SROA.cpp revision 2c39b15073db81d93bb629303915b7d7e5d088dc
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
33#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/DataLayout.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted,         "Number of instructions deleted");
65STATISTIC(NumVectorized,      "Number of vectorized aggregates");
66
67/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
72namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
79/// structure can capture the relevant information needed both to decide about
80/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83  /// \brief A common base class for representing a half-open byte range.
84  struct ByteRange {
85    /// \brief The beginning offset of the range.
86    uint64_t BeginOffset;
87
88    /// \brief The ending offset, not included in the range.
89    uint64_t EndOffset;
90
91    ByteRange() : BeginOffset(), EndOffset() {}
92    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95    /// \brief Support for ordering ranges.
96    ///
97    /// This provides an ordering over ranges such that start offsets are
98    /// always increasing, and within equal start offsets, the end offsets are
99    /// decreasing. Thus the spanning range comes first in a cluster with the
100    /// same start position.
101    bool operator<(const ByteRange &RHS) const {
102      if (BeginOffset < RHS.BeginOffset) return true;
103      if (BeginOffset > RHS.BeginOffset) return false;
104      if (EndOffset > RHS.EndOffset) return true;
105      return false;
106    }
107
108    /// \brief Support comparison with a single offset to allow binary searches.
109    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110      return LHS.BeginOffset < RHSOffset;
111    }
112
113    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114                                                const ByteRange &RHS) {
115      return LHSOffset < RHS.BeginOffset;
116    }
117
118    bool operator==(const ByteRange &RHS) const {
119      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120    }
121    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122  };
123
124  /// \brief A partition of an alloca.
125  ///
126  /// This structure represents a contiguous partition of the alloca. These are
127  /// formed by examining the uses of the alloca. During formation, they may
128  /// overlap but once an AllocaPartitioning is built, the Partitions within it
129  /// are all disjoint.
130  struct Partition : public ByteRange {
131    /// \brief Whether this partition is splittable into smaller partitions.
132    ///
133    /// We flag partitions as splittable when they are formed entirely due to
134    /// accesses by trivially splittable operations such as memset and memcpy.
135    ///
136    /// FIXME: At some point we should consider loads and stores of FCAs to be
137    /// splittable and eagerly split them into scalar values.
138    bool IsSplittable;
139
140    /// \brief Test whether a partition has been marked as dead.
141    bool isDead() const {
142      if (BeginOffset == UINT64_MAX) {
143        assert(EndOffset == UINT64_MAX);
144        return true;
145      }
146      return false;
147    }
148
149    /// \brief Kill a partition.
150    /// This is accomplished by setting both its beginning and end offset to
151    /// the maximum possible value.
152    void kill() {
153      assert(!isDead() && "He's Dead, Jim!");
154      BeginOffset = EndOffset = UINT64_MAX;
155    }
156
157    Partition() : ByteRange(), IsSplittable() {}
158    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
159        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
160  };
161
162  /// \brief A particular use of a partition of the alloca.
163  ///
164  /// This structure is used to associate uses of a partition with it. They
165  /// mark the range of bytes which are referenced by a particular instruction,
166  /// and includes a handle to the user itself and the pointer value in use.
167  /// The bounds of these uses are determined by intersecting the bounds of the
168  /// memory use itself with a particular partition. As a consequence there is
169  /// intentionally overlap between various uses of the same partition.
170  struct PartitionUse : public ByteRange {
171    /// \brief The use in question. Provides access to both user and used value.
172    ///
173    /// Note that this may be null if the partition use is *dead*, that is, it
174    /// should be ignored.
175    Use *U;
176
177    PartitionUse() : ByteRange(), U() {}
178    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
179        : ByteRange(BeginOffset, EndOffset), U(U) {}
180  };
181
182  /// \brief Construct a partitioning of a particular alloca.
183  ///
184  /// Construction does most of the work for partitioning the alloca. This
185  /// performs the necessary walks of users and builds a partitioning from it.
186  AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
187
188  /// \brief Test whether a pointer to the allocation escapes our analysis.
189  ///
190  /// If this is true, the partitioning is never fully built and should be
191  /// ignored.
192  bool isEscaped() const { return PointerEscapingInstr; }
193
194  /// \brief Support for iterating over the partitions.
195  /// @{
196  typedef SmallVectorImpl<Partition>::iterator iterator;
197  iterator begin() { return Partitions.begin(); }
198  iterator end() { return Partitions.end(); }
199
200  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
201  const_iterator begin() const { return Partitions.begin(); }
202  const_iterator end() const { return Partitions.end(); }
203  /// @}
204
205  /// \brief Support for iterating over and manipulating a particular
206  /// partition's uses.
207  ///
208  /// The iteration support provided for uses is more limited, but also
209  /// includes some manipulation routines to support rewriting the uses of
210  /// partitions during SROA.
211  /// @{
212  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
213  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
214  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
215  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
216  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
217
218  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
219  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
220  const_use_iterator use_begin(const_iterator I) const {
221    return Uses[I - begin()].begin();
222  }
223  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
224  const_use_iterator use_end(const_iterator I) const {
225    return Uses[I - begin()].end();
226  }
227
228  unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
229  unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
230  const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
231    return Uses[PIdx][UIdx];
232  }
233  const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
234    return Uses[I - begin()][UIdx];
235  }
236
237  void use_push_back(unsigned Idx, const PartitionUse &PU) {
238    Uses[Idx].push_back(PU);
239  }
240  void use_push_back(const_iterator I, const PartitionUse &PU) {
241    Uses[I - begin()].push_back(PU);
242  }
243  /// @}
244
245  /// \brief Allow iterating the dead users for this alloca.
246  ///
247  /// These are instructions which will never actually use the alloca as they
248  /// are outside the allocated range. They are safe to replace with undef and
249  /// delete.
250  /// @{
251  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
252  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
253  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
254  /// @}
255
256  /// \brief Allow iterating the dead expressions referring to this alloca.
257  ///
258  /// These are operands which have cannot actually be used to refer to the
259  /// alloca as they are outside its range and the user doesn't correct for
260  /// that. These mostly consist of PHI node inputs and the like which we just
261  /// need to replace with undef.
262  /// @{
263  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
264  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
265  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
266  /// @}
267
268  /// \brief MemTransferInst auxiliary data.
269  /// This struct provides some auxiliary data about memory transfer
270  /// intrinsics such as memcpy and memmove. These intrinsics can use two
271  /// different ranges within the same alloca, and provide other challenges to
272  /// correctly represent. We stash extra data to help us untangle this
273  /// after the partitioning is complete.
274  struct MemTransferOffsets {
275    /// The destination begin and end offsets when the destination is within
276    /// this alloca. If the end offset is zero the destination is not within
277    /// this alloca.
278    uint64_t DestBegin, DestEnd;
279
280    /// The source begin and end offsets when the source is within this alloca.
281    /// If the end offset is zero, the source is not within this alloca.
282    uint64_t SourceBegin, SourceEnd;
283
284    /// Flag for whether an alloca is splittable.
285    bool IsSplittable;
286  };
287  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
288    return MemTransferInstData.lookup(&II);
289  }
290
291  /// \brief Map from a PHI or select operand back to a partition.
292  ///
293  /// When manipulating PHI nodes or selects, they can use more than one
294  /// partition of an alloca. We store a special mapping to allow finding the
295  /// partition referenced by each of these operands, if any.
296  iterator findPartitionForPHIOrSelectOperand(Use *U) {
297    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
298      = PHIOrSelectOpMap.find(U);
299    if (MapIt == PHIOrSelectOpMap.end())
300      return end();
301
302    return begin() + MapIt->second.first;
303  }
304
305  /// \brief Map from a PHI or select operand back to the specific use of
306  /// a partition.
307  ///
308  /// Similar to mapping these operands back to the partitions, this maps
309  /// directly to the use structure of that partition.
310  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
311    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
312      = PHIOrSelectOpMap.find(U);
313    assert(MapIt != PHIOrSelectOpMap.end());
314    return Uses[MapIt->second.first].begin() + MapIt->second.second;
315  }
316
317  /// \brief Compute a common type among the uses of a particular partition.
318  ///
319  /// This routines walks all of the uses of a particular partition and tries
320  /// to find a common type between them. Untyped operations such as memset and
321  /// memcpy are ignored.
322  Type *getCommonType(iterator I) const;
323
324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
325  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
326  void printUsers(raw_ostream &OS, const_iterator I,
327                  StringRef Indent = "  ") const;
328  void print(raw_ostream &OS) const;
329  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
330  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
331#endif
332
333private:
334  template <typename DerivedT, typename RetT = void> class BuilderBase;
335  class PartitionBuilder;
336  friend class AllocaPartitioning::PartitionBuilder;
337  class UseBuilder;
338  friend class AllocaPartitioning::UseBuilder;
339
340#ifndef NDEBUG
341  /// \brief Handle to alloca instruction to simplify method interfaces.
342  AllocaInst &AI;
343#endif
344
345  /// \brief The instruction responsible for this alloca having no partitioning.
346  ///
347  /// When an instruction (potentially) escapes the pointer to the alloca, we
348  /// store a pointer to that here and abort trying to partition the alloca.
349  /// This will be null if the alloca is partitioned successfully.
350  Instruction *PointerEscapingInstr;
351
352  /// \brief The partitions of the alloca.
353  ///
354  /// We store a vector of the partitions over the alloca here. This vector is
355  /// sorted by increasing begin offset, and then by decreasing end offset. See
356  /// the Partition inner class for more details. Initially (during
357  /// construction) there are overlaps, but we form a disjoint sequence of
358  /// partitions while finishing construction and a fully constructed object is
359  /// expected to always have this as a disjoint space.
360  SmallVector<Partition, 8> Partitions;
361
362  /// \brief The uses of the partitions.
363  ///
364  /// This is essentially a mapping from each partition to a list of uses of
365  /// that partition. The mapping is done with a Uses vector that has the exact
366  /// same number of entries as the partition vector. Each entry is itself
367  /// a vector of the uses.
368  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
369
370  /// \brief Instructions which will become dead if we rewrite the alloca.
371  ///
372  /// Note that these are not separated by partition. This is because we expect
373  /// a partitioned alloca to be completely rewritten or not rewritten at all.
374  /// If rewritten, all these instructions can simply be removed and replaced
375  /// with undef as they come from outside of the allocated space.
376  SmallVector<Instruction *, 8> DeadUsers;
377
378  /// \brief Operands which will become dead if we rewrite the alloca.
379  ///
380  /// These are operands that in their particular use can be replaced with
381  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
382  /// to PHI nodes and the like. They aren't entirely dead (there might be
383  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
384  /// want to swap this particular input for undef to simplify the use lists of
385  /// the alloca.
386  SmallVector<Use *, 8> DeadOperands;
387
388  /// \brief The underlying storage for auxiliary memcpy and memset info.
389  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
390
391  /// \brief A side datastructure used when building up the partitions and uses.
392  ///
393  /// This mapping is only really used during the initial building of the
394  /// partitioning so that we can retain information about PHI and select nodes
395  /// processed.
396  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
397
398  /// \brief Auxiliary information for particular PHI or select operands.
399  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
400
401  /// \brief A utility routine called from the constructor.
402  ///
403  /// This does what it says on the tin. It is the key of the alloca partition
404  /// splitting and merging. After it is called we have the desired disjoint
405  /// collection of partitions.
406  void splitAndMergePartitions();
407};
408}
409
410template <typename DerivedT, typename RetT>
411class AllocaPartitioning::BuilderBase
412    : public InstVisitor<DerivedT, RetT> {
413public:
414  BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
415      : TD(TD),
416        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
417        P(P) {
418    enqueueUsers(AI, 0);
419  }
420
421protected:
422  const DataLayout &TD;
423  const uint64_t AllocSize;
424  AllocaPartitioning &P;
425
426  SmallPtrSet<Use *, 8> VisitedUses;
427
428  struct OffsetUse {
429    Use *U;
430    int64_t Offset;
431  };
432  SmallVector<OffsetUse, 8> Queue;
433
434  // The active offset and use while visiting.
435  Use *U;
436  int64_t Offset;
437
438  void enqueueUsers(Instruction &I, int64_t UserOffset) {
439    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
440         UI != UE; ++UI) {
441      if (VisitedUses.insert(&UI.getUse())) {
442        OffsetUse OU = { &UI.getUse(), UserOffset };
443        Queue.push_back(OU);
444      }
445    }
446  }
447
448  bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
449    GEPOffset = Offset;
450    unsigned int AS = GEPI.getPointerAddressSpace();
451    for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
452         GTI != GTE; ++GTI) {
453      ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
454      if (!OpC)
455        return false;
456      if (OpC->isZero())
457        continue;
458
459      // Handle a struct index, which adds its field offset to the pointer.
460      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
461        unsigned ElementIdx = OpC->getZExtValue();
462        const StructLayout *SL = TD.getStructLayout(STy);
463        uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
464        // Check that we can continue to model this GEP in a signed 64-bit offset.
465        if (ElementOffset > INT64_MAX ||
466            (GEPOffset >= 0 &&
467             ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
468          DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
469                       << "what can be represented in an int64_t!\n"
470                       << "  alloca: " << P.AI << "\n");
471          return false;
472        }
473        if (GEPOffset < 0)
474          GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
475        else
476          GEPOffset += ElementOffset;
477        continue;
478      }
479
480      APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits(AS));
481      Index *= APInt(Index.getBitWidth(),
482                     TD.getTypeAllocSize(GTI.getIndexedType()));
483      Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
484                     /*isSigned*/true);
485      // Check if the result can be stored in our int64_t offset.
486      if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
487        DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
488                     << "what can be represented in an int64_t!\n"
489                     << "  alloca: " << P.AI << "\n");
490        return false;
491      }
492
493      GEPOffset = Index.getSExtValue();
494    }
495    return true;
496  }
497
498  Value *foldSelectInst(SelectInst &SI) {
499    // If the condition being selected on is a constant or the same value is
500    // being selected between, fold the select. Yes this does (rarely) happen
501    // early on.
502    if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
503      return SI.getOperand(1+CI->isZero());
504    if (SI.getOperand(1) == SI.getOperand(2)) {
505      assert(*U == SI.getOperand(1));
506      return SI.getOperand(1);
507    }
508    return 0;
509  }
510};
511
512/// \brief Builder for the alloca partitioning.
513///
514/// This class builds an alloca partitioning by recursively visiting the uses
515/// of an alloca and splitting the partitions for each load and store at each
516/// offset.
517class AllocaPartitioning::PartitionBuilder
518    : public BuilderBase<PartitionBuilder, bool> {
519  friend class InstVisitor<PartitionBuilder, bool>;
520
521  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
522
523public:
524  PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
525      : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
526
527  /// \brief Run the builder over the allocation.
528  bool operator()() {
529    // Note that we have to re-evaluate size on each trip through the loop as
530    // the queue grows at the tail.
531    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
532      U = Queue[Idx].U;
533      Offset = Queue[Idx].Offset;
534      if (!visit(cast<Instruction>(U->getUser())))
535        return false;
536    }
537    return true;
538  }
539
540private:
541  bool markAsEscaping(Instruction &I) {
542    P.PointerEscapingInstr = &I;
543    return false;
544  }
545
546  void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
547                 bool IsSplittable = false) {
548    // Completely skip uses which have a zero size or don't overlap the
549    // allocation.
550    if (Size == 0 ||
551        (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
552        (Offset < 0 && (uint64_t)-Offset >= Size)) {
553      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
554                   << " which starts past the end of the " << AllocSize
555                   << " byte alloca:\n"
556                   << "    alloca: " << P.AI << "\n"
557                   << "       use: " << I << "\n");
558      return;
559    }
560
561    // Clamp the start to the beginning of the allocation.
562    if (Offset < 0) {
563      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
564                   << " to start at the beginning of the alloca:\n"
565                   << "    alloca: " << P.AI << "\n"
566                   << "       use: " << I << "\n");
567      Size -= (uint64_t)-Offset;
568      Offset = 0;
569    }
570
571    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
572
573    // Clamp the end offset to the end of the allocation. Note that this is
574    // formulated to handle even the case where "BeginOffset + Size" overflows.
575    assert(AllocSize >= BeginOffset); // Established above.
576    if (Size > AllocSize - BeginOffset) {
577      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
578                   << " to remain within the " << AllocSize << " byte alloca:\n"
579                   << "    alloca: " << P.AI << "\n"
580                   << "       use: " << I << "\n");
581      EndOffset = AllocSize;
582    }
583
584    Partition New(BeginOffset, EndOffset, IsSplittable);
585    P.Partitions.push_back(New);
586  }
587
588  bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
589    uint64_t Size = TD.getTypeStoreSize(Ty);
590
591    // If this memory access can be shown to *statically* extend outside the
592    // bounds of of the allocation, it's behavior is undefined, so simply
593    // ignore it. Note that this is more strict than the generic clamping
594    // behavior of insertUse. We also try to handle cases which might run the
595    // risk of overflow.
596    // FIXME: We should instead consider the pointer to have escaped if this
597    // function is being instrumented for addressing bugs or race conditions.
598    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
599        Size > (AllocSize - (uint64_t)Offset)) {
600      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
601                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
602                   << " which extends past the end of the " << AllocSize
603                   << " byte alloca:\n"
604                   << "    alloca: " << P.AI << "\n"
605                   << "       use: " << I << "\n");
606      return true;
607    }
608
609    insertUse(I, Offset, Size);
610    return true;
611  }
612
613  bool visitBitCastInst(BitCastInst &BC) {
614    enqueueUsers(BC, Offset);
615    return true;
616  }
617
618  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
619    int64_t GEPOffset;
620    if (!computeConstantGEPOffset(GEPI, GEPOffset))
621      return markAsEscaping(GEPI);
622
623    enqueueUsers(GEPI, GEPOffset);
624    return true;
625  }
626
627  bool visitLoadInst(LoadInst &LI) {
628    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
629           "All simple FCA loads should have been pre-split");
630    return handleLoadOrStore(LI.getType(), LI, Offset);
631  }
632
633  bool visitStoreInst(StoreInst &SI) {
634    Value *ValOp = SI.getValueOperand();
635    if (ValOp == *U)
636      return markAsEscaping(SI);
637
638    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
639           "All simple FCA stores should have been pre-split");
640    return handleLoadOrStore(ValOp->getType(), SI, Offset);
641  }
642
643
644  bool visitMemSetInst(MemSetInst &II) {
645    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
646    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
647    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
648    insertUse(II, Offset, Size, Length);
649    return true;
650  }
651
652  bool visitMemTransferInst(MemTransferInst &II) {
653    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
654    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
655    if (!Size)
656      // Zero-length mem transfer intrinsics can be ignored entirely.
657      return true;
658
659    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
660
661    // Only intrinsics with a constant length can be split.
662    Offsets.IsSplittable = Length;
663
664    if (*U == II.getRawDest()) {
665      Offsets.DestBegin = Offset;
666      Offsets.DestEnd = Offset + Size;
667    }
668    if (*U == II.getRawSource()) {
669      Offsets.SourceBegin = Offset;
670      Offsets.SourceEnd = Offset + Size;
671    }
672
673    // If we have set up end offsets for both the source and the destination,
674    // we have found both sides of this transfer pointing at the same alloca.
675    bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
676    if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
677      unsigned PrevIdx = MemTransferPartitionMap[&II];
678
679      // Check if the begin offsets match and this is a non-volatile transfer.
680      // In that case, we can completely elide the transfer.
681      if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
682        P.Partitions[PrevIdx].kill();
683        return true;
684      }
685
686      // Otherwise we have an offset transfer within the same alloca. We can't
687      // split those.
688      P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
689    } else if (SeenBothEnds) {
690      // Handle the case where this exact use provides both ends of the
691      // operation.
692      assert(II.getRawDest() == II.getRawSource());
693
694      // For non-volatile transfers this is a no-op.
695      if (!II.isVolatile())
696        return true;
697
698      // Otherwise just suppress splitting.
699      Offsets.IsSplittable = false;
700    }
701
702
703    // Insert the use now that we've fixed up the splittable nature.
704    insertUse(II, Offset, Size, Offsets.IsSplittable);
705
706    // Setup the mapping from intrinsic to partition of we've not seen both
707    // ends of this transfer.
708    if (!SeenBothEnds) {
709      unsigned NewIdx = P.Partitions.size() - 1;
710      bool Inserted
711        = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
712      assert(Inserted &&
713             "Already have intrinsic in map but haven't seen both ends");
714      (void)Inserted;
715    }
716
717    return true;
718  }
719
720  // Disable SRoA for any intrinsics except for lifetime invariants.
721  // FIXME: What about debug instrinsics? This matches old behavior, but
722  // doesn't make sense.
723  bool visitIntrinsicInst(IntrinsicInst &II) {
724    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
725        II.getIntrinsicID() == Intrinsic::lifetime_end) {
726      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
727      uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
728      insertUse(II, Offset, Size, true);
729      return true;
730    }
731
732    return markAsEscaping(II);
733  }
734
735  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
736    // We consider any PHI or select that results in a direct load or store of
737    // the same offset to be a viable use for partitioning purposes. These uses
738    // are considered unsplittable and the size is the maximum loaded or stored
739    // size.
740    SmallPtrSet<Instruction *, 4> Visited;
741    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
742    Visited.insert(Root);
743    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
744    // If there are no loads or stores, the access is dead. We mark that as
745    // a size zero access.
746    Size = 0;
747    do {
748      Instruction *I, *UsedI;
749      llvm::tie(UsedI, I) = Uses.pop_back_val();
750
751      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
752        Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
753        continue;
754      }
755      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
756        Value *Op = SI->getOperand(0);
757        if (Op == UsedI)
758          return SI;
759        Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
760        continue;
761      }
762
763      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
764        if (!GEP->hasAllZeroIndices())
765          return GEP;
766      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
767                 !isa<SelectInst>(I)) {
768        return I;
769      }
770
771      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
772           ++UI)
773        if (Visited.insert(cast<Instruction>(*UI)))
774          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
775    } while (!Uses.empty());
776
777    return 0;
778  }
779
780  bool visitPHINode(PHINode &PN) {
781    // See if we already have computed info on this node.
782    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
783    if (PHIInfo.first) {
784      PHIInfo.second = true;
785      insertUse(PN, Offset, PHIInfo.first);
786      return true;
787    }
788
789    // Check for an unsafe use of the PHI node.
790    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
791      return markAsEscaping(*EscapingI);
792
793    insertUse(PN, Offset, PHIInfo.first);
794    return true;
795  }
796
797  bool visitSelectInst(SelectInst &SI) {
798    if (Value *Result = foldSelectInst(SI)) {
799      if (Result == *U)
800        // If the result of the constant fold will be the pointer, recurse
801        // through the select as if we had RAUW'ed it.
802        enqueueUsers(SI, Offset);
803
804      return true;
805    }
806
807    // See if we already have computed info on this node.
808    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
809    if (SelectInfo.first) {
810      SelectInfo.second = true;
811      insertUse(SI, Offset, SelectInfo.first);
812      return true;
813    }
814
815    // Check for an unsafe use of the PHI node.
816    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
817      return markAsEscaping(*EscapingI);
818
819    insertUse(SI, Offset, SelectInfo.first);
820    return true;
821  }
822
823  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
824  bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
825};
826
827
828/// \brief Use adder for the alloca partitioning.
829///
830/// This class adds the uses of an alloca to all of the partitions which they
831/// use. For splittable partitions, this can end up doing essentially a linear
832/// walk of the partitions, but the number of steps remains bounded by the
833/// total result instruction size:
834/// - The number of partitions is a result of the number unsplittable
835///   instructions using the alloca.
836/// - The number of users of each partition is at worst the total number of
837///   splittable instructions using the alloca.
838/// Thus we will produce N * M instructions in the end, where N are the number
839/// of unsplittable uses and M are the number of splittable. This visitor does
840/// the exact same number of updates to the partitioning.
841///
842/// In the more common case, this visitor will leverage the fact that the
843/// partition space is pre-sorted, and do a logarithmic search for the
844/// partition needed, making the total visit a classical ((N + M) * log(N))
845/// complexity operation.
846class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
847  friend class InstVisitor<UseBuilder>;
848
849  /// \brief Set to de-duplicate dead instructions found in the use walk.
850  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
851
852public:
853  UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
854      : BuilderBase<UseBuilder>(TD, AI, P) {}
855
856  /// \brief Run the builder over the allocation.
857  void operator()() {
858    // Note that we have to re-evaluate size on each trip through the loop as
859    // the queue grows at the tail.
860    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
861      U = Queue[Idx].U;
862      Offset = Queue[Idx].Offset;
863      this->visit(cast<Instruction>(U->getUser()));
864    }
865  }
866
867private:
868  void markAsDead(Instruction &I) {
869    if (VisitedDeadInsts.insert(&I))
870      P.DeadUsers.push_back(&I);
871  }
872
873  void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
874    // If the use has a zero size or extends outside of the allocation, record
875    // it as a dead use for elimination later.
876    if (Size == 0 || (uint64_t)Offset >= AllocSize ||
877        (Offset < 0 && (uint64_t)-Offset >= Size))
878      return markAsDead(User);
879
880    // Clamp the start to the beginning of the allocation.
881    if (Offset < 0) {
882      Size -= (uint64_t)-Offset;
883      Offset = 0;
884    }
885
886    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
887
888    // Clamp the end offset to the end of the allocation. Note that this is
889    // formulated to handle even the case where "BeginOffset + Size" overflows.
890    assert(AllocSize >= BeginOffset); // Established above.
891    if (Size > AllocSize - BeginOffset)
892      EndOffset = AllocSize;
893
894    // NB: This only works if we have zero overlapping partitions.
895    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
896    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
897      B = llvm::prior(B);
898    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
899         ++I) {
900      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
901                         std::min(I->EndOffset, EndOffset), U);
902      P.use_push_back(I, NewPU);
903      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
904        P.PHIOrSelectOpMap[U]
905          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
906    }
907  }
908
909  void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
910    uint64_t Size = TD.getTypeStoreSize(Ty);
911
912    // If this memory access can be shown to *statically* extend outside the
913    // bounds of of the allocation, it's behavior is undefined, so simply
914    // ignore it. Note that this is more strict than the generic clamping
915    // behavior of insertUse.
916    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
917        Size > (AllocSize - (uint64_t)Offset))
918      return markAsDead(I);
919
920    insertUse(I, Offset, Size);
921  }
922
923  void visitBitCastInst(BitCastInst &BC) {
924    if (BC.use_empty())
925      return markAsDead(BC);
926
927    enqueueUsers(BC, Offset);
928  }
929
930  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
931    if (GEPI.use_empty())
932      return markAsDead(GEPI);
933
934    int64_t GEPOffset;
935    if (!computeConstantGEPOffset(GEPI, GEPOffset))
936      llvm_unreachable("Unable to compute constant offset for use");
937
938    enqueueUsers(GEPI, GEPOffset);
939  }
940
941  void visitLoadInst(LoadInst &LI) {
942    handleLoadOrStore(LI.getType(), LI, Offset);
943  }
944
945  void visitStoreInst(StoreInst &SI) {
946    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
947  }
948
949  void visitMemSetInst(MemSetInst &II) {
950    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
951    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
952    insertUse(II, Offset, Size);
953  }
954
955  void visitMemTransferInst(MemTransferInst &II) {
956    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
957    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
958    if (!Size)
959      return markAsDead(II);
960
961    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
962    if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
963        Offsets.DestBegin == Offsets.SourceBegin)
964      return markAsDead(II); // Skip identity transfers without side-effects.
965
966    insertUse(II, Offset, Size);
967  }
968
969  void visitIntrinsicInst(IntrinsicInst &II) {
970    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
971           II.getIntrinsicID() == Intrinsic::lifetime_end);
972
973    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
974    insertUse(II, Offset,
975              std::min(AllocSize - Offset, Length->getLimitedValue()));
976  }
977
978  void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
979    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
980
981    // For PHI and select operands outside the alloca, we can't nuke the entire
982    // phi or select -- the other side might still be relevant, so we special
983    // case them here and use a separate structure to track the operands
984    // themselves which should be replaced with undef.
985    if (Offset >= AllocSize) {
986      P.DeadOperands.push_back(U);
987      return;
988    }
989
990    insertUse(User, Offset, Size);
991  }
992  void visitPHINode(PHINode &PN) {
993    if (PN.use_empty())
994      return markAsDead(PN);
995
996    insertPHIOrSelect(PN, Offset);
997  }
998  void visitSelectInst(SelectInst &SI) {
999    if (SI.use_empty())
1000      return markAsDead(SI);
1001
1002    if (Value *Result = foldSelectInst(SI)) {
1003      if (Result == *U)
1004        // If the result of the constant fold will be the pointer, recurse
1005        // through the select as if we had RAUW'ed it.
1006        enqueueUsers(SI, Offset);
1007      else
1008        // Otherwise the operand to the select is dead, and we can replace it
1009        // with undef.
1010        P.DeadOperands.push_back(U);
1011
1012      return;
1013    }
1014
1015    insertPHIOrSelect(SI, Offset);
1016  }
1017
1018  /// \brief Unreachable, we've already visited the alloca once.
1019  void visitInstruction(Instruction &I) {
1020    llvm_unreachable("Unhandled instruction in use builder.");
1021  }
1022};
1023
1024void AllocaPartitioning::splitAndMergePartitions() {
1025  size_t NumDeadPartitions = 0;
1026
1027  // Track the range of splittable partitions that we pass when accumulating
1028  // overlapping unsplittable partitions.
1029  uint64_t SplitEndOffset = 0ull;
1030
1031  Partition New(0ull, 0ull, false);
1032
1033  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
1034    ++j;
1035
1036    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
1037      assert(New.BeginOffset == New.EndOffset);
1038      New = Partitions[i];
1039    } else {
1040      assert(New.IsSplittable);
1041      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
1042    }
1043    assert(New.BeginOffset != New.EndOffset);
1044
1045    // Scan the overlapping partitions.
1046    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
1047      // If the new partition we are forming is splittable, stop at the first
1048      // unsplittable partition.
1049      if (New.IsSplittable && !Partitions[j].IsSplittable)
1050        break;
1051
1052      // Grow the new partition to include any equally splittable range. 'j' is
1053      // always equally splittable when New is splittable, but when New is not
1054      // splittable, we may subsume some (or part of some) splitable partition
1055      // without growing the new one.
1056      if (New.IsSplittable == Partitions[j].IsSplittable) {
1057        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1058      } else {
1059        assert(!New.IsSplittable);
1060        assert(Partitions[j].IsSplittable);
1061        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1062      }
1063
1064      Partitions[j].kill();
1065      ++NumDeadPartitions;
1066      ++j;
1067    }
1068
1069    // If the new partition is splittable, chop off the end as soon as the
1070    // unsplittable subsequent partition starts and ensure we eventually cover
1071    // the splittable area.
1072    if (j != e && New.IsSplittable) {
1073      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1074      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1075    }
1076
1077    // Add the new partition if it differs from the original one and is
1078    // non-empty. We can end up with an empty partition here if it was
1079    // splittable but there is an unsplittable one that starts at the same
1080    // offset.
1081    if (New != Partitions[i]) {
1082      if (New.BeginOffset != New.EndOffset)
1083        Partitions.push_back(New);
1084      // Mark the old one for removal.
1085      Partitions[i].kill();
1086      ++NumDeadPartitions;
1087    }
1088
1089    New.BeginOffset = New.EndOffset;
1090    if (!New.IsSplittable) {
1091      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1092      if (j != e && !Partitions[j].IsSplittable)
1093        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1094      New.IsSplittable = true;
1095      // If there is a trailing splittable partition which won't be fused into
1096      // the next splittable partition go ahead and add it onto the partitions
1097      // list.
1098      if (New.BeginOffset < New.EndOffset &&
1099          (j == e || !Partitions[j].IsSplittable ||
1100           New.EndOffset < Partitions[j].BeginOffset)) {
1101        Partitions.push_back(New);
1102        New.BeginOffset = New.EndOffset = 0ull;
1103      }
1104    }
1105  }
1106
1107  // Re-sort the partitions now that they have been split and merged into
1108  // disjoint set of partitions. Also remove any of the dead partitions we've
1109  // replaced in the process.
1110  std::sort(Partitions.begin(), Partitions.end());
1111  if (NumDeadPartitions) {
1112    assert(Partitions.back().isDead());
1113    assert((ptrdiff_t)NumDeadPartitions ==
1114           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1115  }
1116  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1117}
1118
1119AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
1120    :
1121#ifndef NDEBUG
1122      AI(AI),
1123#endif
1124      PointerEscapingInstr(0) {
1125  PartitionBuilder PB(TD, AI, *this);
1126  if (!PB())
1127    return;
1128
1129  // Sort the uses. This arranges for the offsets to be in ascending order,
1130  // and the sizes to be in descending order.
1131  std::sort(Partitions.begin(), Partitions.end());
1132
1133  // Remove any partitions from the back which are marked as dead.
1134  while (!Partitions.empty() && Partitions.back().isDead())
1135    Partitions.pop_back();
1136
1137  if (Partitions.size() > 1) {
1138    // Intersect splittability for all partitions with equal offsets and sizes.
1139    // Then remove all but the first so that we have a sequence of non-equal but
1140    // potentially overlapping partitions.
1141    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1142         I = J) {
1143      ++J;
1144      while (J != E && *I == *J) {
1145        I->IsSplittable &= J->IsSplittable;
1146        ++J;
1147      }
1148    }
1149    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1150                     Partitions.end());
1151
1152    // Split splittable and merge unsplittable partitions into a disjoint set
1153    // of partitions over the used space of the allocation.
1154    splitAndMergePartitions();
1155  }
1156
1157  // Now build up the user lists for each of these disjoint partitions by
1158  // re-walking the recursive users of the alloca.
1159  Uses.resize(Partitions.size());
1160  UseBuilder UB(TD, AI, *this);
1161  UB();
1162}
1163
1164Type *AllocaPartitioning::getCommonType(iterator I) const {
1165  Type *Ty = 0;
1166  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1167    if (!UI->U)
1168      continue; // Skip dead uses.
1169    if (isa<IntrinsicInst>(*UI->U->getUser()))
1170      continue;
1171    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1172      continue;
1173
1174    Type *UserTy = 0;
1175    if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
1176      UserTy = LI->getType();
1177    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
1178      UserTy = SI->getValueOperand()->getType();
1179    }
1180
1181    if (Ty && Ty != UserTy)
1182      return 0;
1183
1184    Ty = UserTy;
1185  }
1186  return Ty;
1187}
1188
1189#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1190
1191void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1192                               StringRef Indent) const {
1193  OS << Indent << "partition #" << (I - begin())
1194     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1195     << (I->IsSplittable ? " (splittable)" : "")
1196     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1197     << "\n";
1198}
1199
1200void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1201                                    StringRef Indent) const {
1202  for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1203       UI != UE; ++UI) {
1204    if (!UI->U)
1205      continue; // Skip dead uses.
1206    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1207       << "used by: " << *UI->U->getUser() << "\n";
1208    if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
1209      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1210      bool IsDest;
1211      if (!MTO.IsSplittable)
1212        IsDest = UI->BeginOffset == MTO.DestBegin;
1213      else
1214        IsDest = MTO.DestBegin != 0u;
1215      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1216         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1217         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1218    }
1219  }
1220}
1221
1222void AllocaPartitioning::print(raw_ostream &OS) const {
1223  if (PointerEscapingInstr) {
1224    OS << "No partitioning for alloca: " << AI << "\n"
1225       << "  A pointer to this alloca escaped by:\n"
1226       << "  " << *PointerEscapingInstr << "\n";
1227    return;
1228  }
1229
1230  OS << "Partitioning of alloca: " << AI << "\n";
1231  unsigned Num = 0;
1232  for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1233    print(OS, I);
1234    printUsers(OS, I);
1235  }
1236}
1237
1238void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1239void AllocaPartitioning::dump() const { print(dbgs()); }
1240
1241#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1242
1243
1244namespace {
1245/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1246///
1247/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1248/// the loads and stores of an alloca instruction, as well as updating its
1249/// debug information. This is used when a domtree is unavailable and thus
1250/// mem2reg in its full form can't be used to handle promotion of allocas to
1251/// scalar values.
1252class AllocaPromoter : public LoadAndStorePromoter {
1253  AllocaInst &AI;
1254  DIBuilder &DIB;
1255
1256  SmallVector<DbgDeclareInst *, 4> DDIs;
1257  SmallVector<DbgValueInst *, 4> DVIs;
1258
1259public:
1260  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1261                 AllocaInst &AI, DIBuilder &DIB)
1262    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1263
1264  void run(const SmallVectorImpl<Instruction*> &Insts) {
1265    // Remember which alloca we're promoting (for isInstInList).
1266    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1267      for (Value::use_iterator UI = DebugNode->use_begin(),
1268                               UE = DebugNode->use_end();
1269           UI != UE; ++UI)
1270        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1271          DDIs.push_back(DDI);
1272        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1273          DVIs.push_back(DVI);
1274    }
1275
1276    LoadAndStorePromoter::run(Insts);
1277    AI.eraseFromParent();
1278    while (!DDIs.empty())
1279      DDIs.pop_back_val()->eraseFromParent();
1280    while (!DVIs.empty())
1281      DVIs.pop_back_val()->eraseFromParent();
1282  }
1283
1284  virtual bool isInstInList(Instruction *I,
1285                            const SmallVectorImpl<Instruction*> &Insts) const {
1286    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1287      return LI->getOperand(0) == &AI;
1288    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1289  }
1290
1291  virtual void updateDebugInfo(Instruction *Inst) const {
1292    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1293           E = DDIs.end(); I != E; ++I) {
1294      DbgDeclareInst *DDI = *I;
1295      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1296        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1297      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1298        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1299    }
1300    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1301           E = DVIs.end(); I != E; ++I) {
1302      DbgValueInst *DVI = *I;
1303      Value *Arg = NULL;
1304      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1305        // If an argument is zero extended then use argument directly. The ZExt
1306        // may be zapped by an optimization pass in future.
1307        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1308          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1309        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1310          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1311        if (!Arg)
1312          Arg = SI->getOperand(0);
1313      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1314        Arg = LI->getOperand(0);
1315      } else {
1316        continue;
1317      }
1318      Instruction *DbgVal =
1319        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1320                                     Inst);
1321      DbgVal->setDebugLoc(DVI->getDebugLoc());
1322    }
1323  }
1324};
1325} // end anon namespace
1326
1327
1328namespace {
1329/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1330///
1331/// This pass takes allocations which can be completely analyzed (that is, they
1332/// don't escape) and tries to turn them into scalar SSA values. There are
1333/// a few steps to this process.
1334///
1335/// 1) It takes allocations of aggregates and analyzes the ways in which they
1336///    are used to try to split them into smaller allocations, ideally of
1337///    a single scalar data type. It will split up memcpy and memset accesses
1338///    as necessary and try to isolate invidual scalar accesses.
1339/// 2) It will transform accesses into forms which are suitable for SSA value
1340///    promotion. This can be replacing a memset with a scalar store of an
1341///    integer value, or it can involve speculating operations on a PHI or
1342///    select to be a PHI or select of the results.
1343/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1344///    onto insert and extract operations on a vector value, and convert them to
1345///    this form. By doing so, it will enable promotion of vector aggregates to
1346///    SSA vector values.
1347class SROA : public FunctionPass {
1348  const bool RequiresDomTree;
1349
1350  LLVMContext *C;
1351  const DataLayout *TD;
1352  DominatorTree *DT;
1353
1354  /// \brief Worklist of alloca instructions to simplify.
1355  ///
1356  /// Each alloca in the function is added to this. Each new alloca formed gets
1357  /// added to it as well to recursively simplify unless that alloca can be
1358  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1359  /// the one being actively rewritten, we add it back onto the list if not
1360  /// already present to ensure it is re-visited.
1361  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1362
1363  /// \brief A collection of instructions to delete.
1364  /// We try to batch deletions to simplify code and make things a bit more
1365  /// efficient.
1366  SmallVector<Instruction *, 8> DeadInsts;
1367
1368  /// \brief A set to prevent repeatedly marking an instruction split into many
1369  /// uses as dead. Only used to guard insertion into DeadInsts.
1370  SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1371
1372  /// \brief Post-promotion worklist.
1373  ///
1374  /// Sometimes we discover an alloca which has a high probability of becoming
1375  /// viable for SROA after a round of promotion takes place. In those cases,
1376  /// the alloca is enqueued here for re-processing.
1377  ///
1378  /// Note that we have to be very careful to clear allocas out of this list in
1379  /// the event they are deleted.
1380  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1381
1382  /// \brief A collection of alloca instructions we can directly promote.
1383  std::vector<AllocaInst *> PromotableAllocas;
1384
1385public:
1386  SROA(bool RequiresDomTree = true)
1387      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1388        C(0), TD(0), DT(0) {
1389    initializeSROAPass(*PassRegistry::getPassRegistry());
1390  }
1391  bool runOnFunction(Function &F);
1392  void getAnalysisUsage(AnalysisUsage &AU) const;
1393
1394  const char *getPassName() const { return "SROA"; }
1395  static char ID;
1396
1397private:
1398  friend class PHIOrSelectSpeculator;
1399  friend class AllocaPartitionRewriter;
1400  friend class AllocaPartitionVectorRewriter;
1401
1402  bool rewriteAllocaPartition(AllocaInst &AI,
1403                              AllocaPartitioning &P,
1404                              AllocaPartitioning::iterator PI);
1405  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1406  bool runOnAlloca(AllocaInst &AI);
1407  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1408  bool promoteAllocas(Function &F);
1409};
1410}
1411
1412char SROA::ID = 0;
1413
1414FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1415  return new SROA(RequiresDomTree);
1416}
1417
1418INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1419                      false, false)
1420INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1421INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1422                    false, false)
1423
1424namespace {
1425/// \brief Visitor to speculate PHIs and Selects where possible.
1426class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1427  // Befriend the base class so it can delegate to private visit methods.
1428  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1429
1430  const DataLayout &TD;
1431  AllocaPartitioning &P;
1432  SROA &Pass;
1433
1434public:
1435  PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
1436    : TD(TD), P(P), Pass(Pass) {}
1437
1438  /// \brief Visit the users of an alloca partition and rewrite them.
1439  void visitUsers(AllocaPartitioning::const_iterator PI) {
1440    // Note that we need to use an index here as the underlying vector of uses
1441    // may be grown during speculation. However, we never need to re-visit the
1442    // new uses, and so we can use the initial size bound.
1443    for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1444      const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1445      if (!PU.U)
1446        continue; // Skip dead use.
1447
1448      visit(cast<Instruction>(PU.U->getUser()));
1449    }
1450  }
1451
1452private:
1453  // By default, skip this instruction.
1454  void visitInstruction(Instruction &I) {}
1455
1456  /// PHI instructions that use an alloca and are subsequently loaded can be
1457  /// rewritten to load both input pointers in the pred blocks and then PHI the
1458  /// results, allowing the load of the alloca to be promoted.
1459  /// From this:
1460  ///   %P2 = phi [i32* %Alloca, i32* %Other]
1461  ///   %V = load i32* %P2
1462  /// to:
1463  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1464  ///   ...
1465  ///   %V2 = load i32* %Other
1466  ///   ...
1467  ///   %V = phi [i32 %V1, i32 %V2]
1468  ///
1469  /// We can do this to a select if its only uses are loads and if the operands
1470  /// to the select can be loaded unconditionally.
1471  ///
1472  /// FIXME: This should be hoisted into a generic utility, likely in
1473  /// Transforms/Util/Local.h
1474  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1475    // For now, we can only do this promotion if the load is in the same block
1476    // as the PHI, and if there are no stores between the phi and load.
1477    // TODO: Allow recursive phi users.
1478    // TODO: Allow stores.
1479    BasicBlock *BB = PN.getParent();
1480    unsigned MaxAlign = 0;
1481    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1482         UI != UE; ++UI) {
1483      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1484      if (LI == 0 || !LI->isSimple()) return false;
1485
1486      // For now we only allow loads in the same block as the PHI.  This is
1487      // a common case that happens when instcombine merges two loads through
1488      // a PHI.
1489      if (LI->getParent() != BB) return false;
1490
1491      // Ensure that there are no instructions between the PHI and the load that
1492      // could store.
1493      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1494        if (BBI->mayWriteToMemory())
1495          return false;
1496
1497      MaxAlign = std::max(MaxAlign, LI->getAlignment());
1498      Loads.push_back(LI);
1499    }
1500
1501    // We can only transform this if it is safe to push the loads into the
1502    // predecessor blocks. The only thing to watch out for is that we can't put
1503    // a possibly trapping load in the predecessor if it is a critical edge.
1504    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1505         ++Idx) {
1506      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1507      Value *InVal = PN.getIncomingValue(Idx);
1508
1509      // If the value is produced by the terminator of the predecessor (an
1510      // invoke) or it has side-effects, there is no valid place to put a load
1511      // in the predecessor.
1512      if (TI == InVal || TI->mayHaveSideEffects())
1513        return false;
1514
1515      // If the predecessor has a single successor, then the edge isn't
1516      // critical.
1517      if (TI->getNumSuccessors() == 1)
1518        continue;
1519
1520      // If this pointer is always safe to load, or if we can prove that there
1521      // is already a load in the block, then we can move the load to the pred
1522      // block.
1523      if (InVal->isDereferenceablePointer() ||
1524          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1525        continue;
1526
1527      return false;
1528    }
1529
1530    return true;
1531  }
1532
1533  void visitPHINode(PHINode &PN) {
1534    DEBUG(dbgs() << "    original: " << PN << "\n");
1535
1536    SmallVector<LoadInst *, 4> Loads;
1537    if (!isSafePHIToSpeculate(PN, Loads))
1538      return;
1539
1540    assert(!Loads.empty());
1541
1542    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1543    IRBuilder<> PHIBuilder(&PN);
1544    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1545                                          PN.getName() + ".sroa.speculated");
1546
1547    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1548    // matter which one we get and if any differ, it doesn't matter.
1549    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1550    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1551    unsigned Align = SomeLoad->getAlignment();
1552
1553    // Rewrite all loads of the PN to use the new PHI.
1554    do {
1555      LoadInst *LI = Loads.pop_back_val();
1556      LI->replaceAllUsesWith(NewPN);
1557      Pass.DeadInsts.push_back(LI);
1558    } while (!Loads.empty());
1559
1560    // Inject loads into all of the pred blocks.
1561    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1562      BasicBlock *Pred = PN.getIncomingBlock(Idx);
1563      TerminatorInst *TI = Pred->getTerminator();
1564      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1565      Value *InVal = PN.getIncomingValue(Idx);
1566      IRBuilder<> PredBuilder(TI);
1567
1568      LoadInst *Load
1569        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1570                                         Pred->getName()));
1571      ++NumLoadsSpeculated;
1572      Load->setAlignment(Align);
1573      if (TBAATag)
1574        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1575      NewPN->addIncoming(Load, Pred);
1576
1577      Instruction *Ptr = dyn_cast<Instruction>(InVal);
1578      if (!Ptr)
1579        // No uses to rewrite.
1580        continue;
1581
1582      // Try to lookup and rewrite any partition uses corresponding to this phi
1583      // input.
1584      AllocaPartitioning::iterator PI
1585        = P.findPartitionForPHIOrSelectOperand(InUse);
1586      if (PI == P.end())
1587        continue;
1588
1589      // Replace the Use in the PartitionUse for this operand with the Use
1590      // inside the load.
1591      AllocaPartitioning::use_iterator UI
1592        = P.findPartitionUseForPHIOrSelectOperand(InUse);
1593      assert(isa<PHINode>(*UI->U->getUser()));
1594      UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1595    }
1596    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1597  }
1598
1599  /// Select instructions that use an alloca and are subsequently loaded can be
1600  /// rewritten to load both input pointers and then select between the result,
1601  /// allowing the load of the alloca to be promoted.
1602  /// From this:
1603  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1604  ///   %V = load i32* %P2
1605  /// to:
1606  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1607  ///   %V2 = load i32* %Other
1608  ///   %V = select i1 %cond, i32 %V1, i32 %V2
1609  ///
1610  /// We can do this to a select if its only uses are loads and if the operand
1611  /// to the select can be loaded unconditionally.
1612  bool isSafeSelectToSpeculate(SelectInst &SI,
1613                               SmallVectorImpl<LoadInst *> &Loads) {
1614    Value *TValue = SI.getTrueValue();
1615    Value *FValue = SI.getFalseValue();
1616    bool TDerefable = TValue->isDereferenceablePointer();
1617    bool FDerefable = FValue->isDereferenceablePointer();
1618
1619    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1620         UI != UE; ++UI) {
1621      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1622      if (LI == 0 || !LI->isSimple()) return false;
1623
1624      // Both operands to the select need to be dereferencable, either
1625      // absolutely (e.g. allocas) or at this point because we can see other
1626      // accesses to it.
1627      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1628                                                      LI->getAlignment(), &TD))
1629        return false;
1630      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1631                                                      LI->getAlignment(), &TD))
1632        return false;
1633      Loads.push_back(LI);
1634    }
1635
1636    return true;
1637  }
1638
1639  void visitSelectInst(SelectInst &SI) {
1640    DEBUG(dbgs() << "    original: " << SI << "\n");
1641    IRBuilder<> IRB(&SI);
1642
1643    // If the select isn't safe to speculate, just use simple logic to emit it.
1644    SmallVector<LoadInst *, 4> Loads;
1645    if (!isSafeSelectToSpeculate(SI, Loads))
1646      return;
1647
1648    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1649    AllocaPartitioning::iterator PIs[2];
1650    AllocaPartitioning::PartitionUse PUs[2];
1651    for (unsigned i = 0, e = 2; i != e; ++i) {
1652      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1653      if (PIs[i] != P.end()) {
1654        // If the pointer is within the partitioning, remove the select from
1655        // its uses. We'll add in the new loads below.
1656        AllocaPartitioning::use_iterator UI
1657          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1658        PUs[i] = *UI;
1659        // Clear out the use here so that the offsets into the use list remain
1660        // stable but this use is ignored when rewriting.
1661        UI->U = 0;
1662      }
1663    }
1664
1665    Value *TV = SI.getTrueValue();
1666    Value *FV = SI.getFalseValue();
1667    // Replace the loads of the select with a select of two loads.
1668    while (!Loads.empty()) {
1669      LoadInst *LI = Loads.pop_back_val();
1670
1671      IRB.SetInsertPoint(LI);
1672      LoadInst *TL =
1673        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1674      LoadInst *FL =
1675        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1676      NumLoadsSpeculated += 2;
1677
1678      // Transfer alignment and TBAA info if present.
1679      TL->setAlignment(LI->getAlignment());
1680      FL->setAlignment(LI->getAlignment());
1681      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1682        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1683        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1684      }
1685
1686      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1687                                  LI->getName() + ".sroa.speculated");
1688
1689      LoadInst *Loads[2] = { TL, FL };
1690      for (unsigned i = 0, e = 2; i != e; ++i) {
1691        if (PIs[i] != P.end()) {
1692          Use *LoadUse = &Loads[i]->getOperandUse(0);
1693          assert(PUs[i].U->get() == LoadUse->get());
1694          PUs[i].U = LoadUse;
1695          P.use_push_back(PIs[i], PUs[i]);
1696        }
1697      }
1698
1699      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1700      LI->replaceAllUsesWith(V);
1701      Pass.DeadInsts.push_back(LI);
1702    }
1703  }
1704};
1705}
1706
1707/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1708///
1709/// If the provided GEP is all-constant, the total byte offset formed by the
1710/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1711/// operands, the function returns false and the value of Offset is unmodified.
1712static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
1713                                 APInt &Offset) {
1714  APInt GEPOffset(Offset.getBitWidth(), 0);
1715  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1716       GTI != GTE; ++GTI) {
1717    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1718    if (!OpC)
1719      return false;
1720    if (OpC->isZero()) continue;
1721
1722    // Handle a struct index, which adds its field offset to the pointer.
1723    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1724      unsigned ElementIdx = OpC->getZExtValue();
1725      const StructLayout *SL = TD.getStructLayout(STy);
1726      GEPOffset += APInt(Offset.getBitWidth(),
1727                         SL->getElementOffset(ElementIdx));
1728      continue;
1729    }
1730
1731    APInt TypeSize(Offset.getBitWidth(),
1732                   TD.getTypeAllocSize(GTI.getIndexedType()));
1733    if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1734      assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1735             "vector element size is not a multiple of 8, cannot GEP over it");
1736      TypeSize = VTy->getScalarSizeInBits() / 8;
1737    }
1738
1739    GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1740  }
1741  Offset = GEPOffset;
1742  return true;
1743}
1744
1745/// \brief Build a GEP out of a base pointer and indices.
1746///
1747/// This will return the BasePtr if that is valid, or build a new GEP
1748/// instruction using the IRBuilder if GEP-ing is needed.
1749static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1750                       SmallVectorImpl<Value *> &Indices,
1751                       const Twine &Prefix) {
1752  if (Indices.empty())
1753    return BasePtr;
1754
1755  // A single zero index is a no-op, so check for this and avoid building a GEP
1756  // in that case.
1757  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1758    return BasePtr;
1759
1760  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1761}
1762
1763/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1764/// TargetTy without changing the offset of the pointer.
1765///
1766/// This routine assumes we've already established a properly offset GEP with
1767/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1768/// zero-indices down through type layers until we find one the same as
1769/// TargetTy. If we can't find one with the same type, we at least try to use
1770/// one with the same size. If none of that works, we just produce the GEP as
1771/// indicated by Indices to have the correct offset.
1772static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
1773                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1774                                    SmallVectorImpl<Value *> &Indices,
1775                                    const Twine &Prefix) {
1776  if (Ty == TargetTy)
1777    return buildGEP(IRB, BasePtr, Indices, Prefix);
1778
1779  // See if we can descend into a struct and locate a field with the correct
1780  // type.
1781  unsigned NumLayers = 0;
1782  Type *ElementTy = Ty;
1783  do {
1784    if (ElementTy->isPointerTy())
1785      break;
1786    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1787      ElementTy = SeqTy->getElementType();
1788      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(
1789                ElementTy->isPointerTy() ?
1790                cast<PointerType>(ElementTy)->getAddressSpace(): 0), 0)));
1791    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1792      if (STy->element_begin() == STy->element_end())
1793        break; // Nothing left to descend into.
1794      ElementTy = *STy->element_begin();
1795      Indices.push_back(IRB.getInt32(0));
1796    } else {
1797      break;
1798    }
1799    ++NumLayers;
1800  } while (ElementTy != TargetTy);
1801  if (ElementTy != TargetTy)
1802    Indices.erase(Indices.end() - NumLayers, Indices.end());
1803
1804  return buildGEP(IRB, BasePtr, Indices, Prefix);
1805}
1806
1807/// \brief Recursively compute indices for a natural GEP.
1808///
1809/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1810/// element types adding appropriate indices for the GEP.
1811static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
1812                                       Value *Ptr, Type *Ty, APInt &Offset,
1813                                       Type *TargetTy,
1814                                       SmallVectorImpl<Value *> &Indices,
1815                                       const Twine &Prefix) {
1816  if (Offset == 0)
1817    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1818
1819  // We can't recurse through pointer types.
1820  if (Ty->isPointerTy())
1821    return 0;
1822
1823  // We try to analyze GEPs over vectors here, but note that these GEPs are
1824  // extremely poorly defined currently. The long-term goal is to remove GEPing
1825  // over a vector from the IR completely.
1826  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1827    unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1828    if (ElementSizeInBits % 8)
1829      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1830    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1831    APInt NumSkippedElements = Offset.udiv(ElementSize);
1832    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1833      return 0;
1834    Offset -= NumSkippedElements * ElementSize;
1835    Indices.push_back(IRB.getInt(NumSkippedElements));
1836    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1837                                    Offset, TargetTy, Indices, Prefix);
1838  }
1839
1840  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1841    Type *ElementTy = ArrTy->getElementType();
1842    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1843    APInt NumSkippedElements = Offset.udiv(ElementSize);
1844    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1845      return 0;
1846
1847    Offset -= NumSkippedElements * ElementSize;
1848    Indices.push_back(IRB.getInt(NumSkippedElements));
1849    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1850                                    Indices, Prefix);
1851  }
1852
1853  StructType *STy = dyn_cast<StructType>(Ty);
1854  if (!STy)
1855    return 0;
1856
1857  const StructLayout *SL = TD.getStructLayout(STy);
1858  uint64_t StructOffset = Offset.getZExtValue();
1859  if (StructOffset >= SL->getSizeInBytes())
1860    return 0;
1861  unsigned Index = SL->getElementContainingOffset(StructOffset);
1862  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1863  Type *ElementTy = STy->getElementType(Index);
1864  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1865    return 0; // The offset points into alignment padding.
1866
1867  Indices.push_back(IRB.getInt32(Index));
1868  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1869                                  Indices, Prefix);
1870}
1871
1872/// \brief Get a natural GEP from a base pointer to a particular offset and
1873/// resulting in a particular type.
1874///
1875/// The goal is to produce a "natural" looking GEP that works with the existing
1876/// composite types to arrive at the appropriate offset and element type for
1877/// a pointer. TargetTy is the element type the returned GEP should point-to if
1878/// possible. We recurse by decreasing Offset, adding the appropriate index to
1879/// Indices, and setting Ty to the result subtype.
1880///
1881/// If no natural GEP can be constructed, this function returns null.
1882static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
1883                                      Value *Ptr, APInt Offset, Type *TargetTy,
1884                                      SmallVectorImpl<Value *> &Indices,
1885                                      const Twine &Prefix) {
1886  PointerType *Ty = cast<PointerType>(Ptr->getType());
1887
1888  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1889  // an i8.
1890  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1891    return 0;
1892
1893  Type *ElementTy = Ty->getElementType();
1894  if (!ElementTy->isSized())
1895    return 0; // We can't GEP through an unsized element.
1896  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1897  if (ElementSize == 0)
1898    return 0; // Zero-length arrays can't help us build a natural GEP.
1899  APInt NumSkippedElements = Offset.udiv(ElementSize);
1900
1901  Offset -= NumSkippedElements * ElementSize;
1902  Indices.push_back(IRB.getInt(NumSkippedElements));
1903  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1904                                  Indices, Prefix);
1905}
1906
1907/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1908/// resulting pointer has PointerTy.
1909///
1910/// This tries very hard to compute a "natural" GEP which arrives at the offset
1911/// and produces the pointer type desired. Where it cannot, it will try to use
1912/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1913/// fails, it will try to use an existing i8* and GEP to the byte offset and
1914/// bitcast to the type.
1915///
1916/// The strategy for finding the more natural GEPs is to peel off layers of the
1917/// pointer, walking back through bit casts and GEPs, searching for a base
1918/// pointer from which we can compute a natural GEP with the desired
1919/// properities. The algorithm tries to fold as many constant indices into
1920/// a single GEP as possible, thus making each GEP more independent of the
1921/// surrounding code.
1922static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
1923                             Value *Ptr, APInt Offset, Type *PointerTy,
1924                             const Twine &Prefix) {
1925  // Even though we don't look through PHI nodes, we could be called on an
1926  // instruction in an unreachable block, which may be on a cycle.
1927  SmallPtrSet<Value *, 4> Visited;
1928  Visited.insert(Ptr);
1929  SmallVector<Value *, 4> Indices;
1930
1931  // We may end up computing an offset pointer that has the wrong type. If we
1932  // never are able to compute one directly that has the correct type, we'll
1933  // fall back to it, so keep it around here.
1934  Value *OffsetPtr = 0;
1935
1936  // Remember any i8 pointer we come across to re-use if we need to do a raw
1937  // byte offset.
1938  Value *Int8Ptr = 0;
1939  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1940
1941  Type *TargetTy = PointerTy->getPointerElementType();
1942
1943  do {
1944    // First fold any existing GEPs into the offset.
1945    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1946      APInt GEPOffset(Offset.getBitWidth(), 0);
1947      if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1948        break;
1949      Offset += GEPOffset;
1950      Ptr = GEP->getPointerOperand();
1951      if (!Visited.insert(Ptr))
1952        break;
1953    }
1954
1955    // See if we can perform a natural GEP here.
1956    Indices.clear();
1957    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1958                                           Indices, Prefix)) {
1959      if (P->getType() == PointerTy) {
1960        // Zap any offset pointer that we ended up computing in previous rounds.
1961        if (OffsetPtr && OffsetPtr->use_empty())
1962          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1963            I->eraseFromParent();
1964        return P;
1965      }
1966      if (!OffsetPtr) {
1967        OffsetPtr = P;
1968      }
1969    }
1970
1971    // Stash this pointer if we've found an i8*.
1972    if (Ptr->getType()->isIntegerTy(8)) {
1973      Int8Ptr = Ptr;
1974      Int8PtrOffset = Offset;
1975    }
1976
1977    // Peel off a layer of the pointer and update the offset appropriately.
1978    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1979      Ptr = cast<Operator>(Ptr)->getOperand(0);
1980    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1981      if (GA->mayBeOverridden())
1982        break;
1983      Ptr = GA->getAliasee();
1984    } else {
1985      break;
1986    }
1987    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1988  } while (Visited.insert(Ptr));
1989
1990  if (!OffsetPtr) {
1991    if (!Int8Ptr) {
1992      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1993                                  Prefix + ".raw_cast");
1994      Int8PtrOffset = Offset;
1995    }
1996
1997    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1998      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1999                            Prefix + ".raw_idx");
2000  }
2001  Ptr = OffsetPtr;
2002
2003  // On the off chance we were targeting i8*, guard the bitcast here.
2004  if (Ptr->getType() != PointerTy)
2005    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
2006
2007  return Ptr;
2008}
2009
2010/// \brief Test whether we can convert a value from the old to the new type.
2011///
2012/// This predicate should be used to guard calls to convertValue in order to
2013/// ensure that we only try to convert viable values. The strategy is that we
2014/// will peel off single element struct and array wrappings to get to an
2015/// underlying value, and convert that value.
2016static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
2017  if (OldTy == NewTy)
2018    return true;
2019  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
2020    return false;
2021  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
2022    return false;
2023
2024  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
2025    if (NewTy->isPointerTy() && OldTy->isPointerTy())
2026      return true;
2027    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
2028      return true;
2029    return false;
2030  }
2031
2032  return true;
2033}
2034
2035/// \brief Generic routine to convert an SSA value to a value of a different
2036/// type.
2037///
2038/// This will try various different casting techniques, such as bitcasts,
2039/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
2040/// two types for viability with this routine.
2041static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2042                           Type *Ty) {
2043  assert(canConvertValue(DL, V->getType(), Ty) &&
2044         "Value not convertable to type");
2045  if (V->getType() == Ty)
2046    return V;
2047  if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2048    return IRB.CreateIntToPtr(V, Ty);
2049  if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2050    return IRB.CreatePtrToInt(V, Ty);
2051
2052  return IRB.CreateBitCast(V, Ty);
2053}
2054
2055/// \brief Test whether the given alloca partition can be promoted to a vector.
2056///
2057/// This is a quick test to check whether we can rewrite a particular alloca
2058/// partition (and its newly formed alloca) into a vector alloca with only
2059/// whole-vector loads and stores such that it could be promoted to a vector
2060/// SSA value. We only can ensure this for a limited set of operations, and we
2061/// don't want to do the rewrites unless we are confident that the result will
2062/// be promotable, so we have an early test here.
2063static bool isVectorPromotionViable(const DataLayout &TD,
2064                                    Type *AllocaTy,
2065                                    AllocaPartitioning &P,
2066                                    uint64_t PartitionBeginOffset,
2067                                    uint64_t PartitionEndOffset,
2068                                    AllocaPartitioning::const_use_iterator I,
2069                                    AllocaPartitioning::const_use_iterator E) {
2070  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2071  if (!Ty)
2072    return false;
2073
2074  uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2075  uint64_t ElementSize = Ty->getScalarSizeInBits();
2076
2077  // While the definition of LLVM vectors is bitpacked, we don't support sizes
2078  // that aren't byte sized.
2079  if (ElementSize % 8)
2080    return false;
2081  assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2082  VecSize /= 8;
2083  ElementSize /= 8;
2084
2085  for (; I != E; ++I) {
2086    if (!I->U)
2087      continue; // Skip dead use.
2088
2089    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2090    uint64_t BeginIndex = BeginOffset / ElementSize;
2091    if (BeginIndex * ElementSize != BeginOffset ||
2092        BeginIndex >= Ty->getNumElements())
2093      return false;
2094    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2095    uint64_t EndIndex = EndOffset / ElementSize;
2096    if (EndIndex * ElementSize != EndOffset ||
2097        EndIndex > Ty->getNumElements())
2098      return false;
2099
2100    // FIXME: We should build shuffle vector instructions to handle
2101    // non-element-sized accesses.
2102    if ((EndOffset - BeginOffset) != ElementSize &&
2103        (EndOffset - BeginOffset) != VecSize)
2104      return false;
2105
2106    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2107      if (MI->isVolatile())
2108        return false;
2109      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2110        const AllocaPartitioning::MemTransferOffsets &MTO
2111          = P.getMemTransferOffsets(*MTI);
2112        if (!MTO.IsSplittable)
2113          return false;
2114      }
2115    } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
2116      // Disable vector promotion when there are loads or stores of an FCA.
2117      return false;
2118    } else if (!isa<LoadInst>(I->U->getUser()) &&
2119               !isa<StoreInst>(I->U->getUser())) {
2120      return false;
2121    }
2122  }
2123  return true;
2124}
2125
2126/// \brief Test whether the given alloca partition's integer operations can be
2127/// widened to promotable ones.
2128///
2129/// This is a quick test to check whether we can rewrite the integer loads and
2130/// stores to a particular alloca into wider loads and stores and be able to
2131/// promote the resulting alloca.
2132static bool isIntegerWideningViable(const DataLayout &TD,
2133                                    Type *AllocaTy,
2134                                    uint64_t AllocBeginOffset,
2135                                    AllocaPartitioning &P,
2136                                    AllocaPartitioning::const_use_iterator I,
2137                                    AllocaPartitioning::const_use_iterator E) {
2138  uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
2139
2140  // Don't try to handle allocas with bit-padding.
2141  if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
2142    return false;
2143
2144  uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2145
2146  // Check the uses to ensure the uses are (likely) promoteable integer uses.
2147  // Also ensure that the alloca has a covering load or store. We don't want
2148  // to widen the integer operotains only to fail to promote due to some other
2149  // unsplittable entry (which we may make splittable later).
2150  bool WholeAllocaOp = false;
2151  for (; I != E; ++I) {
2152    if (!I->U)
2153      continue; // Skip dead use.
2154
2155    uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2156    uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2157
2158    // We can't reasonably handle cases where the load or store extends past
2159    // the end of the aloca's type and into its padding.
2160    if (RelEnd > Size)
2161      return false;
2162
2163    if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2164      if (LI->isVolatile())
2165        return false;
2166      if (RelBegin == 0 && RelEnd == Size)
2167        WholeAllocaOp = true;
2168      if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2169        if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
2170          return false;
2171        continue;
2172      }
2173      // Non-integer loads need to be convertible from the alloca type so that
2174      // they are promotable.
2175      if (RelBegin != 0 || RelEnd != Size ||
2176          !canConvertValue(TD, AllocaTy, LI->getType()))
2177        return false;
2178    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2179      Type *ValueTy = SI->getValueOperand()->getType();
2180      if (SI->isVolatile())
2181        return false;
2182      if (RelBegin == 0 && RelEnd == Size)
2183        WholeAllocaOp = true;
2184      if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2185        if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
2186          return false;
2187        continue;
2188      }
2189      // Non-integer stores need to be convertible to the alloca type so that
2190      // they are promotable.
2191      if (RelBegin != 0 || RelEnd != Size ||
2192          !canConvertValue(TD, ValueTy, AllocaTy))
2193        return false;
2194    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
2195      if (MI->isVolatile())
2196        return false;
2197      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
2198        const AllocaPartitioning::MemTransferOffsets &MTO
2199          = P.getMemTransferOffsets(*MTI);
2200        if (!MTO.IsSplittable)
2201          return false;
2202      }
2203    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2204      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2205          II->getIntrinsicID() != Intrinsic::lifetime_end)
2206        return false;
2207    } else {
2208      return false;
2209    }
2210  }
2211  return WholeAllocaOp;
2212}
2213
2214namespace {
2215/// \brief Visitor to rewrite instructions using a partition of an alloca to
2216/// use a new alloca.
2217///
2218/// Also implements the rewriting to vector-based accesses when the partition
2219/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2220/// lives here.
2221class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2222                                                   bool> {
2223  // Befriend the base class so it can delegate to private visit methods.
2224  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2225
2226  const DataLayout &TD;
2227  AllocaPartitioning &P;
2228  SROA &Pass;
2229  AllocaInst &OldAI, &NewAI;
2230  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2231  Type *NewAllocaTy;
2232
2233  // If we are rewriting an alloca partition which can be written as pure
2234  // vector operations, we stash extra information here. When VecTy is
2235  // non-null, we have some strict guarantees about the rewriten alloca:
2236  //   - The new alloca is exactly the size of the vector type here.
2237  //   - The accesses all either map to the entire vector or to a single
2238  //     element.
2239  //   - The set of accessing instructions is only one of those handled above
2240  //     in isVectorPromotionViable. Generally these are the same access kinds
2241  //     which are promotable via mem2reg.
2242  VectorType *VecTy;
2243  Type *ElementTy;
2244  uint64_t ElementSize;
2245
2246  // This is a convenience and flag variable that will be null unless the new
2247  // alloca's integer operations should be widened to this integer type due to
2248  // passing isIntegerWideningViable above. If it is non-null, the desired
2249  // integer type will be stored here for easy access during rewriting.
2250  IntegerType *IntTy;
2251
2252  // The offset of the partition user currently being rewritten.
2253  uint64_t BeginOffset, EndOffset;
2254  Use *OldUse;
2255  Instruction *OldPtr;
2256
2257  // The name prefix to use when rewriting instructions for this alloca.
2258  std::string NamePrefix;
2259
2260public:
2261  AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
2262                          AllocaPartitioning::iterator PI,
2263                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2264                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
2265    : TD(TD), P(P), Pass(Pass),
2266      OldAI(OldAI), NewAI(NewAI),
2267      NewAllocaBeginOffset(NewBeginOffset),
2268      NewAllocaEndOffset(NewEndOffset),
2269      NewAllocaTy(NewAI.getAllocatedType()),
2270      VecTy(), ElementTy(), ElementSize(), IntTy(),
2271      BeginOffset(), EndOffset() {
2272  }
2273
2274  /// \brief Visit the users of the alloca partition and rewrite them.
2275  bool visitUsers(AllocaPartitioning::const_use_iterator I,
2276                  AllocaPartitioning::const_use_iterator E) {
2277    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2278                                NewAllocaBeginOffset, NewAllocaEndOffset,
2279                                I, E)) {
2280      ++NumVectorized;
2281      VecTy = cast<VectorType>(NewAI.getAllocatedType());
2282      ElementTy = VecTy->getElementType();
2283      assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2284             "Only multiple-of-8 sized vector elements are viable");
2285      ElementSize = VecTy->getScalarSizeInBits() / 8;
2286    } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2287                                       NewAllocaBeginOffset, P, I, E)) {
2288      IntTy = Type::getIntNTy(NewAI.getContext(),
2289                              TD.getTypeSizeInBits(NewAI.getAllocatedType()));
2290    }
2291    bool CanSROA = true;
2292    for (; I != E; ++I) {
2293      if (!I->U)
2294        continue; // Skip dead uses.
2295      BeginOffset = I->BeginOffset;
2296      EndOffset = I->EndOffset;
2297      OldUse = I->U;
2298      OldPtr = cast<Instruction>(I->U->get());
2299      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
2300      CanSROA &= visit(cast<Instruction>(I->U->getUser()));
2301    }
2302    if (VecTy) {
2303      assert(CanSROA);
2304      VecTy = 0;
2305      ElementTy = 0;
2306      ElementSize = 0;
2307    }
2308    if (IntTy) {
2309      assert(CanSROA);
2310      IntTy = 0;
2311    }
2312    return CanSROA;
2313  }
2314
2315private:
2316  // Every instruction which can end up as a user must have a rewrite rule.
2317  bool visitInstruction(Instruction &I) {
2318    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2319    llvm_unreachable("No rewrite rule for this instruction!");
2320  }
2321
2322  Twine getName(const Twine &Suffix) {
2323    return NamePrefix + Suffix;
2324  }
2325
2326  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2327    assert(BeginOffset >= NewAllocaBeginOffset);
2328    unsigned AS = cast<PointerType>(PointerTy)->getAddressSpace();
2329    APInt Offset(TD.getPointerSizeInBits(AS), BeginOffset - NewAllocaBeginOffset);
2330    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2331  }
2332
2333  /// \brief Compute suitable alignment to access an offset into the new alloca.
2334  unsigned getOffsetAlign(uint64_t Offset) {
2335    unsigned NewAIAlign = NewAI.getAlignment();
2336    if (!NewAIAlign)
2337      NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2338    return MinAlign(NewAIAlign, Offset);
2339  }
2340
2341  /// \brief Compute suitable alignment to access this partition of the new
2342  /// alloca.
2343  unsigned getPartitionAlign() {
2344    return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
2345  }
2346
2347  /// \brief Compute suitable alignment to access a type at an offset of the
2348  /// new alloca.
2349  ///
2350  /// \returns zero if the type's ABI alignment is a suitable alignment,
2351  /// otherwise returns the maximal suitable alignment.
2352  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2353    unsigned Align = getOffsetAlign(Offset);
2354    return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2355  }
2356
2357  /// \brief Compute suitable alignment to access a type at the beginning of
2358  /// this partition of the new alloca.
2359  ///
2360  /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2361  unsigned getPartitionTypeAlign(Type *Ty) {
2362    return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
2363  }
2364
2365  ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2366    assert(VecTy && "Can only call getIndex when rewriting a vector");
2367    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2368    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2369    uint32_t Index = RelOffset / ElementSize;
2370    assert(Index * ElementSize == RelOffset);
2371    return IRB.getInt32(Index);
2372  }
2373
2374  Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
2375                        uint64_t Offset) {
2376    assert(IntTy && "We cannot extract an integer from the alloca");
2377    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2378                                     getName(".load"));
2379    V = convertValue(TD, IRB, V, IntTy);
2380    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2381    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2382    assert(TD.getTypeStoreSize(TargetTy) + RelOffset <=
2383           TD.getTypeStoreSize(IntTy) &&
2384           "Element load outside of alloca store");
2385    uint64_t ShAmt = 8*RelOffset;
2386    if (TD.isBigEndian())
2387      ShAmt = 8*(TD.getTypeStoreSize(IntTy) -
2388                 TD.getTypeStoreSize(TargetTy) - RelOffset);
2389    if (ShAmt)
2390      V = IRB.CreateLShr(V, ShAmt, getName(".shift"));
2391    assert(TargetTy->getBitWidth() <= IntTy->getBitWidth() &&
2392           "Cannot extract to a larger integer!");
2393    if (TargetTy != IntTy)
2394      V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
2395    return V;
2396  }
2397
2398  StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
2399    IntegerType *Ty = cast<IntegerType>(V->getType());
2400    assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2401           "Cannot insert a larger integer!");
2402    if (Ty != IntTy)
2403      V = IRB.CreateZExt(V, IntTy, getName(".ext"));
2404    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2405    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2406    assert(TD.getTypeStoreSize(Ty) + RelOffset <=
2407           TD.getTypeStoreSize(IntTy) &&
2408           "Element store outside of alloca store");
2409    uint64_t ShAmt = 8*RelOffset;
2410    if (TD.isBigEndian())
2411      ShAmt = 8*(TD.getTypeStoreSize(IntTy) - TD.getTypeStoreSize(Ty)
2412                 - RelOffset);
2413    if (ShAmt)
2414      V = IRB.CreateShl(V, ShAmt, getName(".shift"));
2415
2416    if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2417      APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2418      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2419                                         getName(".oldload"));
2420      Old = convertValue(TD, IRB, Old, IntTy);
2421      Old = IRB.CreateAnd(Old, Mask, getName(".mask"));
2422      V = IRB.CreateOr(Old, V, getName(".insert"));
2423    }
2424    V = convertValue(TD, IRB, V, NewAllocaTy);
2425    return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2426  }
2427
2428  void deleteIfTriviallyDead(Value *V) {
2429    Instruction *I = cast<Instruction>(V);
2430    if (isInstructionTriviallyDead(I))
2431      Pass.DeadInsts.push_back(I);
2432  }
2433
2434  bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2435    Value *Result;
2436    if (LI.getType() == VecTy->getElementType() ||
2437        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2438      Result = IRB.CreateExtractElement(
2439        IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2440        getIndex(IRB, BeginOffset), getName(".extract"));
2441    } else {
2442      Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2443                                     getName(".load"));
2444    }
2445    if (Result->getType() != LI.getType())
2446      Result = convertValue(TD, IRB, Result, LI.getType());
2447    LI.replaceAllUsesWith(Result);
2448    Pass.DeadInsts.push_back(&LI);
2449
2450    DEBUG(dbgs() << "          to: " << *Result << "\n");
2451    return true;
2452  }
2453
2454  bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2455    assert(!LI.isVolatile());
2456    Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
2457                                   BeginOffset);
2458    LI.replaceAllUsesWith(Result);
2459    Pass.DeadInsts.push_back(&LI);
2460    DEBUG(dbgs() << "          to: " << *Result << "\n");
2461    return true;
2462  }
2463
2464  bool visitLoadInst(LoadInst &LI) {
2465    DEBUG(dbgs() << "    original: " << LI << "\n");
2466    Value *OldOp = LI.getOperand(0);
2467    assert(OldOp == OldPtr);
2468    IRBuilder<> IRB(&LI);
2469
2470    if (VecTy)
2471      return rewriteVectorizedLoadInst(IRB, LI, OldOp);
2472    if (IntTy && LI.getType()->isIntegerTy())
2473      return rewriteIntegerLoad(IRB, LI);
2474
2475    if (BeginOffset == NewAllocaBeginOffset &&
2476        canConvertValue(TD, NewAllocaTy, LI.getType())) {
2477      Value *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2478                                           LI.isVolatile(), getName(".load"));
2479      Value *NewV = convertValue(TD, IRB, NewLI, LI.getType());
2480      LI.replaceAllUsesWith(NewV);
2481      Pass.DeadInsts.push_back(&LI);
2482
2483      DEBUG(dbgs() << "          to: " << *NewLI << "\n");
2484      return !LI.isVolatile();
2485    }
2486
2487    assert(!IntTy && "Invalid load found with int-op widening enabled");
2488
2489    Value *NewPtr = getAdjustedAllocaPtr(IRB,
2490                                         LI.getPointerOperand()->getType());
2491    LI.setOperand(0, NewPtr);
2492    LI.setAlignment(getPartitionTypeAlign(LI.getType()));
2493    DEBUG(dbgs() << "          to: " << LI << "\n");
2494
2495    deleteIfTriviallyDead(OldOp);
2496    return NewPtr == &NewAI && !LI.isVolatile();
2497  }
2498
2499  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2500                                  Value *OldOp) {
2501    Value *V = SI.getValueOperand();
2502    if (V->getType() == ElementTy ||
2503        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2504      if (V->getType() != ElementTy)
2505        V = convertValue(TD, IRB, V, ElementTy);
2506      LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2507                                           getName(".load"));
2508      V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
2509                                  getName(".insert"));
2510    } else if (V->getType() != VecTy) {
2511      V = convertValue(TD, IRB, V, VecTy);
2512    }
2513    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2514    Pass.DeadInsts.push_back(&SI);
2515
2516    (void)Store;
2517    DEBUG(dbgs() << "          to: " << *Store << "\n");
2518    return true;
2519  }
2520
2521  bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2522    assert(!SI.isVolatile());
2523    StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2524    Pass.DeadInsts.push_back(&SI);
2525    (void)Store;
2526    DEBUG(dbgs() << "          to: " << *Store << "\n");
2527    return true;
2528  }
2529
2530  bool visitStoreInst(StoreInst &SI) {
2531    DEBUG(dbgs() << "    original: " << SI << "\n");
2532    Value *OldOp = SI.getOperand(1);
2533    assert(OldOp == OldPtr);
2534    IRBuilder<> IRB(&SI);
2535
2536    if (VecTy)
2537      return rewriteVectorizedStoreInst(IRB, SI, OldOp);
2538    Type *ValueTy = SI.getValueOperand()->getType();
2539    if (IntTy && ValueTy->isIntegerTy())
2540      return rewriteIntegerStore(IRB, SI);
2541
2542    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2543    // alloca that should be re-examined after promoting this alloca.
2544    if (ValueTy->isPointerTy())
2545      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
2546                                                  ->stripInBoundsOffsets()))
2547        Pass.PostPromotionWorklist.insert(AI);
2548
2549    if (BeginOffset == NewAllocaBeginOffset &&
2550        canConvertValue(TD, ValueTy, NewAllocaTy)) {
2551      Value *NewV = convertValue(TD, IRB, SI.getValueOperand(), NewAllocaTy);
2552      StoreInst *NewSI = IRB.CreateAlignedStore(NewV, &NewAI, NewAI.getAlignment(),
2553                                                SI.isVolatile());
2554      (void)NewSI;
2555      Pass.DeadInsts.push_back(&SI);
2556
2557      DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2558      return !SI.isVolatile();
2559    }
2560
2561    assert(!IntTy && "Invalid store found with int-op widening enabled");
2562
2563    Value *NewPtr = getAdjustedAllocaPtr(IRB,
2564                                         SI.getPointerOperand()->getType());
2565    SI.setOperand(1, NewPtr);
2566    SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
2567    DEBUG(dbgs() << "          to: " << SI << "\n");
2568
2569    deleteIfTriviallyDead(OldOp);
2570    return NewPtr == &NewAI && !SI.isVolatile();
2571  }
2572
2573  bool visitMemSetInst(MemSetInst &II) {
2574    DEBUG(dbgs() << "    original: " << II << "\n");
2575    IRBuilder<> IRB(&II);
2576    assert(II.getRawDest() == OldPtr);
2577
2578    // If the memset has a variable size, it cannot be split, just adjust the
2579    // pointer to the new alloca.
2580    if (!isa<Constant>(II.getLength())) {
2581      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2582      Type *CstTy = II.getAlignmentCst()->getType();
2583      II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
2584
2585      deleteIfTriviallyDead(OldPtr);
2586      return false;
2587    }
2588
2589    // Record this instruction for deletion.
2590    if (Pass.DeadSplitInsts.insert(&II))
2591      Pass.DeadInsts.push_back(&II);
2592
2593    Type *AllocaTy = NewAI.getAllocatedType();
2594    Type *ScalarTy = AllocaTy->getScalarType();
2595
2596    // If this doesn't map cleanly onto the alloca type, and that type isn't
2597    // a single value type, just emit a memset.
2598    if (!VecTy && !IntTy &&
2599        (BeginOffset != NewAllocaBeginOffset ||
2600         EndOffset != NewAllocaEndOffset ||
2601         !AllocaTy->isSingleValueType() ||
2602         !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2603      Type *SizeTy = II.getLength()->getType();
2604      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2605      CallInst *New
2606        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2607                                                II.getRawDest()->getType()),
2608                           II.getValue(), Size, getPartitionAlign(),
2609                           II.isVolatile());
2610      (void)New;
2611      DEBUG(dbgs() << "          to: " << *New << "\n");
2612      return false;
2613    }
2614
2615    // If we can represent this as a simple value, we have to build the actual
2616    // value to store, which requires expanding the byte present in memset to
2617    // a sensible representation for the alloca type. This is essentially
2618    // splatting the byte to a sufficiently wide integer, bitcasting to the
2619    // desired scalar type, and splatting it across any desired vector type.
2620    uint64_t Size = EndOffset - BeginOffset;
2621    Value *V = II.getValue();
2622    IntegerType *VTy = cast<IntegerType>(V->getType());
2623    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2624    if (Size*8 > VTy->getBitWidth())
2625      V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
2626                        ConstantExpr::getUDiv(
2627                          Constant::getAllOnesValue(SplatIntTy),
2628                          ConstantExpr::getZExt(
2629                            Constant::getAllOnesValue(V->getType()),
2630                            SplatIntTy)),
2631                        getName(".isplat"));
2632
2633    // If this is an element-wide memset of a vectorizable alloca, insert it.
2634    if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2635                  EndOffset < NewAllocaEndOffset)) {
2636      if (V->getType() != ScalarTy)
2637        V = convertValue(TD, IRB, V, ScalarTy);
2638      StoreInst *Store = IRB.CreateAlignedStore(
2639        IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2640                                                      NewAI.getAlignment(),
2641                                                      getName(".load")),
2642                                V, getIndex(IRB, BeginOffset),
2643                                getName(".insert")),
2644        &NewAI, NewAI.getAlignment());
2645      (void)Store;
2646      DEBUG(dbgs() << "          to: " << *Store << "\n");
2647      return true;
2648    }
2649
2650    // If this is a memset on an alloca where we can widen stores, insert the
2651    // set integer.
2652    if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
2653                  EndOffset < NewAllocaEndOffset)) {
2654      assert(!II.isVolatile());
2655      StoreInst *Store = insertInteger(IRB, V, BeginOffset);
2656      (void)Store;
2657      DEBUG(dbgs() << "          to: " << *Store << "\n");
2658      return true;
2659    }
2660
2661    if (V->getType() != AllocaTy)
2662      V = convertValue(TD, IRB, V, AllocaTy);
2663
2664    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2665                                        II.isVolatile());
2666    (void)New;
2667    DEBUG(dbgs() << "          to: " << *New << "\n");
2668    return !II.isVolatile();
2669  }
2670
2671  bool visitMemTransferInst(MemTransferInst &II) {
2672    // Rewriting of memory transfer instructions can be a bit tricky. We break
2673    // them into two categories: split intrinsics and unsplit intrinsics.
2674
2675    DEBUG(dbgs() << "    original: " << II << "\n");
2676    IRBuilder<> IRB(&II);
2677
2678    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2679    bool IsDest = II.getRawDest() == OldPtr;
2680
2681    const AllocaPartitioning::MemTransferOffsets &MTO
2682      = P.getMemTransferOffsets(II);
2683
2684    assert(OldPtr->getType()->isPointerTy() && "Must be a pointer type!");
2685    unsigned AS = cast<PointerType>(OldPtr->getType())->getAddressSpace();
2686    // Compute the relative offset within the transfer.
2687    unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
2688    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2689                                                       : MTO.SourceBegin));
2690
2691    unsigned Align = II.getAlignment();
2692    if (Align > 1)
2693      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2694                       MinAlign(II.getAlignment(), getPartitionAlign()));
2695
2696    // For unsplit intrinsics, we simply modify the source and destination
2697    // pointers in place. This isn't just an optimization, it is a matter of
2698    // correctness. With unsplit intrinsics we may be dealing with transfers
2699    // within a single alloca before SROA ran, or with transfers that have
2700    // a variable length. We may also be dealing with memmove instead of
2701    // memcpy, and so simply updating the pointers is the necessary for us to
2702    // update both source and dest of a single call.
2703    if (!MTO.IsSplittable) {
2704      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2705      if (IsDest)
2706        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2707      else
2708        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2709
2710      Type *CstTy = II.getAlignmentCst()->getType();
2711      II.setAlignment(ConstantInt::get(CstTy, Align));
2712
2713      DEBUG(dbgs() << "          to: " << II << "\n");
2714      deleteIfTriviallyDead(OldOp);
2715      return false;
2716    }
2717    // For split transfer intrinsics we have an incredibly useful assurance:
2718    // the source and destination do not reside within the same alloca, and at
2719    // least one of them does not escape. This means that we can replace
2720    // memmove with memcpy, and we don't need to worry about all manner of
2721    // downsides to splitting and transforming the operations.
2722
2723    // If this doesn't map cleanly onto the alloca type, and that type isn't
2724    // a single value type, just emit a memcpy.
2725    bool EmitMemCpy
2726      = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2727                             EndOffset != NewAllocaEndOffset ||
2728                             !NewAI.getAllocatedType()->isSingleValueType());
2729
2730    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2731    // size hasn't been shrunk based on analysis of the viable range, this is
2732    // a no-op.
2733    if (EmitMemCpy && &OldAI == &NewAI) {
2734      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2735      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2736      // Ensure the start lines up.
2737      assert(BeginOffset == OrigBegin);
2738      (void)OrigBegin;
2739
2740      // Rewrite the size as needed.
2741      if (EndOffset != OrigEnd)
2742        II.setLength(ConstantInt::get(II.getLength()->getType(),
2743                                      EndOffset - BeginOffset));
2744      return false;
2745    }
2746    // Record this instruction for deletion.
2747    if (Pass.DeadSplitInsts.insert(&II))
2748      Pass.DeadInsts.push_back(&II);
2749
2750    bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2751                         EndOffset == NewAllocaEndOffset;
2752    bool IsVectorElement = VecTy && !IsWholeAlloca;
2753    uint64_t Size = EndOffset - BeginOffset;
2754    IntegerType *SubIntTy
2755      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2756
2757    Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2758                              : II.getRawDest()->getType();
2759    if (!EmitMemCpy) {
2760      if (IsVectorElement)
2761        OtherPtrTy = VecTy->getElementType()->getPointerTo();
2762      else if (IntTy && !IsWholeAlloca)
2763        OtherPtrTy = SubIntTy->getPointerTo();
2764      else
2765        OtherPtrTy = NewAI.getType();
2766    }
2767
2768    // Compute the other pointer, folding as much as possible to produce
2769    // a single, simple GEP in most cases.
2770    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2771    OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2772                              getName("." + OtherPtr->getName()));
2773
2774    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2775    // alloca that should be re-examined after rewriting this instruction.
2776    if (AllocaInst *AI
2777          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2778      Pass.Worklist.insert(AI);
2779
2780    if (EmitMemCpy) {
2781      Value *OurPtr
2782        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2783                                           : II.getRawSource()->getType());
2784      Type *SizeTy = II.getLength()->getType();
2785      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2786
2787      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2788                                       IsDest ? OtherPtr : OurPtr,
2789                                       Size, Align, II.isVolatile());
2790      (void)New;
2791      DEBUG(dbgs() << "          to: " << *New << "\n");
2792      return false;
2793    }
2794
2795    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2796    // is equivalent to 1, but that isn't true if we end up rewriting this as
2797    // a load or store.
2798    if (!Align)
2799      Align = 1;
2800
2801    Value *SrcPtr = OtherPtr;
2802    Value *DstPtr = &NewAI;
2803    if (!IsDest)
2804      std::swap(SrcPtr, DstPtr);
2805
2806    Value *Src;
2807    if (IsVectorElement && !IsDest) {
2808      // We have to extract rather than load.
2809      Src = IRB.CreateExtractElement(
2810        IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2811        getIndex(IRB, BeginOffset),
2812        getName(".copyextract"));
2813    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2814      Src = extractInteger(IRB, SubIntTy, BeginOffset);
2815    } else {
2816      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2817                                  getName(".copyload"));
2818    }
2819
2820    if (IntTy && !IsWholeAlloca && IsDest) {
2821      StoreInst *Store = insertInteger(IRB, Src, BeginOffset);
2822      (void)Store;
2823      DEBUG(dbgs() << "          to: " << *Store << "\n");
2824      return true;
2825    }
2826
2827    if (IsVectorElement && IsDest) {
2828      // We have to insert into a loaded copy before storing.
2829      Src = IRB.CreateInsertElement(
2830        IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2831        Src, getIndex(IRB, BeginOffset),
2832        getName(".insert"));
2833    }
2834
2835    StoreInst *Store = cast<StoreInst>(
2836      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2837    (void)Store;
2838    DEBUG(dbgs() << "          to: " << *Store << "\n");
2839    return !II.isVolatile();
2840  }
2841
2842  bool visitIntrinsicInst(IntrinsicInst &II) {
2843    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2844           II.getIntrinsicID() == Intrinsic::lifetime_end);
2845    DEBUG(dbgs() << "    original: " << II << "\n");
2846    IRBuilder<> IRB(&II);
2847    assert(II.getArgOperand(1) == OldPtr);
2848
2849    // Record this instruction for deletion.
2850    if (Pass.DeadSplitInsts.insert(&II))
2851      Pass.DeadInsts.push_back(&II);
2852
2853    ConstantInt *Size
2854      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2855                         EndOffset - BeginOffset);
2856    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2857    Value *New;
2858    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2859      New = IRB.CreateLifetimeStart(Ptr, Size);
2860    else
2861      New = IRB.CreateLifetimeEnd(Ptr, Size);
2862
2863    DEBUG(dbgs() << "          to: " << *New << "\n");
2864    return true;
2865  }
2866
2867  bool visitPHINode(PHINode &PN) {
2868    DEBUG(dbgs() << "    original: " << PN << "\n");
2869
2870    // We would like to compute a new pointer in only one place, but have it be
2871    // as local as possible to the PHI. To do that, we re-use the location of
2872    // the old pointer, which necessarily must be in the right position to
2873    // dominate the PHI.
2874    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2875
2876    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2877    // Replace the operands which were using the old pointer.
2878    User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2879    for (; OI != OE; ++OI)
2880      if (*OI == OldPtr)
2881        *OI = NewPtr;
2882
2883    DEBUG(dbgs() << "          to: " << PN << "\n");
2884    deleteIfTriviallyDead(OldPtr);
2885    return false;
2886  }
2887
2888  bool visitSelectInst(SelectInst &SI) {
2889    DEBUG(dbgs() << "    original: " << SI << "\n");
2890    IRBuilder<> IRB(&SI);
2891
2892    // Find the operand we need to rewrite here.
2893    bool IsTrueVal = SI.getTrueValue() == OldPtr;
2894    if (IsTrueVal)
2895      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2896    else
2897      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
2898
2899    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
2900    SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2901    DEBUG(dbgs() << "          to: " << SI << "\n");
2902    deleteIfTriviallyDead(OldPtr);
2903    return false;
2904  }
2905
2906};
2907}
2908
2909namespace {
2910/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2911///
2912/// This pass aggressively rewrites all aggregate loads and stores on
2913/// a particular pointer (or any pointer derived from it which we can identify)
2914/// with scalar loads and stores.
2915class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2916  // Befriend the base class so it can delegate to private visit methods.
2917  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2918
2919  const DataLayout &TD;
2920
2921  /// Queue of pointer uses to analyze and potentially rewrite.
2922  SmallVector<Use *, 8> Queue;
2923
2924  /// Set to prevent us from cycling with phi nodes and loops.
2925  SmallPtrSet<User *, 8> Visited;
2926
2927  /// The current pointer use being rewritten. This is used to dig up the used
2928  /// value (as opposed to the user).
2929  Use *U;
2930
2931public:
2932  AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
2933
2934  /// Rewrite loads and stores through a pointer and all pointers derived from
2935  /// it.
2936  bool rewrite(Instruction &I) {
2937    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2938    enqueueUsers(I);
2939    bool Changed = false;
2940    while (!Queue.empty()) {
2941      U = Queue.pop_back_val();
2942      Changed |= visit(cast<Instruction>(U->getUser()));
2943    }
2944    return Changed;
2945  }
2946
2947private:
2948  /// Enqueue all the users of the given instruction for further processing.
2949  /// This uses a set to de-duplicate users.
2950  void enqueueUsers(Instruction &I) {
2951    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2952         ++UI)
2953      if (Visited.insert(*UI))
2954        Queue.push_back(&UI.getUse());
2955  }
2956
2957  // Conservative default is to not rewrite anything.
2958  bool visitInstruction(Instruction &I) { return false; }
2959
2960  /// \brief Generic recursive split emission class.
2961  template <typename Derived>
2962  class OpSplitter {
2963  protected:
2964    /// The builder used to form new instructions.
2965    IRBuilder<> IRB;
2966    /// The indices which to be used with insert- or extractvalue to select the
2967    /// appropriate value within the aggregate.
2968    SmallVector<unsigned, 4> Indices;
2969    /// The indices to a GEP instruction which will move Ptr to the correct slot
2970    /// within the aggregate.
2971    SmallVector<Value *, 4> GEPIndices;
2972    /// The base pointer of the original op, used as a base for GEPing the
2973    /// split operations.
2974    Value *Ptr;
2975
2976    /// Initialize the splitter with an insertion point, Ptr and start with a
2977    /// single zero GEP index.
2978    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2979      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2980
2981  public:
2982    /// \brief Generic recursive split emission routine.
2983    ///
2984    /// This method recursively splits an aggregate op (load or store) into
2985    /// scalar or vector ops. It splits recursively until it hits a single value
2986    /// and emits that single value operation via the template argument.
2987    ///
2988    /// The logic of this routine relies on GEPs and insertvalue and
2989    /// extractvalue all operating with the same fundamental index list, merely
2990    /// formatted differently (GEPs need actual values).
2991    ///
2992    /// \param Ty  The type being split recursively into smaller ops.
2993    /// \param Agg The aggregate value being built up or stored, depending on
2994    /// whether this is splitting a load or a store respectively.
2995    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2996      if (Ty->isSingleValueType())
2997        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2998
2999      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3000        unsigned OldSize = Indices.size();
3001        (void)OldSize;
3002        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3003             ++Idx) {
3004          assert(Indices.size() == OldSize && "Did not return to the old size");
3005          Indices.push_back(Idx);
3006          GEPIndices.push_back(IRB.getInt32(Idx));
3007          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3008          GEPIndices.pop_back();
3009          Indices.pop_back();
3010        }
3011        return;
3012      }
3013
3014      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3015        unsigned OldSize = Indices.size();
3016        (void)OldSize;
3017        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3018             ++Idx) {
3019          assert(Indices.size() == OldSize && "Did not return to the old size");
3020          Indices.push_back(Idx);
3021          GEPIndices.push_back(IRB.getInt32(Idx));
3022          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3023          GEPIndices.pop_back();
3024          Indices.pop_back();
3025        }
3026        return;
3027      }
3028
3029      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3030    }
3031  };
3032
3033  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3034    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3035      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
3036
3037    /// Emit a leaf load of a single value. This is called at the leaves of the
3038    /// recursive emission to actually load values.
3039    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3040      assert(Ty->isSingleValueType());
3041      // Load the single value and insert it using the indices.
3042      Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
3043                                                         Name + ".gep"),
3044                                   Name + ".load");
3045      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3046      DEBUG(dbgs() << "          to: " << *Load << "\n");
3047    }
3048  };
3049
3050  bool visitLoadInst(LoadInst &LI) {
3051    assert(LI.getPointerOperand() == *U);
3052    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3053      return false;
3054
3055    // We have an aggregate being loaded, split it apart.
3056    DEBUG(dbgs() << "    original: " << LI << "\n");
3057    LoadOpSplitter Splitter(&LI, *U);
3058    Value *V = UndefValue::get(LI.getType());
3059    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3060    LI.replaceAllUsesWith(V);
3061    LI.eraseFromParent();
3062    return true;
3063  }
3064
3065  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3066    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
3067      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
3068
3069    /// Emit a leaf store of a single value. This is called at the leaves of the
3070    /// recursive emission to actually produce stores.
3071    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3072      assert(Ty->isSingleValueType());
3073      // Extract the single value and store it using the indices.
3074      Value *Store = IRB.CreateStore(
3075        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3076        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3077      (void)Store;
3078      DEBUG(dbgs() << "          to: " << *Store << "\n");
3079    }
3080  };
3081
3082  bool visitStoreInst(StoreInst &SI) {
3083    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3084      return false;
3085    Value *V = SI.getValueOperand();
3086    if (V->getType()->isSingleValueType())
3087      return false;
3088
3089    // We have an aggregate being stored, split it apart.
3090    DEBUG(dbgs() << "    original: " << SI << "\n");
3091    StoreOpSplitter Splitter(&SI, *U);
3092    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3093    SI.eraseFromParent();
3094    return true;
3095  }
3096
3097  bool visitBitCastInst(BitCastInst &BC) {
3098    enqueueUsers(BC);
3099    return false;
3100  }
3101
3102  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3103    enqueueUsers(GEPI);
3104    return false;
3105  }
3106
3107  bool visitPHINode(PHINode &PN) {
3108    enqueueUsers(PN);
3109    return false;
3110  }
3111
3112  bool visitSelectInst(SelectInst &SI) {
3113    enqueueUsers(SI);
3114    return false;
3115  }
3116};
3117}
3118
3119/// \brief Strip aggregate type wrapping.
3120///
3121/// This removes no-op aggregate types wrapping an underlying type. It will
3122/// strip as many layers of types as it can without changing either the type
3123/// size or the allocated size.
3124static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3125  if (Ty->isSingleValueType())
3126    return Ty;
3127
3128  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3129  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3130
3131  Type *InnerTy;
3132  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3133    InnerTy = ArrTy->getElementType();
3134  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3135    const StructLayout *SL = DL.getStructLayout(STy);
3136    unsigned Index = SL->getElementContainingOffset(0);
3137    InnerTy = STy->getElementType(Index);
3138  } else {
3139    return Ty;
3140  }
3141
3142  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3143      TypeSize > DL.getTypeSizeInBits(InnerTy))
3144    return Ty;
3145
3146  return stripAggregateTypeWrapping(DL, InnerTy);
3147}
3148
3149/// \brief Try to find a partition of the aggregate type passed in for a given
3150/// offset and size.
3151///
3152/// This recurses through the aggregate type and tries to compute a subtype
3153/// based on the offset and size. When the offset and size span a sub-section
3154/// of an array, it will even compute a new array type for that sub-section,
3155/// and the same for structs.
3156///
3157/// Note that this routine is very strict and tries to find a partition of the
3158/// type which produces the *exact* right offset and size. It is not forgiving
3159/// when the size or offset cause either end of type-based partition to be off.
3160/// Also, this is a best-effort routine. It is reasonable to give up and not
3161/// return a type if necessary.
3162static Type *getTypePartition(const DataLayout &TD, Type *Ty,
3163                              uint64_t Offset, uint64_t Size) {
3164  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3165    return stripAggregateTypeWrapping(TD, Ty);
3166
3167  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3168    // We can't partition pointers...
3169    if (SeqTy->isPointerTy())
3170      return 0;
3171
3172    Type *ElementTy = SeqTy->getElementType();
3173    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3174    uint64_t NumSkippedElements = Offset / ElementSize;
3175    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3176      if (NumSkippedElements >= ArrTy->getNumElements())
3177        return 0;
3178    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3179      if (NumSkippedElements >= VecTy->getNumElements())
3180        return 0;
3181    Offset -= NumSkippedElements * ElementSize;
3182
3183    // First check if we need to recurse.
3184    if (Offset > 0 || Size < ElementSize) {
3185      // Bail if the partition ends in a different array element.
3186      if ((Offset + Size) > ElementSize)
3187        return 0;
3188      // Recurse through the element type trying to peel off offset bytes.
3189      return getTypePartition(TD, ElementTy, Offset, Size);
3190    }
3191    assert(Offset == 0);
3192
3193    if (Size == ElementSize)
3194      return stripAggregateTypeWrapping(TD, ElementTy);
3195    assert(Size > ElementSize);
3196    uint64_t NumElements = Size / ElementSize;
3197    if (NumElements * ElementSize != Size)
3198      return 0;
3199    return ArrayType::get(ElementTy, NumElements);
3200  }
3201
3202  StructType *STy = dyn_cast<StructType>(Ty);
3203  if (!STy)
3204    return 0;
3205
3206  const StructLayout *SL = TD.getStructLayout(STy);
3207  if (Offset >= SL->getSizeInBytes())
3208    return 0;
3209  uint64_t EndOffset = Offset + Size;
3210  if (EndOffset > SL->getSizeInBytes())
3211    return 0;
3212
3213  unsigned Index = SL->getElementContainingOffset(Offset);
3214  Offset -= SL->getElementOffset(Index);
3215
3216  Type *ElementTy = STy->getElementType(Index);
3217  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3218  if (Offset >= ElementSize)
3219    return 0; // The offset points into alignment padding.
3220
3221  // See if any partition must be contained by the element.
3222  if (Offset > 0 || Size < ElementSize) {
3223    if ((Offset + Size) > ElementSize)
3224      return 0;
3225    return getTypePartition(TD, ElementTy, Offset, Size);
3226  }
3227  assert(Offset == 0);
3228
3229  if (Size == ElementSize)
3230    return stripAggregateTypeWrapping(TD, ElementTy);
3231
3232  StructType::element_iterator EI = STy->element_begin() + Index,
3233                               EE = STy->element_end();
3234  if (EndOffset < SL->getSizeInBytes()) {
3235    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3236    if (Index == EndIndex)
3237      return 0; // Within a single element and its padding.
3238
3239    // Don't try to form "natural" types if the elements don't line up with the
3240    // expected size.
3241    // FIXME: We could potentially recurse down through the last element in the
3242    // sub-struct to find a natural end point.
3243    if (SL->getElementOffset(EndIndex) != EndOffset)
3244      return 0;
3245
3246    assert(Index < EndIndex);
3247    EE = STy->element_begin() + EndIndex;
3248  }
3249
3250  // Try to build up a sub-structure.
3251  SmallVector<Type *, 4> ElementTys;
3252  do {
3253    ElementTys.push_back(*EI++);
3254  } while (EI != EE);
3255  StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
3256                                      STy->isPacked());
3257  const StructLayout *SubSL = TD.getStructLayout(SubTy);
3258  if (Size != SubSL->getSizeInBytes())
3259    return 0; // The sub-struct doesn't have quite the size needed.
3260
3261  return SubTy;
3262}
3263
3264/// \brief Rewrite an alloca partition's users.
3265///
3266/// This routine drives both of the rewriting goals of the SROA pass. It tries
3267/// to rewrite uses of an alloca partition to be conducive for SSA value
3268/// promotion. If the partition needs a new, more refined alloca, this will
3269/// build that new alloca, preserving as much type information as possible, and
3270/// rewrite the uses of the old alloca to point at the new one and have the
3271/// appropriate new offsets. It also evaluates how successful the rewrite was
3272/// at enabling promotion and if it was successful queues the alloca to be
3273/// promoted.
3274bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3275                                  AllocaPartitioning &P,
3276                                  AllocaPartitioning::iterator PI) {
3277  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
3278  bool IsLive = false;
3279  for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3280                                        UE = P.use_end(PI);
3281       UI != UE && !IsLive; ++UI)
3282    if (UI->U)
3283      IsLive = true;
3284  if (!IsLive)
3285    return false; // No live uses left of this partition.
3286
3287  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3288               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3289
3290  PHIOrSelectSpeculator Speculator(*TD, P, *this);
3291  DEBUG(dbgs() << "  speculating ");
3292  DEBUG(P.print(dbgs(), PI, ""));
3293  Speculator.visitUsers(PI);
3294
3295  // Try to compute a friendly type for this partition of the alloca. This
3296  // won't always succeed, in which case we fall back to a legal integer type
3297  // or an i8 array of an appropriate size.
3298  Type *AllocaTy = 0;
3299  if (Type *PartitionTy = P.getCommonType(PI))
3300    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3301      AllocaTy = PartitionTy;
3302  if (!AllocaTy)
3303    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3304                                             PI->BeginOffset, AllocaSize))
3305      AllocaTy = PartitionTy;
3306  if ((!AllocaTy ||
3307       (AllocaTy->isArrayTy() &&
3308        AllocaTy->getArrayElementType()->isIntegerTy())) &&
3309      TD->isLegalInteger(AllocaSize * 8))
3310    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3311  if (!AllocaTy)
3312    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
3313  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
3314
3315  // Check for the case where we're going to rewrite to a new alloca of the
3316  // exact same type as the original, and with the same access offsets. In that
3317  // case, re-use the existing alloca, but still run through the rewriter to
3318  // performe phi and select speculation.
3319  AllocaInst *NewAI;
3320  if (AllocaTy == AI.getAllocatedType()) {
3321    assert(PI->BeginOffset == 0 &&
3322           "Non-zero begin offset but same alloca type");
3323    assert(PI == P.begin() && "Begin offset is zero on later partition");
3324    NewAI = &AI;
3325  } else {
3326    unsigned Alignment = AI.getAlignment();
3327    if (!Alignment) {
3328      // The minimum alignment which users can rely on when the explicit
3329      // alignment is omitted or zero is that required by the ABI for this
3330      // type.
3331      Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3332    }
3333    Alignment = MinAlign(Alignment, PI->BeginOffset);
3334    // If we will get at least this much alignment from the type alone, leave
3335    // the alloca's alignment unconstrained.
3336    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3337      Alignment = 0;
3338    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
3339                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
3340                           &AI);
3341    ++NumNewAllocas;
3342  }
3343
3344  DEBUG(dbgs() << "Rewriting alloca partition "
3345               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3346               << *NewAI << "\n");
3347
3348  // Track the high watermark of the post-promotion worklist. We will reset it
3349  // to this point if the alloca is not in fact scheduled for promotion.
3350  unsigned PPWOldSize = PostPromotionWorklist.size();
3351
3352  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3353                                   PI->BeginOffset, PI->EndOffset);
3354  DEBUG(dbgs() << "  rewriting ");
3355  DEBUG(P.print(dbgs(), PI, ""));
3356  bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3357  if (Promotable) {
3358    DEBUG(dbgs() << "  and queuing for promotion\n");
3359    PromotableAllocas.push_back(NewAI);
3360  } else if (NewAI != &AI) {
3361    // If we can't promote the alloca, iterate on it to check for new
3362    // refinements exposed by splitting the current alloca. Don't iterate on an
3363    // alloca which didn't actually change and didn't get promoted.
3364    Worklist.insert(NewAI);
3365  }
3366
3367  // Drop any post-promotion work items if promotion didn't happen.
3368  if (!Promotable)
3369    while (PostPromotionWorklist.size() > PPWOldSize)
3370      PostPromotionWorklist.pop_back();
3371
3372  return true;
3373}
3374
3375/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3376bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3377  bool Changed = false;
3378  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3379       ++PI)
3380    Changed |= rewriteAllocaPartition(AI, P, PI);
3381
3382  return Changed;
3383}
3384
3385/// \brief Analyze an alloca for SROA.
3386///
3387/// This analyzes the alloca to ensure we can reason about it, builds
3388/// a partitioning of the alloca, and then hands it off to be split and
3389/// rewritten as needed.
3390bool SROA::runOnAlloca(AllocaInst &AI) {
3391  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3392  ++NumAllocasAnalyzed;
3393
3394  // Special case dead allocas, as they're trivial.
3395  if (AI.use_empty()) {
3396    AI.eraseFromParent();
3397    return true;
3398  }
3399
3400  // Skip alloca forms that this analysis can't handle.
3401  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3402      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3403    return false;
3404
3405  bool Changed = false;
3406
3407  // First, split any FCA loads and stores touching this alloca to promote
3408  // better splitting and promotion opportunities.
3409  AggLoadStoreRewriter AggRewriter(*TD);
3410  Changed |= AggRewriter.rewrite(AI);
3411
3412  // Build the partition set using a recursive instruction-visiting builder.
3413  AllocaPartitioning P(*TD, AI);
3414  DEBUG(P.print(dbgs()));
3415  if (P.isEscaped())
3416    return Changed;
3417
3418  // Delete all the dead users of this alloca before splitting and rewriting it.
3419  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3420                                              DE = P.dead_user_end();
3421       DI != DE; ++DI) {
3422    Changed = true;
3423    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3424    DeadInsts.push_back(*DI);
3425  }
3426  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3427                                            DE = P.dead_op_end();
3428       DO != DE; ++DO) {
3429    Value *OldV = **DO;
3430    // Clobber the use with an undef value.
3431    **DO = UndefValue::get(OldV->getType());
3432    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3433      if (isInstructionTriviallyDead(OldI)) {
3434        Changed = true;
3435        DeadInsts.push_back(OldI);
3436      }
3437  }
3438
3439  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3440  if (P.begin() == P.end())
3441    return Changed;
3442
3443  return splitAlloca(AI, P) || Changed;
3444}
3445
3446/// \brief Delete the dead instructions accumulated in this run.
3447///
3448/// Recursively deletes the dead instructions we've accumulated. This is done
3449/// at the very end to maximize locality of the recursive delete and to
3450/// minimize the problems of invalidated instruction pointers as such pointers
3451/// are used heavily in the intermediate stages of the algorithm.
3452///
3453/// We also record the alloca instructions deleted here so that they aren't
3454/// subsequently handed to mem2reg to promote.
3455void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3456  DeadSplitInsts.clear();
3457  while (!DeadInsts.empty()) {
3458    Instruction *I = DeadInsts.pop_back_val();
3459    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3460
3461    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3462      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3463        // Zero out the operand and see if it becomes trivially dead.
3464        *OI = 0;
3465        if (isInstructionTriviallyDead(U))
3466          DeadInsts.push_back(U);
3467      }
3468
3469    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3470      DeletedAllocas.insert(AI);
3471
3472    ++NumDeleted;
3473    I->eraseFromParent();
3474  }
3475}
3476
3477/// \brief Promote the allocas, using the best available technique.
3478///
3479/// This attempts to promote whatever allocas have been identified as viable in
3480/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3481/// If there is a domtree available, we attempt to promote using the full power
3482/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3483/// based on the SSAUpdater utilities. This function returns whether any
3484/// promotion occured.
3485bool SROA::promoteAllocas(Function &F) {
3486  if (PromotableAllocas.empty())
3487    return false;
3488
3489  NumPromoted += PromotableAllocas.size();
3490
3491  if (DT && !ForceSSAUpdater) {
3492    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3493    PromoteMemToReg(PromotableAllocas, *DT);
3494    PromotableAllocas.clear();
3495    return true;
3496  }
3497
3498  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3499  SSAUpdater SSA;
3500  DIBuilder DIB(*F.getParent());
3501  SmallVector<Instruction*, 64> Insts;
3502
3503  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3504    AllocaInst *AI = PromotableAllocas[Idx];
3505    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3506         UI != UE;) {
3507      Instruction *I = cast<Instruction>(*UI++);
3508      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3509      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3510      // leading to them) here. Eventually it should use them to optimize the
3511      // scalar values produced.
3512      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3513        assert(onlyUsedByLifetimeMarkers(I) &&
3514               "Found a bitcast used outside of a lifetime marker.");
3515        while (!I->use_empty())
3516          cast<Instruction>(*I->use_begin())->eraseFromParent();
3517        I->eraseFromParent();
3518        continue;
3519      }
3520      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3521        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3522               II->getIntrinsicID() == Intrinsic::lifetime_end);
3523        II->eraseFromParent();
3524        continue;
3525      }
3526
3527      Insts.push_back(I);
3528    }
3529    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3530    Insts.clear();
3531  }
3532
3533  PromotableAllocas.clear();
3534  return true;
3535}
3536
3537namespace {
3538  /// \brief A predicate to test whether an alloca belongs to a set.
3539  class IsAllocaInSet {
3540    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3541    const SetType &Set;
3542
3543  public:
3544    typedef AllocaInst *argument_type;
3545
3546    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3547    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3548  };
3549}
3550
3551bool SROA::runOnFunction(Function &F) {
3552  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3553  C = &F.getContext();
3554  TD = getAnalysisIfAvailable<DataLayout>();
3555  if (!TD) {
3556    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3557    return false;
3558  }
3559  DT = getAnalysisIfAvailable<DominatorTree>();
3560
3561  BasicBlock &EntryBB = F.getEntryBlock();
3562  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3563       I != E; ++I)
3564    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3565      Worklist.insert(AI);
3566
3567  bool Changed = false;
3568  // A set of deleted alloca instruction pointers which should be removed from
3569  // the list of promotable allocas.
3570  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3571
3572  do {
3573    while (!Worklist.empty()) {
3574      Changed |= runOnAlloca(*Worklist.pop_back_val());
3575      deleteDeadInstructions(DeletedAllocas);
3576
3577      // Remove the deleted allocas from various lists so that we don't try to
3578      // continue processing them.
3579      if (!DeletedAllocas.empty()) {
3580        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3581        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3582        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3583                                               PromotableAllocas.end(),
3584                                               IsAllocaInSet(DeletedAllocas)),
3585                                PromotableAllocas.end());
3586        DeletedAllocas.clear();
3587      }
3588    }
3589
3590    Changed |= promoteAllocas(F);
3591
3592    Worklist = PostPromotionWorklist;
3593    PostPromotionWorklist.clear();
3594  } while (!Worklist.empty());
3595
3596  return Changed;
3597}
3598
3599void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3600  if (RequiresDomTree)
3601    AU.addRequired<DominatorTree>();
3602  AU.setPreservesCFG();
3603}
3604