatively thought that this was not overdefined before, and
980          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
981          // make sure to clean out any entries that we put there, for
982          // efficiency.
983          std::multimap<PHINode*, Instruction*>::iterator It, E;
984          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
985          while (It != E) {
986            if (It->second == &I) {
987              UsersOfOverdefinedPHIs.erase(It++);
988            } else
989              ++It;
990          }
991          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
992          while (It != E) {
993            if (It->second == &I) {
994              UsersOfOverdefinedPHIs.erase(It++);
995            } else
996              ++It;
997          }
998        }
999
1000    markOverdefined(IV, &I);
1001  } else if (V1State.isConstant() && V2State.isConstant()) {
1002    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1003                                                  V1State.getConstant(),
1004                                                  V2State.getConstant()));
1005  }
1006}
1007
1008void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1009  // FIXME : SCCP does not handle vectors properly.
1010  markOverdefined(&I);
1011  return;
1012
1013#if 0
1014  LatticeVal &ValState = getValueState(I.getOperand(0));
1015  LatticeVal &IdxState = getValueState(I.getOperand(1));
1016
1017  if (ValState.isOverdefined() || IdxState.isOverdefined())
1018    markOverdefined(&I);
1019  else if(ValState.isConstant() && IdxState.isConstant())
1020    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1021                                                     IdxState.getConstant()));
1022#endif
1023}
1024
1025void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1026  // FIXME : SCCP does not handle vectors properly.
1027  markOverdefined(&I);
1028  return;
1029#if 0
1030  LatticeVal &ValState = getValueState(I.getOperand(0));
1031  LatticeVal &EltState = getValueState(I.getOperand(1));
1032  LatticeVal &IdxState = getValueState(I.getOperand(2));
1033
1034  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1035      IdxState.isOverdefined())
1036    markOverdefined(&I);
1037  else if(ValState.isConstant() && EltState.isConstant() &&
1038          IdxState.isConstant())
1039    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1040                                                    EltState.getConstant(),
1041                                                    IdxState.getConstant()));
1042  else if (ValState.isUndefined() && EltState.isConstant() &&
1043           IdxState.isConstant())
1044    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1045                                                   EltState.getConstant(),
1046                                                   IdxState.getConstant()));
1047#endif
1048}
1049
1050void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1051  // FIXME : SCCP does not handle vectors properly.
1052  markOverdefined(&I);
1053  return;
1054#if 0
1055  LatticeVal &V1State   = getValueState(I.getOperand(0));
1056  LatticeVal &V2State   = getValueState(I.getOperand(1));
1057  LatticeVal &MaskState = getValueState(I.getOperand(2));
1058
1059  if (MaskState.isUndefined() ||
1060      (V1State.isUndefined() && V2State.isUndefined()))
1061    return;  // Undefined output if mask or both inputs undefined.
1062
1063  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1064      MaskState.isOverdefined()) {
1065    markOverdefined(&I);
1066  } else {
1067    // A mix of constant/undef inputs.
1068    Constant *V1 = V1State.isConstant() ?
1069        V1State.getConstant() : UndefValue::get(I.getType());
1070    Constant *V2 = V2State.isConstant() ?
1071        V2State.getConstant() : UndefValue::get(I.getType());
1072    Constant *Mask = MaskState.isConstant() ?
1073      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1074    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1075  }
1076#endif
1077}
1078
1079// Handle getelementptr instructions... if all operands are constants then we
1080// can turn this into a getelementptr ConstantExpr.
1081//
1082void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1083  LatticeVal &IV = ValueState[&I];
1084  if (IV.isOverdefined()) return;
1085
1086  SmallVector<Constant*, 8> Operands;
1087  Operands.reserve(I.getNumOperands());
1088
1089  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1090    LatticeVal &State = getValueState(I.getOperand(i));
1091    if (State.isUndefined())
1092      return;  // Operands are not resolved yet...
1093    else if (State.isOverdefined()) {
1094      markOverdefined(IV, &I);
1095      return;
1096    }
1097    assert(State.isConstant() && "Unknown state!");
1098    Operands.push_back(State.getConstant());
1099  }
1100
1101  Constant *Ptr = Operands[0];
1102  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1103
1104  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1105                                                      Operands.size()));
1106}
1107
1108void SCCPSolver::visitStoreInst(Instruction &SI) {
1109  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1110    return;
1111  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1112  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1113  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1114
1115  // Get the value we are storing into the global.
1116  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1117
1118  mergeInValue(I->second, GV, PtrVal);
1119  if (I->second.isOverdefined())
1120    TrackedGlobals.erase(I);      // No need to keep tracking this!
1121}
1122
1123
1124// Handle load instructions.  If the operand is a constant pointer to a constant
1125// global, we can replace the load with the loaded constant value!
1126void SCCPSolver::visitLoadInst(LoadInst &I) {
1127  LatticeVal &IV = ValueState[&I];
1128  if (IV.isOverdefined()) return;
1129
1130  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1131  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1132  if (PtrVal.isConstant() && !I.isVolatile()) {
1133    Value *Ptr = PtrVal.getConstant();
1134    // TODO: Consider a target hook for valid address spaces for this xform.
1135    if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1136      // load null -> null
1137      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1138      return;
1139    }
1140
1141    // Transform load (constant global) into the value loaded.
1142    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1143      if (GV->isConstant()) {
1144        if (GV->hasDefinitiveInitializer()) {
1145          markConstant(IV, &I, GV->getInitializer());
1146          return;
1147        }
1148      } else if (!TrackedGlobals.empty()) {
1149        // If we are tracking this global, merge in the known value for it.
1150        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1151          TrackedGlobals.find(GV);
1152        if (It != TrackedGlobals.end()) {
1153          mergeInValue(IV, &I, It->second);
1154          return;
1155        }
1156      }
1157    }
1158
1159    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1160    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1161      if (CE->getOpcode() == Instruction::GetElementPtr)
1162    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1163      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1164        if (Constant *V =
1165             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1166                                                    *Context)) {
1167          markConstant(IV, &I, V);
1168          return;
1169        }
1170  }
1171
1172  // Otherwise we cannot say for certain what value this load will produce.
1173  // Bail out.
1174  markOverdefined(IV, &I);
1175}
1176
1177void SCCPSolver::visitCallSite(CallSite CS) {
1178  Function *F = CS.getCalledFunction();
1179  Instruction *I = CS.getInstruction();
1180
1181  // The common case is that we aren't tracking the callee, either because we
1182  // are not doing interprocedural analysis or the callee is indirect, or is
1183  // external.  Handle these cases first.
1184  if (F == 0 || !F->hasLocalLinkage()) {
1185CallOverdefined:
1186    // Void return and not tracking callee, just bail.
1187    if (I->getType()->isVoidTy()) return;
1188
1189    // Otherwise, if we have a single return value case, and if the function is
1190    // a declaration, maybe we can constant fold it.
1191    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1192        canConstantFoldCallTo(F)) {
1193
1194      SmallVector<Constant*, 8> Operands;
1195      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1196           AI != E; ++AI) {
1197        LatticeVal &State = getValueState(*AI);
1198        if (State.isUndefined())
1199          return;  // Operands are not resolved yet.
1200        else if (State.isOverdefined()) {
1201          markOverdefined(I);
1202          return;
1203        }
1204        assert(State.isConstant() && "Unknown state!");
1205        Operands.push_back(State.getConstant());
1206      }
1207
1208      // If we can constant fold this, mark the result of the call as a
1209      // constant.
1210      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1211        markConstant(I, C);
1212        return;
1213      }
1214    }
1215
1216    // Otherwise, we don't know anything about this call, mark it overdefined.
1217    markOverdefined(I);
1218    return;
1219  }
1220
1221  // If this is a single/zero retval case, see if we're tracking the function.
1222  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1223  if (TFRVI != TrackedRetVals.end()) {
1224    // If so, propagate the return value of the callee into this call result.
1225    mergeInValue(I, TFRVI->second);
1226  } else if (isa<StructType>(I->getType())) {
1227    // Check to see if we're tracking this callee, if not, handle it in the
1228    // common path above.
1229    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1230    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1231    if (TMRVI == TrackedMultipleRetVals.end())
1232      goto CallOverdefined;
1233
1234    // If we are tracking this callee, propagate the return values of the call
1235    // into this call site.  We do this by walking all the uses. Single-index
1236    // ExtractValueInst uses can be tracked; anything more complicated is
1237    // currently handled conservatively.
1238    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1239         UI != E; ++UI) {
1240      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1241        if (EVI->getNumIndices() == 1) {
1242          mergeInValue(EVI,
1243                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1244          continue;
1245        }
1246      }
1247      // The aggregate value is used in a way not handled here. Assume nothing.
1248      markOverdefined(*UI);
1249    }
1250  } else {
1251    // Otherwise we're not tracking this callee, so handle it in the
1252    // common path above.
1253    goto CallOverdefined;
1254  }
1255
1256  // Finally, if this is the first call to the function hit, mark its entry
1257  // block executable.
1258  if (!BBExecutable.count(F->begin()))
1259    MarkBlockExecutable(F->begin());
1260
1261  // Propagate information from this call site into the callee.
1262  CallSite::arg_iterator CAI = CS.arg_begin();
1263  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1264       AI != E; ++AI, ++CAI) {
1265    LatticeVal &IV = ValueState[AI];
1266    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1267      IV.markOverdefined();
1268      continue;
1269    }
1270    if (!IV.isOverdefined())
1271      mergeInValue(IV, AI, getValueState(*CAI));
1272  }
1273}
1274
1275
1276void SCCPSolver::Solve() {
1277  // Process the work lists until they are empty!
1278  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1279         !OverdefinedInstWorkList.empty()) {
1280    // Process the instruction work list...
1281    while (!OverdefinedInstWorkList.empty()) {
1282      Value *I = OverdefinedInstWorkList.back();
1283      OverdefinedInstWorkList.pop_back();
1284
1285      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1286
1287      // "I" got into the work list because it either made the transition from
1288      // bottom to constant
1289      //
1290      // Anything on this worklist that is overdefined need not be visited
1291      // since all of its users will have already been marked as overdefined
1292      // Update all of the users of this instruction's value...
1293      //
1294      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1295           UI != E; ++UI)
1296        OperandChangedState(*UI);
1297    }
1298    // Process the instruction work list...
1299    while (!InstWorkList.empty()) {
1300      Value *I = InstWorkList.back();
1301      InstWorkList.pop_back();
1302
1303      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1304
1305      // "I" got into the work list because it either made the transition from
1306      // bottom to constant
1307      //
1308      // Anything on this worklist that is overdefined need not be visited
1309      // since all of its users will have already been marked as overdefined.
1310      // Update all of the users of this instruction's value...
1311      //
1312      if (!getValueState(I).isOverdefined())
1313        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1314             UI != E; ++UI)
1315          OperandChangedState(*UI);
1316    }
1317
1318    // Process the basic block work list...
1319    while (!BBWorkList.empty()) {
1320      BasicBlock *BB = BBWorkList.back();
1321      BBWorkList.pop_back();
1322
1323      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1324
1325      // Notify all instructions in this basic block that they are newly
1326      // executable.
1327      visit(BB);
1328    }
1329  }
1330}
1331
1332/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1333/// that branches on undef values cannot reach any of their successors.
1334/// However, this is not a safe assumption.  After we solve dataflow, this
1335/// method should be use to handle this.  If this returns true, the solver
1336/// should be rerun.
1337///
1338/// This method handles this by finding an unresolved branch and marking it one
1339/// of the edges from the block as being feasible, even though the condition
1340/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1341/// CFG and only slightly pessimizes the analysis results (by marking one,
1342/// potentially infeasible, edge feasible).  This cannot usefully modify the
1343/// constraints on the condition of the branch, as that would impact other users
1344/// of the value.
1345///
1346/// This scan also checks for values that use undefs, whose results are actually
1347/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1348/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1349/// even if X isn't defined.
1350bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1351  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1352    if (!BBExecutable.count(BB))
1353      continue;
1354
1355    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1356      // Look for instructions which produce undef values.
1357      if (I->getType()->isVoidTy()) continue;
1358
1359      LatticeVal &LV = getValueState(I);
1360      if (!LV.isUndefined()) continue;
1361
1362      // Get the lattice values of the first two operands for use below.
1363      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1364      LatticeVal Op1LV;
1365      if (I->getNumOperands() == 2) {
1366        // If this is a two-operand instruction, and if both operands are
1367        // undefs, the result stays undef.
1368        Op1LV = getValueState(I->getOperand(1));
1369        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1370          continue;
1371      }
1372
1373      // If this is an instructions whose result is defined even if the input is
1374      // not fully defined, propagate the information.
1375      const Type *ITy = I->getType();
1376      switch (I->getOpcode()) {
1377      default: break;          // Leave the instruction as an undef.
1378      case Instruction::ZExt:
1379        // After a zero extend, we know the top part is zero.  SExt doesn't have
1380        // to be handled here, because we don't know whether the top part is 1's
1381        // or 0's.
1382        assert(Op0LV.isUndefined());
1383        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1384        return true;
1385      case Instruction::Mul:
1386      case Instruction::And:
1387        // undef * X -> 0.   X could be zero.
1388        // undef & X -> 0.   X could be zero.
1389        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1390        return true;
1391
1392      case Instruction::Or:
1393        // undef | X -> -1.   X could be -1.
1394        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1395          markForcedConstant(LV, I,
1396                             Constant::getAllOnesValue(PTy));
1397        else
1398          markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1399        return true;
1400
1401      case Instruction::SDiv:
1402      case Instruction::UDiv:
1403      case Instruction::SRem:
1404      case Instruction::URem:
1405        // X / undef -> undef.  No change.
1406        // X % undef -> undef.  No change.
1407        if (Op1LV.isUndefined()) break;
1408
1409        // undef / X -> 0.   X could be maxint.
1410        // undef % X -> 0.   X could be 1.
1411        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1412        return true;
1413
1414      case Instruction::AShr:
1415        // undef >>s X -> undef.  No change.
1416        if (Op0LV.isUndefined()) break;
1417
1418        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1419        if (Op0LV.isConstant())
1420          markForcedConstant(LV, I, Op0LV.getConstant());
1421        else
1422          markOverdefined(LV, I);
1423        return true;
1424      case Instruction::LShr:
1425      case Instruction::Shl:
1426        // undef >> X -> undef.  No change.
1427        // undef << X -> undef.  No change.
1428        if (Op0LV.isUndefined()) break;
1429
1430        // X >> undef -> 0.  X could be 0.
1431        // X << undef -> 0.  X could be 0.
1432        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1433        return true;
1434      case Instruction::Select:
1435        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1436        if (Op0LV.isUndefined()) {
1437          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1438            Op1LV = getValueState(I->getOperand(2));
1439        } else if (Op1LV.isUndefined()) {
1440          // c ? undef : undef -> undef.  No change.
1441          Op1LV = getValueState(I->getOperand(2));
1442          if (Op1LV.isUndefined())
1443            break;
1444          // Otherwise, c ? undef : x -> x.
1445        } else {
1446          // Leave Op1LV as Operand(1)'s LatticeValue.
1447        }
1448
1449        if (Op1LV.isConstant())
1450          markForcedConstant(LV, I, Op1LV.getConstant());
1451        else
1452          markOverdefined(LV, I);
1453        return true;
1454      case Instruction::Call:
1455        // If a call has an undef result, it is because it is constant foldable
1456        // but one of the inputs was undef.  Just force the result to
1457        // overdefined.
1458        markOverdefined(LV, I);
1459        return true;
1460      }
1461    }
1462
1463    TerminatorInst *TI = BB->getTerminator();
1464    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1465      if (!BI->isConditional()) continue;
1466      if (!getValueState(BI->getCondition()).isUndefined())
1467        continue;
1468    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1469      if (SI->getNumSuccessors()<2)   // no cases
1470        continue;
1471      if (!getValueState(SI->getCondition()).isUndefined())
1472        continue;
1473    } else {
1474      continue;
1475    }
1476
1477    // If the edge to the second successor isn't thought to be feasible yet,
1478    // mark it so now.  We pick the second one so that this goes to some
1479    // enumerated value in a switch instead of going to the default destination.
1480    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1481      continue;
1482
1483    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1484    // and return.  This will make other blocks reachable, which will allow new
1485    // values to be discovered and existing ones to be moved in the lattice.
1486    markEdgeExecutable(BB, TI->getSuccessor(1));
1487
1488    // This must be a conditional branch of switch on undef.  At this point,
1489    // force the old terminator to branch to the first successor.  This is
1490    // required because we are now influencing the dataflow of the function with
1491    // the assumption that this edge is taken.  If we leave the branch condition
1492    // as undef, then further analysis could think the undef went another way
1493    // leading to an inconsistent set of conclusions.
1494    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1495      BI->setCondition(ConstantInt::getFalse(*Context));
1496    } else {
1497      SwitchInst *SI = cast<SwitchInst>(TI);
1498      SI->setCondition(SI->getCaseValue(1));
1499    }
1500
1501    return true;
1502  }
1503
1504  return false;
1505}
1506
1507
1508namespace {
1509  //===--------------------------------------------------------------------===//
1510  //
1511  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1512  /// Sparse Conditional Constant Propagator.
1513  ///
1514  struct SCCP : public FunctionPass {
1515    static char ID; // Pass identification, replacement for typeid
1516    SCCP() : FunctionPass(&ID) {}
1517
1518    // runOnFunction - Run the Sparse Conditional Constant Propagation
1519    // algorithm, and return true if the function was modified.
1520    //
1521    bool runOnFunction(Function &F);
1522
1523    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1524      AU.setPreservesCFG();
1525    }
1526  };
1527} // end anonymous namespace
1528
1529char SCCP::ID = 0;
1530static RegisterPass<SCCP>
1531X("sccp", "Sparse Conditional Constant Propagation");
1532
1533// createSCCPPass - This is the public interface to this file...
1534FunctionPass *llvm::createSCCPPass() {
1535  return new SCCP();
1536}
1537
1538
1539// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1540// and return true if the function was modified.
1541//
1542bool SCCP::runOnFunction(Function &F) {
1543  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1544  SCCPSolver Solver;
1545  Solver.setContext(&F.getContext());
1546
1547  // Mark the first block of the function as being executable.
1548  Solver.MarkBlockExecutable(F.begin());
1549
1550  // Mark all arguments to the function as being overdefined.
1551  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1552    Solver.markOverdefined(AI);
1553
1554  // Solve for constants.
1555  bool ResolvedUndefs = true;
1556  while (ResolvedUndefs) {
1557    Solver.Solve();
1558    DEBUG(errs() << "RESOLVING UNDEFs\n");
1559    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1560  }
1561
1562  bool MadeChanges = false;
1563
1564  // If we decided that there are basic blocks that are dead in this function,
1565  // delete their contents now.  Note that we cannot actually delete the blocks,
1566  // as we cannot modify the CFG of the function.
1567  //
1568  SmallVector<Instruction*, 512> Insts;
1569  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1570
1571  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1572    if (!Solver.isBlockExecutable(BB)) {
1573      DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1574      ++NumDeadBlocks;
1575
1576      // Delete the instructions backwards, as it has a reduced likelihood of
1577      // having to update as many def-use and use-def chains.
1578      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1579           I != E; ++I)
1580        Insts.push_back(I);
1581      while (!Insts.empty()) {
1582        Instruction *I = Insts.back();
1583        Insts.pop_back();
1584        if (!I->use_empty())
1585          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1586        BB->getInstList().erase(I);
1587        MadeChanges = true;
1588        ++NumInstRemoved;
1589      }
1590    } else {
1591      // Iterate over all of the instructions in a function, replacing them with
1592      // constants if we have found them to be of constant values.
1593      //
1594      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1595        Instruction *Inst = BI++;
1596        if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1597          continue;
1598
1599        LatticeVal &IV = Values[Inst];
1600        if (!IV.isConstant() && !IV.isUndefined())
1601          continue;
1602
1603        Constant *Const = IV.isConstant()
1604          ? IV.getConstant() : UndefValue::get(Inst->getType());
1605        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1606
1607        // Replaces all of the uses of a variable with uses of the constant.
1608        Inst->replaceAllUsesWith(Const);
1609
1610        // Delete the instruction.
1611        Inst->eraseFromParent();
1612
1613        // Hey, we just changed something!
1614        MadeChanges = true;
1615        ++NumInstRemoved;
1616      }
1617    }
1618
1619  return MadeChanges;
1620}
1621
1622namespace {
1623  //===--------------------------------------------------------------------===//
1624  //
1625  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1626  /// Constant Propagation.
1627  ///
1628  struct IPSCCP : public ModulePass {
1629    static char ID;
1630    IPSCCP() : ModulePass(&ID) {}
1631    bool runOnModule(Module &M);
1632  };
1633} // end anonymous namespace
1634
1635char IPSCCP::ID = 0;
1636static RegisterPass<IPSCCP>
1637Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1638
1639// createIPSCCPPass - This is the public interface to this file...
1640ModulePass *llvm::createIPSCCPPass() {
1641  return new IPSCCP();
1642}
1643
1644
1645static bool AddressIsTaken(GlobalValue *GV) {
1646  // Delete any dead constantexpr klingons.
1647  GV->removeDeadConstantUsers();
1648
1649  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1650       UI != E; ++UI)
1651    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1652      if (SI->getOperand(0) == GV || SI->isVolatile())
1653        return true;  // Storing addr of GV.
1654    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1655      // Make sure we are calling the function, not passing the address.
1656      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1657      if (CS.hasArgument(GV))
1658        return true;
1659    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1660      if (LI->isVolatile())
1661        return true;
1662    } else {
1663      return true;
1664    }
1665  return false;
1666}
1667
1668bool IPSCCP::runOnModule(Module &M) {
1669  LLVMContext *Context = &M.getContext();
1670
1671  SCCPSolver Solver;
1672  Solver.setContext(Context);
1673
1674  // Loop over all functions, marking arguments to those with their addresses
1675  // taken or that are external as overdefined.
1676  //
1677  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1678    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1679      if (!F->isDeclaration())
1680        Solver.MarkBlockExecutable(F->begin());
1681      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1682           AI != E; ++AI)
1683        Solver.markOverdefined(AI);
1684    } else {
1685      Solver.AddTrackedFunction(F);
1686    }
1687
1688  // Loop over global variables.  We inform the solver about any internal global
1689  // variables that do not have their 'addresses taken'.  If they don't have
1690  // their addresses taken, we can propagate constants through them.
1691  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1692       G != E; ++G)
1693    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1694      Solver.TrackValueOfGlobalVariable(G);
1695
1696  // Solve for constants.
1697  bool ResolvedUndefs = true;
1698  while (ResolvedUndefs) {
1699    Solver.Solve();
1700
1701    DEBUG(errs() << "RESOLVING UNDEFS\n");
1702    ResolvedUndefs = false;
1703    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1704      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1705  }
1706
1707  bool MadeChanges = false;
1708
1709  // Iterate over all of the instructions in the module, replacing them with
1710  // constants if we have found them to be of constant values.
1711  //
1712  SmallVector<Instruction*, 512> Insts;
1713  SmallVector<BasicBlock*, 512> BlocksToErase;
1714  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1715
1716  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1717    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1718         AI != E; ++AI)
1719      if (!AI->use_empty()) {
1720        LatticeVal &IV = Values[AI];
1721        if (IV.isConstant() || IV.isUndefined()) {
1722          Constant *CST = IV.isConstant() ?
1723            IV.getConstant() : UndefValue::get(AI->getType());
1724          DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1725
1726          // Replaces all of the uses of a variable with uses of the
1727          // constant.
1728          AI->replaceAllUsesWith(CST);
1729          ++IPNumArgsElimed;
1730        }
1731      }
1732
1733    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1734      if (!Solver.isBlockExecutable(BB)) {
1735        DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1736        ++IPNumDeadBlocks;
1737
1738        // Delete the instructions backwards, as it has a reduced likelihood of
1739        // having to update as many def-use and use-def chains.
1740        TerminatorInst *TI = BB->getTerminator();
1741        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1742          Insts.push_back(I);
1743
1744        while (!Insts.empty()) {
1745          Instruction *I = Insts.back();
1746          Insts.pop_back();
1747          if (!I->use_empty())
1748            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1749          BB->getInstList().erase(I);
1750          MadeChanges = true;
1751          ++IPNumInstRemoved;
1752        }
1753
1754        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1755          BasicBlock *Succ = TI->getSuccessor(i);
1756          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1757            TI->getSuccessor(i)->removePredecessor(BB);
1758        }
1759        if (!TI->use_empty())
1760          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1761        BB->getInstList().erase(TI);
1762
1763        if (&*BB != &F->front())
1764          BlocksToErase.push_back(BB);
1765        else
1766          new UnreachableInst(M.getContext(), BB);
1767
1768      } else {
1769        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1770          Instruction *Inst = BI++;
1771          if (Inst->getType()->isVoidTy())
1772            continue;
1773
1774          LatticeVal &IV = Values[Inst];
1775          if (!IV.isConstant() && !IV.isUndefined())
1776            continue;
1777
1778          Constant *Const = IV.isConstant()
1779            ? IV.getConstant() : UndefValue::get(Inst->getType());
1780          DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1781
1782          // Replaces all of the uses of a variable with uses of the
1783          // constant.
1784          Inst->replaceAllUsesWith(Const);
1785
1786          // Delete the instruction.
1787          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1788            Inst->eraseFromParent();
1789
1790          // Hey, we just changed something!
1791          MadeChanges = true;
1792          ++IPNumInstRemoved;
1793        }
1794      }
1795
1796    // Now that all instructions in the function are constant folded, erase dead
1797    // blocks, because we can now use ConstantFoldTerminator to get rid of
1798    // in-edges.
1799    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1800      // If there are any PHI nodes in this successor, drop entries for BB now.
1801      BasicBlock *DeadBB = BlocksToErase[i];
1802      while (!DeadBB->use_empty()) {
1803        Instruction *I = cast<Instruction>(DeadBB->use_back());
1804        bool Folded = ConstantFoldTerminator(I->getParent());
1805        if (!Folded) {
1806          // The constant folder may not have been able to fold the terminator
1807          // if this is a branch or switch on undef.  Fold it manually as a
1808          // branch to the first successor.
1809#ifndef NDEBUG
1810          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1811            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1812                   "Branch should be foldable!");
1813          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1814            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1815          } else {
1816            llvm_unreachable("Didn't fold away reference to block!");
1817          }
1818#endif
1819
1820          // Make this an uncond branch to the first successor.
1821          TerminatorInst *TI = I->getParent()->getTerminator();
1822          BranchInst::Create(TI->getSuccessor(0), TI);
1823
1824          // Remove entries in successor phi nodes to remove edges.
1825          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1826            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1827
1828          // Remove the old terminator.
1829          TI->eraseFromParent();
1830        }
1831      }
1832
1833      // Finally, delete the basic block.
1834      F->getBasicBlockList().erase(DeadBB);
1835    }
1836    BlocksToErase.clear();
1837  }
1838
1839  // If we inferred constant or undef return values for a function, we replaced
1840  // all call uses with the inferred value.  This means we don't need to bother
1841  // actually returning anything from the function.  Replace all return
1842  // instructions with return undef.
1843  // TODO: Process multiple value ret instructions also.
1844  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1845  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1846         E = RV.end(); I != E; ++I)
1847    if (!I->second.isOverdefined() &&
1848        !I->first->getReturnType()->isVoidTy()) {
1849      Function *F = I->first;
1850      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1851        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1852          if (!isa<UndefValue>(RI->getOperand(0)))
1853            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1854    }
1855
1856  // If we infered constant or undef values for globals variables, we can delete
1857  // the global and any stores that remain to it.
1858  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1859  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1860         E = TG.end(); I != E; ++I) {
1861    GlobalVariable *GV = I->first;
1862    assert(!I->second.isOverdefined() &&
1863           "Overdefined values should have been taken out of the map!");
1864    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1865    while (!GV->use_empty()) {
1866      StoreInst *SI = cast<StoreInst>(GV->use_back());
1867      SI->eraseFromParent();
1868    }
1869    M.getGlobalList().erase(GV);
1870    ++IPNumGlobalConst;
1871  }
1872
1873  return MadeChanges;
1874}
1875