SROA.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Loads.h"
32#include "llvm/Analysis/PtrUseVisitor.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DIBuilder.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DebugInfo.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/InstVisitor.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/TimeValue.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58
59#if __cplusplus >= 201103L && !defined(NDEBUG)
60// We only use this for a debug check in C++11
61#include <random>
62#endif
63
64using namespace llvm;
65
66#define DEBUG_TYPE "sroa"
67
68STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
69STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
70STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
71STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
72STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
73STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
74STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
75STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
76STATISTIC(NumDeleted, "Number of instructions deleted");
77STATISTIC(NumVectorized, "Number of vectorized aggregates");
78
79/// Hidden option to force the pass to not use DomTree and mem2reg, instead
80/// forming SSA values through the SSAUpdater infrastructure.
81static cl::opt<bool>
82ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
83
84/// Hidden option to enable randomly shuffling the slices to help uncover
85/// instability in their order.
86static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
87                                             cl::init(false), cl::Hidden);
88
89/// Hidden option to experiment with completely strict handling of inbounds
90/// GEPs.
91static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds",
92                                        cl::init(false), cl::Hidden);
93
94namespace {
95/// \brief A custom IRBuilder inserter which prefixes all names if they are
96/// preserved.
97template <bool preserveNames = true>
98class IRBuilderPrefixedInserter :
99    public IRBuilderDefaultInserter<preserveNames> {
100  std::string Prefix;
101
102public:
103  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
104
105protected:
106  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
107                    BasicBlock::iterator InsertPt) const {
108    IRBuilderDefaultInserter<preserveNames>::InsertHelper(
109        I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
110  }
111};
112
113// Specialization for not preserving the name is trivial.
114template <>
115class IRBuilderPrefixedInserter<false> :
116    public IRBuilderDefaultInserter<false> {
117public:
118  void SetNamePrefix(const Twine &P) {}
119};
120
121/// \brief Provide a typedef for IRBuilder that drops names in release builds.
122#ifndef NDEBUG
123typedef llvm::IRBuilder<true, ConstantFolder,
124                        IRBuilderPrefixedInserter<true> > IRBuilderTy;
125#else
126typedef llvm::IRBuilder<false, ConstantFolder,
127                        IRBuilderPrefixedInserter<false> > IRBuilderTy;
128#endif
129}
130
131namespace {
132/// \brief A used slice of an alloca.
133///
134/// This structure represents a slice of an alloca used by some instruction. It
135/// stores both the begin and end offsets of this use, a pointer to the use
136/// itself, and a flag indicating whether we can classify the use as splittable
137/// or not when forming partitions of the alloca.
138class Slice {
139  /// \brief The beginning offset of the range.
140  uint64_t BeginOffset;
141
142  /// \brief The ending offset, not included in the range.
143  uint64_t EndOffset;
144
145  /// \brief Storage for both the use of this slice and whether it can be
146  /// split.
147  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
148
149public:
150  Slice() : BeginOffset(), EndOffset() {}
151  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
152      : BeginOffset(BeginOffset), EndOffset(EndOffset),
153        UseAndIsSplittable(U, IsSplittable) {}
154
155  uint64_t beginOffset() const { return BeginOffset; }
156  uint64_t endOffset() const { return EndOffset; }
157
158  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
159  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
160
161  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
162
163  bool isDead() const { return getUse() == nullptr; }
164  void kill() { UseAndIsSplittable.setPointer(nullptr); }
165
166  /// \brief Support for ordering ranges.
167  ///
168  /// This provides an ordering over ranges such that start offsets are
169  /// always increasing, and within equal start offsets, the end offsets are
170  /// decreasing. Thus the spanning range comes first in a cluster with the
171  /// same start position.
172  bool operator<(const Slice &RHS) const {
173    if (beginOffset() < RHS.beginOffset()) return true;
174    if (beginOffset() > RHS.beginOffset()) return false;
175    if (isSplittable() != RHS.isSplittable()) return !isSplittable();
176    if (endOffset() > RHS.endOffset()) return true;
177    return false;
178  }
179
180  /// \brief Support comparison with a single offset to allow binary searches.
181  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
182                                              uint64_t RHSOffset) {
183    return LHS.beginOffset() < RHSOffset;
184  }
185  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
186                                              const Slice &RHS) {
187    return LHSOffset < RHS.beginOffset();
188  }
189
190  bool operator==(const Slice &RHS) const {
191    return isSplittable() == RHS.isSplittable() &&
192           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
193  }
194  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
195};
196} // end anonymous namespace
197
198namespace llvm {
199template <typename T> struct isPodLike;
200template <> struct isPodLike<Slice> {
201   static const bool value = true;
202};
203}
204
205namespace {
206/// \brief Representation of the alloca slices.
207///
208/// This class represents the slices of an alloca which are formed by its
209/// various uses. If a pointer escapes, we can't fully build a representation
210/// for the slices used and we reflect that in this structure. The uses are
211/// stored, sorted by increasing beginning offset and with unsplittable slices
212/// starting at a particular offset before splittable slices.
213class AllocaSlices {
214public:
215  /// \brief Construct the slices of a particular alloca.
216  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
217
218  /// \brief Test whether a pointer to the allocation escapes our analysis.
219  ///
220  /// If this is true, the slices are never fully built and should be
221  /// ignored.
222  bool isEscaped() const { return PointerEscapingInstr; }
223
224  /// \brief Support for iterating over the slices.
225  /// @{
226  typedef SmallVectorImpl<Slice>::iterator iterator;
227  iterator begin() { return Slices.begin(); }
228  iterator end() { return Slices.end(); }
229
230  typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
231  const_iterator begin() const { return Slices.begin(); }
232  const_iterator end() const { return Slices.end(); }
233  /// @}
234
235  /// \brief Allow iterating the dead users for this alloca.
236  ///
237  /// These are instructions which will never actually use the alloca as they
238  /// are outside the allocated range. They are safe to replace with undef and
239  /// delete.
240  /// @{
241  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
242  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
243  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
244  /// @}
245
246  /// \brief Allow iterating the dead expressions referring to this alloca.
247  ///
248  /// These are operands which have cannot actually be used to refer to the
249  /// alloca as they are outside its range and the user doesn't correct for
250  /// that. These mostly consist of PHI node inputs and the like which we just
251  /// need to replace with undef.
252  /// @{
253  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
254  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
255  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
256  /// @}
257
258#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
259  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
260  void printSlice(raw_ostream &OS, const_iterator I,
261                  StringRef Indent = "  ") const;
262  void printUse(raw_ostream &OS, const_iterator I,
263                StringRef Indent = "  ") const;
264  void print(raw_ostream &OS) const;
265  void dump(const_iterator I) const;
266  void dump() const;
267#endif
268
269private:
270  template <typename DerivedT, typename RetT = void> class BuilderBase;
271  class SliceBuilder;
272  friend class AllocaSlices::SliceBuilder;
273
274#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
275  /// \brief Handle to alloca instruction to simplify method interfaces.
276  AllocaInst &AI;
277#endif
278
279  /// \brief The instruction responsible for this alloca not having a known set
280  /// of slices.
281  ///
282  /// When an instruction (potentially) escapes the pointer to the alloca, we
283  /// store a pointer to that here and abort trying to form slices of the
284  /// alloca. This will be null if the alloca slices are analyzed successfully.
285  Instruction *PointerEscapingInstr;
286
287  /// \brief The slices of the alloca.
288  ///
289  /// We store a vector of the slices formed by uses of the alloca here. This
290  /// vector is sorted by increasing begin offset, and then the unsplittable
291  /// slices before the splittable ones. See the Slice inner class for more
292  /// details.
293  SmallVector<Slice, 8> Slices;
294
295  /// \brief Instructions which will become dead if we rewrite the alloca.
296  ///
297  /// Note that these are not separated by slice. This is because we expect an
298  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
299  /// all these instructions can simply be removed and replaced with undef as
300  /// they come from outside of the allocated space.
301  SmallVector<Instruction *, 8> DeadUsers;
302
303  /// \brief Operands which will become dead if we rewrite the alloca.
304  ///
305  /// These are operands that in their particular use can be replaced with
306  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
307  /// to PHI nodes and the like. They aren't entirely dead (there might be
308  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
309  /// want to swap this particular input for undef to simplify the use lists of
310  /// the alloca.
311  SmallVector<Use *, 8> DeadOperands;
312};
313}
314
315static Value *foldSelectInst(SelectInst &SI) {
316  // If the condition being selected on is a constant or the same value is
317  // being selected between, fold the select. Yes this does (rarely) happen
318  // early on.
319  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
320    return SI.getOperand(1+CI->isZero());
321  if (SI.getOperand(1) == SI.getOperand(2))
322    return SI.getOperand(1);
323
324  return nullptr;
325}
326
327/// \brief Builder for the alloca slices.
328///
329/// This class builds a set of alloca slices by recursively visiting the uses
330/// of an alloca and making a slice for each load and store at each offset.
331class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
332  friend class PtrUseVisitor<SliceBuilder>;
333  friend class InstVisitor<SliceBuilder>;
334  typedef PtrUseVisitor<SliceBuilder> Base;
335
336  const uint64_t AllocSize;
337  AllocaSlices &S;
338
339  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
340  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
341
342  /// \brief Set to de-duplicate dead instructions found in the use walk.
343  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
344
345public:
346  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
347      : PtrUseVisitor<SliceBuilder>(DL),
348        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
349
350private:
351  void markAsDead(Instruction &I) {
352    if (VisitedDeadInsts.insert(&I))
353      S.DeadUsers.push_back(&I);
354  }
355
356  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
357                 bool IsSplittable = false) {
358    // Completely skip uses which have a zero size or start either before or
359    // past the end of the allocation.
360    if (Size == 0 || Offset.uge(AllocSize)) {
361      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
362                   << " which has zero size or starts outside of the "
363                   << AllocSize << " byte alloca:\n"
364                   << "    alloca: " << S.AI << "\n"
365                   << "       use: " << I << "\n");
366      return markAsDead(I);
367    }
368
369    uint64_t BeginOffset = Offset.getZExtValue();
370    uint64_t EndOffset = BeginOffset + Size;
371
372    // Clamp the end offset to the end of the allocation. Note that this is
373    // formulated to handle even the case where "BeginOffset + Size" overflows.
374    // This may appear superficially to be something we could ignore entirely,
375    // but that is not so! There may be widened loads or PHI-node uses where
376    // some instructions are dead but not others. We can't completely ignore
377    // them, and so have to record at least the information here.
378    assert(AllocSize >= BeginOffset); // Established above.
379    if (Size > AllocSize - BeginOffset) {
380      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
381                   << " to remain within the " << AllocSize << " byte alloca:\n"
382                   << "    alloca: " << S.AI << "\n"
383                   << "       use: " << I << "\n");
384      EndOffset = AllocSize;
385    }
386
387    S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
388  }
389
390  void visitBitCastInst(BitCastInst &BC) {
391    if (BC.use_empty())
392      return markAsDead(BC);
393
394    return Base::visitBitCastInst(BC);
395  }
396
397  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
398    if (GEPI.use_empty())
399      return markAsDead(GEPI);
400
401    if (SROAStrictInbounds && GEPI.isInBounds()) {
402      // FIXME: This is a manually un-factored variant of the basic code inside
403      // of GEPs with checking of the inbounds invariant specified in the
404      // langref in a very strict sense. If we ever want to enable
405      // SROAStrictInbounds, this code should be factored cleanly into
406      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
407      // by writing out the code here where we have tho underlying allocation
408      // size readily available.
409      APInt GEPOffset = Offset;
410      for (gep_type_iterator GTI = gep_type_begin(GEPI),
411                             GTE = gep_type_end(GEPI);
412           GTI != GTE; ++GTI) {
413        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
414        if (!OpC)
415          break;
416
417        // Handle a struct index, which adds its field offset to the pointer.
418        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
419          unsigned ElementIdx = OpC->getZExtValue();
420          const StructLayout *SL = DL.getStructLayout(STy);
421          GEPOffset +=
422              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
423        } else {
424          // For array or vector indices, scale the index by the size of the type.
425          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
426          GEPOffset += Index * APInt(Offset.getBitWidth(),
427                                     DL.getTypeAllocSize(GTI.getIndexedType()));
428        }
429
430        // If this index has computed an intermediate pointer which is not
431        // inbounds, then the result of the GEP is a poison value and we can
432        // delete it and all uses.
433        if (GEPOffset.ugt(AllocSize))
434          return markAsDead(GEPI);
435      }
436    }
437
438    return Base::visitGetElementPtrInst(GEPI);
439  }
440
441  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
442                         uint64_t Size, bool IsVolatile) {
443    // We allow splitting of loads and stores where the type is an integer type
444    // and cover the entire alloca. This prevents us from splitting over
445    // eagerly.
446    // FIXME: In the great blue eventually, we should eagerly split all integer
447    // loads and stores, and then have a separate step that merges adjacent
448    // alloca partitions into a single partition suitable for integer widening.
449    // Or we should skip the merge step and rely on GVN and other passes to
450    // merge adjacent loads and stores that survive mem2reg.
451    bool IsSplittable =
452        Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
453
454    insertUse(I, Offset, Size, IsSplittable);
455  }
456
457  void visitLoadInst(LoadInst &LI) {
458    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
459           "All simple FCA loads should have been pre-split");
460
461    if (!IsOffsetKnown)
462      return PI.setAborted(&LI);
463
464    uint64_t Size = DL.getTypeStoreSize(LI.getType());
465    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
466  }
467
468  void visitStoreInst(StoreInst &SI) {
469    Value *ValOp = SI.getValueOperand();
470    if (ValOp == *U)
471      return PI.setEscapedAndAborted(&SI);
472    if (!IsOffsetKnown)
473      return PI.setAborted(&SI);
474
475    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
476
477    // If this memory access can be shown to *statically* extend outside the
478    // bounds of of the allocation, it's behavior is undefined, so simply
479    // ignore it. Note that this is more strict than the generic clamping
480    // behavior of insertUse. We also try to handle cases which might run the
481    // risk of overflow.
482    // FIXME: We should instead consider the pointer to have escaped if this
483    // function is being instrumented for addressing bugs or race conditions.
484    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
485      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
486                   << " which extends past the end of the " << AllocSize
487                   << " byte alloca:\n"
488                   << "    alloca: " << S.AI << "\n"
489                   << "       use: " << SI << "\n");
490      return markAsDead(SI);
491    }
492
493    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
494           "All simple FCA stores should have been pre-split");
495    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
496  }
497
498
499  void visitMemSetInst(MemSetInst &II) {
500    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
501    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
502    if ((Length && Length->getValue() == 0) ||
503        (IsOffsetKnown && Offset.uge(AllocSize)))
504      // Zero-length mem transfer intrinsics can be ignored entirely.
505      return markAsDead(II);
506
507    if (!IsOffsetKnown)
508      return PI.setAborted(&II);
509
510    insertUse(II, Offset,
511              Length ? Length->getLimitedValue()
512                     : AllocSize - Offset.getLimitedValue(),
513              (bool)Length);
514  }
515
516  void visitMemTransferInst(MemTransferInst &II) {
517    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
518    if (Length && Length->getValue() == 0)
519      // Zero-length mem transfer intrinsics can be ignored entirely.
520      return markAsDead(II);
521
522    // Because we can visit these intrinsics twice, also check to see if the
523    // first time marked this instruction as dead. If so, skip it.
524    if (VisitedDeadInsts.count(&II))
525      return;
526
527    if (!IsOffsetKnown)
528      return PI.setAborted(&II);
529
530    // This side of the transfer is completely out-of-bounds, and so we can
531    // nuke the entire transfer. However, we also need to nuke the other side
532    // if already added to our partitions.
533    // FIXME: Yet another place we really should bypass this when
534    // instrumenting for ASan.
535    if (Offset.uge(AllocSize)) {
536      SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II);
537      if (MTPI != MemTransferSliceMap.end())
538        S.Slices[MTPI->second].kill();
539      return markAsDead(II);
540    }
541
542    uint64_t RawOffset = Offset.getLimitedValue();
543    uint64_t Size = Length ? Length->getLimitedValue()
544                           : AllocSize - RawOffset;
545
546    // Check for the special case where the same exact value is used for both
547    // source and dest.
548    if (*U == II.getRawDest() && *U == II.getRawSource()) {
549      // For non-volatile transfers this is a no-op.
550      if (!II.isVolatile())
551        return markAsDead(II);
552
553      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
554    }
555
556    // If we have seen both source and destination for a mem transfer, then
557    // they both point to the same alloca.
558    bool Inserted;
559    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
560    std::tie(MTPI, Inserted) =
561        MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
562    unsigned PrevIdx = MTPI->second;
563    if (!Inserted) {
564      Slice &PrevP = S.Slices[PrevIdx];
565
566      // Check if the begin offsets match and this is a non-volatile transfer.
567      // In that case, we can completely elide the transfer.
568      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
569        PrevP.kill();
570        return markAsDead(II);
571      }
572
573      // Otherwise we have an offset transfer within the same alloca. We can't
574      // split those.
575      PrevP.makeUnsplittable();
576    }
577
578    // Insert the use now that we've fixed up the splittable nature.
579    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
580
581    // Check that we ended up with a valid index in the map.
582    assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
583           "Map index doesn't point back to a slice with this user.");
584  }
585
586  // Disable SRoA for any intrinsics except for lifetime invariants.
587  // FIXME: What about debug intrinsics? This matches old behavior, but
588  // doesn't make sense.
589  void visitIntrinsicInst(IntrinsicInst &II) {
590    if (!IsOffsetKnown)
591      return PI.setAborted(&II);
592
593    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
594        II.getIntrinsicID() == Intrinsic::lifetime_end) {
595      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
596      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
597                               Length->getLimitedValue());
598      insertUse(II, Offset, Size, true);
599      return;
600    }
601
602    Base::visitIntrinsicInst(II);
603  }
604
605  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
606    // We consider any PHI or select that results in a direct load or store of
607    // the same offset to be a viable use for slicing purposes. These uses
608    // are considered unsplittable and the size is the maximum loaded or stored
609    // size.
610    SmallPtrSet<Instruction *, 4> Visited;
611    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
612    Visited.insert(Root);
613    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
614    // If there are no loads or stores, the access is dead. We mark that as
615    // a size zero access.
616    Size = 0;
617    do {
618      Instruction *I, *UsedI;
619      std::tie(UsedI, I) = Uses.pop_back_val();
620
621      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
622        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
623        continue;
624      }
625      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
626        Value *Op = SI->getOperand(0);
627        if (Op == UsedI)
628          return SI;
629        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
630        continue;
631      }
632
633      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
634        if (!GEP->hasAllZeroIndices())
635          return GEP;
636      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
637                 !isa<SelectInst>(I)) {
638        return I;
639      }
640
641      for (User *U : I->users())
642        if (Visited.insert(cast<Instruction>(U)))
643          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
644    } while (!Uses.empty());
645
646    return nullptr;
647  }
648
649  void visitPHINode(PHINode &PN) {
650    if (PN.use_empty())
651      return markAsDead(PN);
652    if (!IsOffsetKnown)
653      return PI.setAborted(&PN);
654
655    // See if we already have computed info on this node.
656    uint64_t &PHISize = PHIOrSelectSizes[&PN];
657    if (!PHISize) {
658      // This is a new PHI node, check for an unsafe use of the PHI node.
659      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
660        return PI.setAborted(UnsafeI);
661    }
662
663    // For PHI and select operands outside the alloca, we can't nuke the entire
664    // phi or select -- the other side might still be relevant, so we special
665    // case them here and use a separate structure to track the operands
666    // themselves which should be replaced with undef.
667    // FIXME: This should instead be escaped in the event we're instrumenting
668    // for address sanitization.
669    if (Offset.uge(AllocSize)) {
670      S.DeadOperands.push_back(U);
671      return;
672    }
673
674    insertUse(PN, Offset, PHISize);
675  }
676
677  void visitSelectInst(SelectInst &SI) {
678    if (SI.use_empty())
679      return markAsDead(SI);
680    if (Value *Result = foldSelectInst(SI)) {
681      if (Result == *U)
682        // If the result of the constant fold will be the pointer, recurse
683        // through the select as if we had RAUW'ed it.
684        enqueueUsers(SI);
685      else
686        // Otherwise the operand to the select is dead, and we can replace it
687        // with undef.
688        S.DeadOperands.push_back(U);
689
690      return;
691    }
692    if (!IsOffsetKnown)
693      return PI.setAborted(&SI);
694
695    // See if we already have computed info on this node.
696    uint64_t &SelectSize = PHIOrSelectSizes[&SI];
697    if (!SelectSize) {
698      // This is a new Select, check for an unsafe use of it.
699      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
700        return PI.setAborted(UnsafeI);
701    }
702
703    // For PHI and select operands outside the alloca, we can't nuke the entire
704    // phi or select -- the other side might still be relevant, so we special
705    // case them here and use a separate structure to track the operands
706    // themselves which should be replaced with undef.
707    // FIXME: This should instead be escaped in the event we're instrumenting
708    // for address sanitization.
709    if (Offset.uge(AllocSize)) {
710      S.DeadOperands.push_back(U);
711      return;
712    }
713
714    insertUse(SI, Offset, SelectSize);
715  }
716
717  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
718  void visitInstruction(Instruction &I) {
719    PI.setAborted(&I);
720  }
721};
722
723AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
724    :
725#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
726      AI(AI),
727#endif
728      PointerEscapingInstr(nullptr) {
729  SliceBuilder PB(DL, AI, *this);
730  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
731  if (PtrI.isEscaped() || PtrI.isAborted()) {
732    // FIXME: We should sink the escape vs. abort info into the caller nicely,
733    // possibly by just storing the PtrInfo in the AllocaSlices.
734    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
735                                                  : PtrI.getAbortingInst();
736    assert(PointerEscapingInstr && "Did not track a bad instruction");
737    return;
738  }
739
740  Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
741                              std::mem_fun_ref(&Slice::isDead)),
742               Slices.end());
743
744#if __cplusplus >= 201103L && !defined(NDEBUG)
745  if (SROARandomShuffleSlices) {
746    std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
747    std::shuffle(Slices.begin(), Slices.end(), MT);
748  }
749#endif
750
751  // Sort the uses. This arranges for the offsets to be in ascending order,
752  // and the sizes to be in descending order.
753  std::sort(Slices.begin(), Slices.end());
754}
755
756#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
757
758void AllocaSlices::print(raw_ostream &OS, const_iterator I,
759                         StringRef Indent) const {
760  printSlice(OS, I, Indent);
761  printUse(OS, I, Indent);
762}
763
764void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
765                              StringRef Indent) const {
766  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
767     << " slice #" << (I - begin())
768     << (I->isSplittable() ? " (splittable)" : "") << "\n";
769}
770
771void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
772                            StringRef Indent) const {
773  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
774}
775
776void AllocaSlices::print(raw_ostream &OS) const {
777  if (PointerEscapingInstr) {
778    OS << "Can't analyze slices for alloca: " << AI << "\n"
779       << "  A pointer to this alloca escaped by:\n"
780       << "  " << *PointerEscapingInstr << "\n";
781    return;
782  }
783
784  OS << "Slices of alloca: " << AI << "\n";
785  for (const_iterator I = begin(), E = end(); I != E; ++I)
786    print(OS, I);
787}
788
789LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
790  print(dbgs(), I);
791}
792LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
793
794#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
795
796namespace {
797/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
798///
799/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
800/// the loads and stores of an alloca instruction, as well as updating its
801/// debug information. This is used when a domtree is unavailable and thus
802/// mem2reg in its full form can't be used to handle promotion of allocas to
803/// scalar values.
804class AllocaPromoter : public LoadAndStorePromoter {
805  AllocaInst &AI;
806  DIBuilder &DIB;
807
808  SmallVector<DbgDeclareInst *, 4> DDIs;
809  SmallVector<DbgValueInst *, 4> DVIs;
810
811public:
812  AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
813                 AllocaInst &AI, DIBuilder &DIB)
814      : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
815
816  void run(const SmallVectorImpl<Instruction*> &Insts) {
817    // Retain the debug information attached to the alloca for use when
818    // rewriting loads and stores.
819    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
820      for (User *U : DebugNode->users())
821        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
822          DDIs.push_back(DDI);
823        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
824          DVIs.push_back(DVI);
825    }
826
827    LoadAndStorePromoter::run(Insts);
828
829    // While we have the debug information, clear it off of the alloca. The
830    // caller takes care of deleting the alloca.
831    while (!DDIs.empty())
832      DDIs.pop_back_val()->eraseFromParent();
833    while (!DVIs.empty())
834      DVIs.pop_back_val()->eraseFromParent();
835  }
836
837  bool isInstInList(Instruction *I,
838                    const SmallVectorImpl<Instruction*> &Insts) const override {
839    Value *Ptr;
840    if (LoadInst *LI = dyn_cast<LoadInst>(I))
841      Ptr = LI->getOperand(0);
842    else
843      Ptr = cast<StoreInst>(I)->getPointerOperand();
844
845    // Only used to detect cycles, which will be rare and quickly found as
846    // we're walking up a chain of defs rather than down through uses.
847    SmallPtrSet<Value *, 4> Visited;
848
849    do {
850      if (Ptr == &AI)
851        return true;
852
853      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
854        Ptr = BCI->getOperand(0);
855      else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
856        Ptr = GEPI->getPointerOperand();
857      else
858        return false;
859
860    } while (Visited.insert(Ptr));
861
862    return false;
863  }
864
865  void updateDebugInfo(Instruction *Inst) const override {
866    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
867           E = DDIs.end(); I != E; ++I) {
868      DbgDeclareInst *DDI = *I;
869      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
870        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
871      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
872        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
873    }
874    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
875           E = DVIs.end(); I != E; ++I) {
876      DbgValueInst *DVI = *I;
877      Value *Arg = nullptr;
878      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
879        // If an argument is zero extended then use argument directly. The ZExt
880        // may be zapped by an optimization pass in future.
881        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
882          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
883        else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
884          Arg = dyn_cast<Argument>(SExt->getOperand(0));
885        if (!Arg)
886          Arg = SI->getValueOperand();
887      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
888        Arg = LI->getPointerOperand();
889      } else {
890        continue;
891      }
892      Instruction *DbgVal =
893        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
894                                     Inst);
895      DbgVal->setDebugLoc(DVI->getDebugLoc());
896    }
897  }
898};
899} // end anon namespace
900
901
902namespace {
903/// \brief An optimization pass providing Scalar Replacement of Aggregates.
904///
905/// This pass takes allocations which can be completely analyzed (that is, they
906/// don't escape) and tries to turn them into scalar SSA values. There are
907/// a few steps to this process.
908///
909/// 1) It takes allocations of aggregates and analyzes the ways in which they
910///    are used to try to split them into smaller allocations, ideally of
911///    a single scalar data type. It will split up memcpy and memset accesses
912///    as necessary and try to isolate individual scalar accesses.
913/// 2) It will transform accesses into forms which are suitable for SSA value
914///    promotion. This can be replacing a memset with a scalar store of an
915///    integer value, or it can involve speculating operations on a PHI or
916///    select to be a PHI or select of the results.
917/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
918///    onto insert and extract operations on a vector value, and convert them to
919///    this form. By doing so, it will enable promotion of vector aggregates to
920///    SSA vector values.
921class SROA : public FunctionPass {
922  const bool RequiresDomTree;
923
924  LLVMContext *C;
925  const DataLayout *DL;
926  DominatorTree *DT;
927
928  /// \brief Worklist of alloca instructions to simplify.
929  ///
930  /// Each alloca in the function is added to this. Each new alloca formed gets
931  /// added to it as well to recursively simplify unless that alloca can be
932  /// directly promoted. Finally, each time we rewrite a use of an alloca other
933  /// the one being actively rewritten, we add it back onto the list if not
934  /// already present to ensure it is re-visited.
935  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
936
937  /// \brief A collection of instructions to delete.
938  /// We try to batch deletions to simplify code and make things a bit more
939  /// efficient.
940  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
941
942  /// \brief Post-promotion worklist.
943  ///
944  /// Sometimes we discover an alloca which has a high probability of becoming
945  /// viable for SROA after a round of promotion takes place. In those cases,
946  /// the alloca is enqueued here for re-processing.
947  ///
948  /// Note that we have to be very careful to clear allocas out of this list in
949  /// the event they are deleted.
950  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
951
952  /// \brief A collection of alloca instructions we can directly promote.
953  std::vector<AllocaInst *> PromotableAllocas;
954
955  /// \brief A worklist of PHIs to speculate prior to promoting allocas.
956  ///
957  /// All of these PHIs have been checked for the safety of speculation and by
958  /// being speculated will allow promoting allocas currently in the promotable
959  /// queue.
960  SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
961
962  /// \brief A worklist of select instructions to speculate prior to promoting
963  /// allocas.
964  ///
965  /// All of these select instructions have been checked for the safety of
966  /// speculation and by being speculated will allow promoting allocas
967  /// currently in the promotable queue.
968  SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
969
970public:
971  SROA(bool RequiresDomTree = true)
972      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
973        C(nullptr), DL(nullptr), DT(nullptr) {
974    initializeSROAPass(*PassRegistry::getPassRegistry());
975  }
976  bool runOnFunction(Function &F) override;
977  void getAnalysisUsage(AnalysisUsage &AU) const override;
978
979  const char *getPassName() const override { return "SROA"; }
980  static char ID;
981
982private:
983  friend class PHIOrSelectSpeculator;
984  friend class AllocaSliceRewriter;
985
986  bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
987                        AllocaSlices::iterator B, AllocaSlices::iterator E,
988                        int64_t BeginOffset, int64_t EndOffset,
989                        ArrayRef<AllocaSlices::iterator> SplitUses);
990  bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
991  bool runOnAlloca(AllocaInst &AI);
992  void clobberUse(Use &U);
993  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
994  bool promoteAllocas(Function &F);
995};
996}
997
998char SROA::ID = 0;
999
1000FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1001  return new SROA(RequiresDomTree);
1002}
1003
1004INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1005                      false, false)
1006INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1007INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1008                    false, false)
1009
1010/// Walk the range of a partitioning looking for a common type to cover this
1011/// sequence of slices.
1012static Type *findCommonType(AllocaSlices::const_iterator B,
1013                            AllocaSlices::const_iterator E,
1014                            uint64_t EndOffset) {
1015  Type *Ty = nullptr;
1016  bool TyIsCommon = true;
1017  IntegerType *ITy = nullptr;
1018
1019  // Note that we need to look at *every* alloca slice's Use to ensure we
1020  // always get consistent results regardless of the order of slices.
1021  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1022    Use *U = I->getUse();
1023    if (isa<IntrinsicInst>(*U->getUser()))
1024      continue;
1025    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1026      continue;
1027
1028    Type *UserTy = nullptr;
1029    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1030      UserTy = LI->getType();
1031    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1032      UserTy = SI->getValueOperand()->getType();
1033    }
1034
1035    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1036      // If the type is larger than the partition, skip it. We only encounter
1037      // this for split integer operations where we want to use the type of the
1038      // entity causing the split. Also skip if the type is not a byte width
1039      // multiple.
1040      if (UserITy->getBitWidth() % 8 != 0 ||
1041          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1042        continue;
1043
1044      // Track the largest bitwidth integer type used in this way in case there
1045      // is no common type.
1046      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1047        ITy = UserITy;
1048    }
1049
1050    // To avoid depending on the order of slices, Ty and TyIsCommon must not
1051    // depend on types skipped above.
1052    if (!UserTy || (Ty && Ty != UserTy))
1053      TyIsCommon = false; // Give up on anything but an iN type.
1054    else
1055      Ty = UserTy;
1056  }
1057
1058  return TyIsCommon ? Ty : ITy;
1059}
1060
1061/// PHI instructions that use an alloca and are subsequently loaded can be
1062/// rewritten to load both input pointers in the pred blocks and then PHI the
1063/// results, allowing the load of the alloca to be promoted.
1064/// From this:
1065///   %P2 = phi [i32* %Alloca, i32* %Other]
1066///   %V = load i32* %P2
1067/// to:
1068///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1069///   ...
1070///   %V2 = load i32* %Other
1071///   ...
1072///   %V = phi [i32 %V1, i32 %V2]
1073///
1074/// We can do this to a select if its only uses are loads and if the operands
1075/// to the select can be loaded unconditionally.
1076///
1077/// FIXME: This should be hoisted into a generic utility, likely in
1078/// Transforms/Util/Local.h
1079static bool isSafePHIToSpeculate(PHINode &PN,
1080                                 const DataLayout *DL = nullptr) {
1081  // For now, we can only do this promotion if the load is in the same block
1082  // as the PHI, and if there are no stores between the phi and load.
1083  // TODO: Allow recursive phi users.
1084  // TODO: Allow stores.
1085  BasicBlock *BB = PN.getParent();
1086  unsigned MaxAlign = 0;
1087  bool HaveLoad = false;
1088  for (User *U : PN.users()) {
1089    LoadInst *LI = dyn_cast<LoadInst>(U);
1090    if (!LI || !LI->isSimple())
1091      return false;
1092
1093    // For now we only allow loads in the same block as the PHI.  This is
1094    // a common case that happens when instcombine merges two loads through
1095    // a PHI.
1096    if (LI->getParent() != BB)
1097      return false;
1098
1099    // Ensure that there are no instructions between the PHI and the load that
1100    // could store.
1101    for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1102      if (BBI->mayWriteToMemory())
1103        return false;
1104
1105    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1106    HaveLoad = true;
1107  }
1108
1109  if (!HaveLoad)
1110    return false;
1111
1112  // We can only transform this if it is safe to push the loads into the
1113  // predecessor blocks. The only thing to watch out for is that we can't put
1114  // a possibly trapping load in the predecessor if it is a critical edge.
1115  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1116    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1117    Value *InVal = PN.getIncomingValue(Idx);
1118
1119    // If the value is produced by the terminator of the predecessor (an
1120    // invoke) or it has side-effects, there is no valid place to put a load
1121    // in the predecessor.
1122    if (TI == InVal || TI->mayHaveSideEffects())
1123      return false;
1124
1125    // If the predecessor has a single successor, then the edge isn't
1126    // critical.
1127    if (TI->getNumSuccessors() == 1)
1128      continue;
1129
1130    // If this pointer is always safe to load, or if we can prove that there
1131    // is already a load in the block, then we can move the load to the pred
1132    // block.
1133    if (InVal->isDereferenceablePointer(DL) ||
1134        isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1135      continue;
1136
1137    return false;
1138  }
1139
1140  return true;
1141}
1142
1143static void speculatePHINodeLoads(PHINode &PN) {
1144  DEBUG(dbgs() << "    original: " << PN << "\n");
1145
1146  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1147  IRBuilderTy PHIBuilder(&PN);
1148  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1149                                        PN.getName() + ".sroa.speculated");
1150
1151  // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1152  // matter which one we get and if any differ.
1153  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1154  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1155  unsigned Align = SomeLoad->getAlignment();
1156
1157  // Rewrite all loads of the PN to use the new PHI.
1158  while (!PN.use_empty()) {
1159    LoadInst *LI = cast<LoadInst>(PN.user_back());
1160    LI->replaceAllUsesWith(NewPN);
1161    LI->eraseFromParent();
1162  }
1163
1164  // Inject loads into all of the pred blocks.
1165  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1166    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1167    TerminatorInst *TI = Pred->getTerminator();
1168    Value *InVal = PN.getIncomingValue(Idx);
1169    IRBuilderTy PredBuilder(TI);
1170
1171    LoadInst *Load = PredBuilder.CreateLoad(
1172        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1173    ++NumLoadsSpeculated;
1174    Load->setAlignment(Align);
1175    if (TBAATag)
1176      Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1177    NewPN->addIncoming(Load, Pred);
1178  }
1179
1180  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1181  PN.eraseFromParent();
1182}
1183
1184/// Select instructions that use an alloca and are subsequently loaded can be
1185/// rewritten to load both input pointers and then select between the result,
1186/// allowing the load of the alloca to be promoted.
1187/// From this:
1188///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1189///   %V = load i32* %P2
1190/// to:
1191///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1192///   %V2 = load i32* %Other
1193///   %V = select i1 %cond, i32 %V1, i32 %V2
1194///
1195/// We can do this to a select if its only uses are loads and if the operand
1196/// to the select can be loaded unconditionally.
1197static bool isSafeSelectToSpeculate(SelectInst &SI,
1198                                    const DataLayout *DL = nullptr) {
1199  Value *TValue = SI.getTrueValue();
1200  Value *FValue = SI.getFalseValue();
1201  bool TDerefable = TValue->isDereferenceablePointer(DL);
1202  bool FDerefable = FValue->isDereferenceablePointer(DL);
1203
1204  for (User *U : SI.users()) {
1205    LoadInst *LI = dyn_cast<LoadInst>(U);
1206    if (!LI || !LI->isSimple())
1207      return false;
1208
1209    // Both operands to the select need to be dereferencable, either
1210    // absolutely (e.g. allocas) or at this point because we can see other
1211    // accesses to it.
1212    if (!TDerefable &&
1213        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1214      return false;
1215    if (!FDerefable &&
1216        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1217      return false;
1218  }
1219
1220  return true;
1221}
1222
1223static void speculateSelectInstLoads(SelectInst &SI) {
1224  DEBUG(dbgs() << "    original: " << SI << "\n");
1225
1226  IRBuilderTy IRB(&SI);
1227  Value *TV = SI.getTrueValue();
1228  Value *FV = SI.getFalseValue();
1229  // Replace the loads of the select with a select of two loads.
1230  while (!SI.use_empty()) {
1231    LoadInst *LI = cast<LoadInst>(SI.user_back());
1232    assert(LI->isSimple() && "We only speculate simple loads");
1233
1234    IRB.SetInsertPoint(LI);
1235    LoadInst *TL =
1236        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1237    LoadInst *FL =
1238        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1239    NumLoadsSpeculated += 2;
1240
1241    // Transfer alignment and TBAA info if present.
1242    TL->setAlignment(LI->getAlignment());
1243    FL->setAlignment(LI->getAlignment());
1244    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1245      TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1246      FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1247    }
1248
1249    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1250                                LI->getName() + ".sroa.speculated");
1251
1252    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1253    LI->replaceAllUsesWith(V);
1254    LI->eraseFromParent();
1255  }
1256  SI.eraseFromParent();
1257}
1258
1259/// \brief Build a GEP out of a base pointer and indices.
1260///
1261/// This will return the BasePtr if that is valid, or build a new GEP
1262/// instruction using the IRBuilder if GEP-ing is needed.
1263static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1264                       SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1265  if (Indices.empty())
1266    return BasePtr;
1267
1268  // A single zero index is a no-op, so check for this and avoid building a GEP
1269  // in that case.
1270  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1271    return BasePtr;
1272
1273  return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx");
1274}
1275
1276/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1277/// TargetTy without changing the offset of the pointer.
1278///
1279/// This routine assumes we've already established a properly offset GEP with
1280/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1281/// zero-indices down through type layers until we find one the same as
1282/// TargetTy. If we can't find one with the same type, we at least try to use
1283/// one with the same size. If none of that works, we just produce the GEP as
1284/// indicated by Indices to have the correct offset.
1285static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1286                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1287                                    SmallVectorImpl<Value *> &Indices,
1288                                    Twine NamePrefix) {
1289  if (Ty == TargetTy)
1290    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1291
1292  // Pointer size to use for the indices.
1293  unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1294
1295  // See if we can descend into a struct and locate a field with the correct
1296  // type.
1297  unsigned NumLayers = 0;
1298  Type *ElementTy = Ty;
1299  do {
1300    if (ElementTy->isPointerTy())
1301      break;
1302
1303    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1304      ElementTy = ArrayTy->getElementType();
1305      Indices.push_back(IRB.getIntN(PtrSize, 0));
1306    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1307      ElementTy = VectorTy->getElementType();
1308      Indices.push_back(IRB.getInt32(0));
1309    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1310      if (STy->element_begin() == STy->element_end())
1311        break; // Nothing left to descend into.
1312      ElementTy = *STy->element_begin();
1313      Indices.push_back(IRB.getInt32(0));
1314    } else {
1315      break;
1316    }
1317    ++NumLayers;
1318  } while (ElementTy != TargetTy);
1319  if (ElementTy != TargetTy)
1320    Indices.erase(Indices.end() - NumLayers, Indices.end());
1321
1322  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1323}
1324
1325/// \brief Recursively compute indices for a natural GEP.
1326///
1327/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1328/// element types adding appropriate indices for the GEP.
1329static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1330                                       Value *Ptr, Type *Ty, APInt &Offset,
1331                                       Type *TargetTy,
1332                                       SmallVectorImpl<Value *> &Indices,
1333                                       Twine NamePrefix) {
1334  if (Offset == 0)
1335    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix);
1336
1337  // We can't recurse through pointer types.
1338  if (Ty->isPointerTy())
1339    return nullptr;
1340
1341  // We try to analyze GEPs over vectors here, but note that these GEPs are
1342  // extremely poorly defined currently. The long-term goal is to remove GEPing
1343  // over a vector from the IR completely.
1344  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1345    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1346    if (ElementSizeInBits % 8 != 0) {
1347      // GEPs over non-multiple of 8 size vector elements are invalid.
1348      return nullptr;
1349    }
1350    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1351    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1352    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1353      return nullptr;
1354    Offset -= NumSkippedElements * ElementSize;
1355    Indices.push_back(IRB.getInt(NumSkippedElements));
1356    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1357                                    Offset, TargetTy, Indices, NamePrefix);
1358  }
1359
1360  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1361    Type *ElementTy = ArrTy->getElementType();
1362    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1363    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1364    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1365      return nullptr;
1366
1367    Offset -= NumSkippedElements * ElementSize;
1368    Indices.push_back(IRB.getInt(NumSkippedElements));
1369    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1370                                    Indices, NamePrefix);
1371  }
1372
1373  StructType *STy = dyn_cast<StructType>(Ty);
1374  if (!STy)
1375    return nullptr;
1376
1377  const StructLayout *SL = DL.getStructLayout(STy);
1378  uint64_t StructOffset = Offset.getZExtValue();
1379  if (StructOffset >= SL->getSizeInBytes())
1380    return nullptr;
1381  unsigned Index = SL->getElementContainingOffset(StructOffset);
1382  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1383  Type *ElementTy = STy->getElementType(Index);
1384  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1385    return nullptr; // The offset points into alignment padding.
1386
1387  Indices.push_back(IRB.getInt32(Index));
1388  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1389                                  Indices, NamePrefix);
1390}
1391
1392/// \brief Get a natural GEP from a base pointer to a particular offset and
1393/// resulting in a particular type.
1394///
1395/// The goal is to produce a "natural" looking GEP that works with the existing
1396/// composite types to arrive at the appropriate offset and element type for
1397/// a pointer. TargetTy is the element type the returned GEP should point-to if
1398/// possible. We recurse by decreasing Offset, adding the appropriate index to
1399/// Indices, and setting Ty to the result subtype.
1400///
1401/// If no natural GEP can be constructed, this function returns null.
1402static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1403                                      Value *Ptr, APInt Offset, Type *TargetTy,
1404                                      SmallVectorImpl<Value *> &Indices,
1405                                      Twine NamePrefix) {
1406  PointerType *Ty = cast<PointerType>(Ptr->getType());
1407
1408  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1409  // an i8.
1410  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1411    return nullptr;
1412
1413  Type *ElementTy = Ty->getElementType();
1414  if (!ElementTy->isSized())
1415    return nullptr; // We can't GEP through an unsized element.
1416  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1417  if (ElementSize == 0)
1418    return nullptr; // Zero-length arrays can't help us build a natural GEP.
1419  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1420
1421  Offset -= NumSkippedElements * ElementSize;
1422  Indices.push_back(IRB.getInt(NumSkippedElements));
1423  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1424                                  Indices, NamePrefix);
1425}
1426
1427/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1428/// resulting pointer has PointerTy.
1429///
1430/// This tries very hard to compute a "natural" GEP which arrives at the offset
1431/// and produces the pointer type desired. Where it cannot, it will try to use
1432/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1433/// fails, it will try to use an existing i8* and GEP to the byte offset and
1434/// bitcast to the type.
1435///
1436/// The strategy for finding the more natural GEPs is to peel off layers of the
1437/// pointer, walking back through bit casts and GEPs, searching for a base
1438/// pointer from which we can compute a natural GEP with the desired
1439/// properties. The algorithm tries to fold as many constant indices into
1440/// a single GEP as possible, thus making each GEP more independent of the
1441/// surrounding code.
1442static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1443                             APInt Offset, Type *PointerTy,
1444                             Twine NamePrefix) {
1445  // Even though we don't look through PHI nodes, we could be called on an
1446  // instruction in an unreachable block, which may be on a cycle.
1447  SmallPtrSet<Value *, 4> Visited;
1448  Visited.insert(Ptr);
1449  SmallVector<Value *, 4> Indices;
1450
1451  // We may end up computing an offset pointer that has the wrong type. If we
1452  // never are able to compute one directly that has the correct type, we'll
1453  // fall back to it, so keep it around here.
1454  Value *OffsetPtr = nullptr;
1455
1456  // Remember any i8 pointer we come across to re-use if we need to do a raw
1457  // byte offset.
1458  Value *Int8Ptr = nullptr;
1459  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1460
1461  Type *TargetTy = PointerTy->getPointerElementType();
1462
1463  do {
1464    // First fold any existing GEPs into the offset.
1465    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1466      APInt GEPOffset(Offset.getBitWidth(), 0);
1467      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1468        break;
1469      Offset += GEPOffset;
1470      Ptr = GEP->getPointerOperand();
1471      if (!Visited.insert(Ptr))
1472        break;
1473    }
1474
1475    // See if we can perform a natural GEP here.
1476    Indices.clear();
1477    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1478                                           Indices, NamePrefix)) {
1479      if (P->getType() == PointerTy) {
1480        // Zap any offset pointer that we ended up computing in previous rounds.
1481        if (OffsetPtr && OffsetPtr->use_empty())
1482          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1483            I->eraseFromParent();
1484        return P;
1485      }
1486      if (!OffsetPtr) {
1487        OffsetPtr = P;
1488      }
1489    }
1490
1491    // Stash this pointer if we've found an i8*.
1492    if (Ptr->getType()->isIntegerTy(8)) {
1493      Int8Ptr = Ptr;
1494      Int8PtrOffset = Offset;
1495    }
1496
1497    // Peel off a layer of the pointer and update the offset appropriately.
1498    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1499      Ptr = cast<Operator>(Ptr)->getOperand(0);
1500    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1501      if (GA->mayBeOverridden())
1502        break;
1503      Ptr = GA->getAliasee();
1504    } else {
1505      break;
1506    }
1507    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1508  } while (Visited.insert(Ptr));
1509
1510  if (!OffsetPtr) {
1511    if (!Int8Ptr) {
1512      Int8Ptr = IRB.CreateBitCast(
1513          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1514          NamePrefix + "sroa_raw_cast");
1515      Int8PtrOffset = Offset;
1516    }
1517
1518    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1519      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1520                            NamePrefix + "sroa_raw_idx");
1521  }
1522  Ptr = OffsetPtr;
1523
1524  // On the off chance we were targeting i8*, guard the bitcast here.
1525  if (Ptr->getType() != PointerTy)
1526    Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1527
1528  return Ptr;
1529}
1530
1531/// \brief Test whether we can convert a value from the old to the new type.
1532///
1533/// This predicate should be used to guard calls to convertValue in order to
1534/// ensure that we only try to convert viable values. The strategy is that we
1535/// will peel off single element struct and array wrappings to get to an
1536/// underlying value, and convert that value.
1537static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1538  if (OldTy == NewTy)
1539    return true;
1540  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1541    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1542      if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1543        return true;
1544  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1545    return false;
1546  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1547    return false;
1548
1549  // We can convert pointers to integers and vice-versa. Same for vectors
1550  // of pointers and integers.
1551  OldTy = OldTy->getScalarType();
1552  NewTy = NewTy->getScalarType();
1553  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1554    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1555      return true;
1556    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1557      return true;
1558    return false;
1559  }
1560
1561  return true;
1562}
1563
1564/// \brief Generic routine to convert an SSA value to a value of a different
1565/// type.
1566///
1567/// This will try various different casting techniques, such as bitcasts,
1568/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1569/// two types for viability with this routine.
1570static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1571                           Type *NewTy) {
1572  Type *OldTy = V->getType();
1573  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1574
1575  if (OldTy == NewTy)
1576    return V;
1577
1578  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1579    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1580      if (NewITy->getBitWidth() > OldITy->getBitWidth())
1581        return IRB.CreateZExt(V, NewITy);
1582
1583  // See if we need inttoptr for this type pair. A cast involving both scalars
1584  // and vectors requires and additional bitcast.
1585  if (OldTy->getScalarType()->isIntegerTy() &&
1586      NewTy->getScalarType()->isPointerTy()) {
1587    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1588    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1589      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1590                                NewTy);
1591
1592    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1593    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1594      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1595                                NewTy);
1596
1597    return IRB.CreateIntToPtr(V, NewTy);
1598  }
1599
1600  // See if we need ptrtoint for this type pair. A cast involving both scalars
1601  // and vectors requires and additional bitcast.
1602  if (OldTy->getScalarType()->isPointerTy() &&
1603      NewTy->getScalarType()->isIntegerTy()) {
1604    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1605    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1606      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1607                               NewTy);
1608
1609    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1610    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1611      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1612                               NewTy);
1613
1614    return IRB.CreatePtrToInt(V, NewTy);
1615  }
1616
1617  return IRB.CreateBitCast(V, NewTy);
1618}
1619
1620/// \brief Test whether the given slice use can be promoted to a vector.
1621///
1622/// This function is called to test each entry in a partioning which is slated
1623/// for a single slice.
1624static bool isVectorPromotionViableForSlice(
1625    const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1626    uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1627    AllocaSlices::const_iterator I) {
1628  // First validate the slice offsets.
1629  uint64_t BeginOffset =
1630      std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
1631  uint64_t BeginIndex = BeginOffset / ElementSize;
1632  if (BeginIndex * ElementSize != BeginOffset ||
1633      BeginIndex >= Ty->getNumElements())
1634    return false;
1635  uint64_t EndOffset =
1636      std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
1637  uint64_t EndIndex = EndOffset / ElementSize;
1638  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1639    return false;
1640
1641  assert(EndIndex > BeginIndex && "Empty vector!");
1642  uint64_t NumElements = EndIndex - BeginIndex;
1643  Type *SliceTy =
1644      (NumElements == 1) ? Ty->getElementType()
1645                         : VectorType::get(Ty->getElementType(), NumElements);
1646
1647  Type *SplitIntTy =
1648      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1649
1650  Use *U = I->getUse();
1651
1652  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1653    if (MI->isVolatile())
1654      return false;
1655    if (!I->isSplittable())
1656      return false; // Skip any unsplittable intrinsics.
1657  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1658    // Disable vector promotion when there are loads or stores of an FCA.
1659    return false;
1660  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1661    if (LI->isVolatile())
1662      return false;
1663    Type *LTy = LI->getType();
1664    if (SliceBeginOffset > I->beginOffset() ||
1665        SliceEndOffset < I->endOffset()) {
1666      assert(LTy->isIntegerTy());
1667      LTy = SplitIntTy;
1668    }
1669    if (!canConvertValue(DL, SliceTy, LTy))
1670      return false;
1671  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1672    if (SI->isVolatile())
1673      return false;
1674    Type *STy = SI->getValueOperand()->getType();
1675    if (SliceBeginOffset > I->beginOffset() ||
1676        SliceEndOffset < I->endOffset()) {
1677      assert(STy->isIntegerTy());
1678      STy = SplitIntTy;
1679    }
1680    if (!canConvertValue(DL, STy, SliceTy))
1681      return false;
1682  } else {
1683    return false;
1684  }
1685
1686  return true;
1687}
1688
1689/// \brief Test whether the given alloca partitioning and range of slices can be
1690/// promoted to a vector.
1691///
1692/// This is a quick test to check whether we can rewrite a particular alloca
1693/// partition (and its newly formed alloca) into a vector alloca with only
1694/// whole-vector loads and stores such that it could be promoted to a vector
1695/// SSA value. We only can ensure this for a limited set of operations, and we
1696/// don't want to do the rewrites unless we are confident that the result will
1697/// be promotable, so we have an early test here.
1698static bool
1699isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1700                        uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1701                        AllocaSlices::const_iterator I,
1702                        AllocaSlices::const_iterator E,
1703                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1704  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1705  if (!Ty)
1706    return false;
1707
1708  uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
1709
1710  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1711  // that aren't byte sized.
1712  if (ElementSize % 8)
1713    return false;
1714  assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
1715         "vector size not a multiple of element size?");
1716  ElementSize /= 8;
1717
1718  for (; I != E; ++I)
1719    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1720                                         SliceEndOffset, Ty, ElementSize, I))
1721      return false;
1722
1723  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1724                                                        SUE = SplitUses.end();
1725       SUI != SUE; ++SUI)
1726    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1727                                         SliceEndOffset, Ty, ElementSize, *SUI))
1728      return false;
1729
1730  return true;
1731}
1732
1733/// \brief Test whether a slice of an alloca is valid for integer widening.
1734///
1735/// This implements the necessary checking for the \c isIntegerWideningViable
1736/// test below on a single slice of the alloca.
1737static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1738                                            Type *AllocaTy,
1739                                            uint64_t AllocBeginOffset,
1740                                            uint64_t Size, AllocaSlices &S,
1741                                            AllocaSlices::const_iterator I,
1742                                            bool &WholeAllocaOp) {
1743  uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1744  uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1745
1746  // We can't reasonably handle cases where the load or store extends past
1747  // the end of the aloca's type and into its padding.
1748  if (RelEnd > Size)
1749    return false;
1750
1751  Use *U = I->getUse();
1752
1753  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1754    if (LI->isVolatile())
1755      return false;
1756    if (RelBegin == 0 && RelEnd == Size)
1757      WholeAllocaOp = true;
1758    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1759      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1760        return false;
1761    } else if (RelBegin != 0 || RelEnd != Size ||
1762               !canConvertValue(DL, AllocaTy, LI->getType())) {
1763      // Non-integer loads need to be convertible from the alloca type so that
1764      // they are promotable.
1765      return false;
1766    }
1767  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1768    Type *ValueTy = SI->getValueOperand()->getType();
1769    if (SI->isVolatile())
1770      return false;
1771    if (RelBegin == 0 && RelEnd == Size)
1772      WholeAllocaOp = true;
1773    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1774      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1775        return false;
1776    } else if (RelBegin != 0 || RelEnd != Size ||
1777               !canConvertValue(DL, ValueTy, AllocaTy)) {
1778      // Non-integer stores need to be convertible to the alloca type so that
1779      // they are promotable.
1780      return false;
1781    }
1782  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1783    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1784      return false;
1785    if (!I->isSplittable())
1786      return false; // Skip any unsplittable intrinsics.
1787  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1788    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1789        II->getIntrinsicID() != Intrinsic::lifetime_end)
1790      return false;
1791  } else {
1792    return false;
1793  }
1794
1795  return true;
1796}
1797
1798/// \brief Test whether the given alloca partition's integer operations can be
1799/// widened to promotable ones.
1800///
1801/// This is a quick test to check whether we can rewrite the integer loads and
1802/// stores to a particular alloca into wider loads and stores and be able to
1803/// promote the resulting alloca.
1804static bool
1805isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
1806                        uint64_t AllocBeginOffset, AllocaSlices &S,
1807                        AllocaSlices::const_iterator I,
1808                        AllocaSlices::const_iterator E,
1809                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1810  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1811  // Don't create integer types larger than the maximum bitwidth.
1812  if (SizeInBits > IntegerType::MAX_INT_BITS)
1813    return false;
1814
1815  // Don't try to handle allocas with bit-padding.
1816  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1817    return false;
1818
1819  // We need to ensure that an integer type with the appropriate bitwidth can
1820  // be converted to the alloca type, whatever that is. We don't want to force
1821  // the alloca itself to have an integer type if there is a more suitable one.
1822  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
1823  if (!canConvertValue(DL, AllocaTy, IntTy) ||
1824      !canConvertValue(DL, IntTy, AllocaTy))
1825    return false;
1826
1827  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1828
1829  // While examining uses, we ensure that the alloca has a covering load or
1830  // store. We don't want to widen the integer operations only to fail to
1831  // promote due to some other unsplittable entry (which we may make splittable
1832  // later). However, if there are only splittable uses, go ahead and assume
1833  // that we cover the alloca.
1834  bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
1835
1836  for (; I != E; ++I)
1837    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1838                                         S, I, WholeAllocaOp))
1839      return false;
1840
1841  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1842                                                        SUE = SplitUses.end();
1843       SUI != SUE; ++SUI)
1844    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1845                                         S, *SUI, WholeAllocaOp))
1846      return false;
1847
1848  return WholeAllocaOp;
1849}
1850
1851static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1852                             IntegerType *Ty, uint64_t Offset,
1853                             const Twine &Name) {
1854  DEBUG(dbgs() << "       start: " << *V << "\n");
1855  IntegerType *IntTy = cast<IntegerType>(V->getType());
1856  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1857         "Element extends past full value");
1858  uint64_t ShAmt = 8*Offset;
1859  if (DL.isBigEndian())
1860    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1861  if (ShAmt) {
1862    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
1863    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1864  }
1865  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1866         "Cannot extract to a larger integer!");
1867  if (Ty != IntTy) {
1868    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
1869    DEBUG(dbgs() << "     trunced: " << *V << "\n");
1870  }
1871  return V;
1872}
1873
1874static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
1875                            Value *V, uint64_t Offset, const Twine &Name) {
1876  IntegerType *IntTy = cast<IntegerType>(Old->getType());
1877  IntegerType *Ty = cast<IntegerType>(V->getType());
1878  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1879         "Cannot insert a larger integer!");
1880  DEBUG(dbgs() << "       start: " << *V << "\n");
1881  if (Ty != IntTy) {
1882    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
1883    DEBUG(dbgs() << "    extended: " << *V << "\n");
1884  }
1885  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1886         "Element store outside of alloca store");
1887  uint64_t ShAmt = 8*Offset;
1888  if (DL.isBigEndian())
1889    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1890  if (ShAmt) {
1891    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
1892    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1893  }
1894
1895  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1896    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1897    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
1898    DEBUG(dbgs() << "      masked: " << *Old << "\n");
1899    V = IRB.CreateOr(Old, V, Name + ".insert");
1900    DEBUG(dbgs() << "    inserted: " << *V << "\n");
1901  }
1902  return V;
1903}
1904
1905static Value *extractVector(IRBuilderTy &IRB, Value *V,
1906                            unsigned BeginIndex, unsigned EndIndex,
1907                            const Twine &Name) {
1908  VectorType *VecTy = cast<VectorType>(V->getType());
1909  unsigned NumElements = EndIndex - BeginIndex;
1910  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1911
1912  if (NumElements == VecTy->getNumElements())
1913    return V;
1914
1915  if (NumElements == 1) {
1916    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1917                                 Name + ".extract");
1918    DEBUG(dbgs() << "     extract: " << *V << "\n");
1919    return V;
1920  }
1921
1922  SmallVector<Constant*, 8> Mask;
1923  Mask.reserve(NumElements);
1924  for (unsigned i = BeginIndex; i != EndIndex; ++i)
1925    Mask.push_back(IRB.getInt32(i));
1926  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1927                              ConstantVector::get(Mask),
1928                              Name + ".extract");
1929  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
1930  return V;
1931}
1932
1933static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
1934                           unsigned BeginIndex, const Twine &Name) {
1935  VectorType *VecTy = cast<VectorType>(Old->getType());
1936  assert(VecTy && "Can only insert a vector into a vector");
1937
1938  VectorType *Ty = dyn_cast<VectorType>(V->getType());
1939  if (!Ty) {
1940    // Single element to insert.
1941    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1942                                Name + ".insert");
1943    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
1944    return V;
1945  }
1946
1947  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1948         "Too many elements!");
1949  if (Ty->getNumElements() == VecTy->getNumElements()) {
1950    assert(V->getType() == VecTy && "Vector type mismatch");
1951    return V;
1952  }
1953  unsigned EndIndex = BeginIndex + Ty->getNumElements();
1954
1955  // When inserting a smaller vector into the larger to store, we first
1956  // use a shuffle vector to widen it with undef elements, and then
1957  // a second shuffle vector to select between the loaded vector and the
1958  // incoming vector.
1959  SmallVector<Constant*, 8> Mask;
1960  Mask.reserve(VecTy->getNumElements());
1961  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1962    if (i >= BeginIndex && i < EndIndex)
1963      Mask.push_back(IRB.getInt32(i - BeginIndex));
1964    else
1965      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1966  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1967                              ConstantVector::get(Mask),
1968                              Name + ".expand");
1969  DEBUG(dbgs() << "    shuffle: " << *V << "\n");
1970
1971  Mask.clear();
1972  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1973    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1974
1975  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1976
1977  DEBUG(dbgs() << "    blend: " << *V << "\n");
1978  return V;
1979}
1980
1981namespace {
1982/// \brief Visitor to rewrite instructions using p particular slice of an alloca
1983/// to use a new alloca.
1984///
1985/// Also implements the rewriting to vector-based accesses when the partition
1986/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1987/// lives here.
1988class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
1989  // Befriend the base class so it can delegate to private visit methods.
1990  friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1991  typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
1992
1993  const DataLayout &DL;
1994  AllocaSlices &S;
1995  SROA &Pass;
1996  AllocaInst &OldAI, &NewAI;
1997  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1998  Type *NewAllocaTy;
1999
2000  // If we are rewriting an alloca partition which can be written as pure
2001  // vector operations, we stash extra information here. When VecTy is
2002  // non-null, we have some strict guarantees about the rewritten alloca:
2003  //   - The new alloca is exactly the size of the vector type here.
2004  //   - The accesses all either map to the entire vector or to a single
2005  //     element.
2006  //   - The set of accessing instructions is only one of those handled above
2007  //     in isVectorPromotionViable. Generally these are the same access kinds
2008  //     which are promotable via mem2reg.
2009  VectorType *VecTy;
2010  Type *ElementTy;
2011  uint64_t ElementSize;
2012
2013  // This is a convenience and flag variable that will be null unless the new
2014  // alloca's integer operations should be widened to this integer type due to
2015  // passing isIntegerWideningViable above. If it is non-null, the desired
2016  // integer type will be stored here for easy access during rewriting.
2017  IntegerType *IntTy;
2018
2019  // The original offset of the slice currently being rewritten relative to
2020  // the original alloca.
2021  uint64_t BeginOffset, EndOffset;
2022  // The new offsets of the slice currently being rewritten relative to the
2023  // original alloca.
2024  uint64_t NewBeginOffset, NewEndOffset;
2025
2026  uint64_t SliceSize;
2027  bool IsSplittable;
2028  bool IsSplit;
2029  Use *OldUse;
2030  Instruction *OldPtr;
2031
2032  // Track post-rewrite users which are PHI nodes and Selects.
2033  SmallPtrSetImpl<PHINode *> &PHIUsers;
2034  SmallPtrSetImpl<SelectInst *> &SelectUsers;
2035
2036  // Utility IR builder, whose name prefix is setup for each visited use, and
2037  // the insertion point is set to point to the user.
2038  IRBuilderTy IRB;
2039
2040public:
2041  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
2042                      AllocaInst &OldAI, AllocaInst &NewAI,
2043                      uint64_t NewAllocaBeginOffset,
2044                      uint64_t NewAllocaEndOffset, bool IsVectorPromotable,
2045                      bool IsIntegerPromotable,
2046                      SmallPtrSetImpl<PHINode *> &PHIUsers,
2047                      SmallPtrSetImpl<SelectInst *> &SelectUsers)
2048      : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2049        NewAllocaBeginOffset(NewAllocaBeginOffset),
2050        NewAllocaEndOffset(NewAllocaEndOffset),
2051        NewAllocaTy(NewAI.getAllocatedType()),
2052        VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr),
2053        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2054        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2055        IntTy(IsIntegerPromotable
2056                  ? Type::getIntNTy(
2057                        NewAI.getContext(),
2058                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2059                  : nullptr),
2060        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
2061        OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2062        IRB(NewAI.getContext(), ConstantFolder()) {
2063    if (VecTy) {
2064      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2065             "Only multiple-of-8 sized vector elements are viable");
2066      ++NumVectorized;
2067    }
2068    assert((!IsVectorPromotable && !IsIntegerPromotable) ||
2069           IsVectorPromotable != IsIntegerPromotable);
2070  }
2071
2072  bool visit(AllocaSlices::const_iterator I) {
2073    bool CanSROA = true;
2074    BeginOffset = I->beginOffset();
2075    EndOffset = I->endOffset();
2076    IsSplittable = I->isSplittable();
2077    IsSplit =
2078        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2079
2080    // Compute the intersecting offset range.
2081    assert(BeginOffset < NewAllocaEndOffset);
2082    assert(EndOffset > NewAllocaBeginOffset);
2083    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2084    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2085
2086    SliceSize = NewEndOffset - NewBeginOffset;
2087
2088    OldUse = I->getUse();
2089    OldPtr = cast<Instruction>(OldUse->get());
2090
2091    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2092    IRB.SetInsertPoint(OldUserI);
2093    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2094    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2095
2096    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2097    if (VecTy || IntTy)
2098      assert(CanSROA);
2099    return CanSROA;
2100  }
2101
2102private:
2103  // Make sure the other visit overloads are visible.
2104  using Base::visit;
2105
2106  // Every instruction which can end up as a user must have a rewrite rule.
2107  bool visitInstruction(Instruction &I) {
2108    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2109    llvm_unreachable("No rewrite rule for this instruction!");
2110  }
2111
2112  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2113    // Note that the offset computation can use BeginOffset or NewBeginOffset
2114    // interchangeably for unsplit slices.
2115    assert(IsSplit || BeginOffset == NewBeginOffset);
2116    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2117
2118#ifndef NDEBUG
2119    StringRef OldName = OldPtr->getName();
2120    // Skip through the last '.sroa.' component of the name.
2121    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2122    if (LastSROAPrefix != StringRef::npos) {
2123      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2124      // Look for an SROA slice index.
2125      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2126      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2127        // Strip the index and look for the offset.
2128        OldName = OldName.substr(IndexEnd + 1);
2129        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2130        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2131          // Strip the offset.
2132          OldName = OldName.substr(OffsetEnd + 1);
2133      }
2134    }
2135    // Strip any SROA suffixes as well.
2136    OldName = OldName.substr(0, OldName.find(".sroa_"));
2137#endif
2138
2139    return getAdjustedPtr(IRB, DL, &NewAI,
2140                          APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
2141#ifndef NDEBUG
2142                          Twine(OldName) + "."
2143#else
2144                          Twine()
2145#endif
2146                          );
2147  }
2148
2149  /// \brief Compute suitable alignment to access this slice of the *new* alloca.
2150  ///
2151  /// You can optionally pass a type to this routine and if that type's ABI
2152  /// alignment is itself suitable, this will return zero.
2153  unsigned getSliceAlign(Type *Ty = nullptr) {
2154    unsigned NewAIAlign = NewAI.getAlignment();
2155    if (!NewAIAlign)
2156      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2157    unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2158    return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2159  }
2160
2161  unsigned getIndex(uint64_t Offset) {
2162    assert(VecTy && "Can only call getIndex when rewriting a vector");
2163    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2164    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2165    uint32_t Index = RelOffset / ElementSize;
2166    assert(Index * ElementSize == RelOffset);
2167    return Index;
2168  }
2169
2170  void deleteIfTriviallyDead(Value *V) {
2171    Instruction *I = cast<Instruction>(V);
2172    if (isInstructionTriviallyDead(I))
2173      Pass.DeadInsts.insert(I);
2174  }
2175
2176  Value *rewriteVectorizedLoadInst() {
2177    unsigned BeginIndex = getIndex(NewBeginOffset);
2178    unsigned EndIndex = getIndex(NewEndOffset);
2179    assert(EndIndex > BeginIndex && "Empty vector!");
2180
2181    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2182                                     "load");
2183    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2184  }
2185
2186  Value *rewriteIntegerLoad(LoadInst &LI) {
2187    assert(IntTy && "We cannot insert an integer to the alloca");
2188    assert(!LI.isVolatile());
2189    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2190                                     "load");
2191    V = convertValue(DL, IRB, V, IntTy);
2192    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2193    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2194    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2195      V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2196                         "extract");
2197    return V;
2198  }
2199
2200  bool visitLoadInst(LoadInst &LI) {
2201    DEBUG(dbgs() << "    original: " << LI << "\n");
2202    Value *OldOp = LI.getOperand(0);
2203    assert(OldOp == OldPtr);
2204
2205    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2206                             : LI.getType();
2207    bool IsPtrAdjusted = false;
2208    Value *V;
2209    if (VecTy) {
2210      V = rewriteVectorizedLoadInst();
2211    } else if (IntTy && LI.getType()->isIntegerTy()) {
2212      V = rewriteIntegerLoad(LI);
2213    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2214               canConvertValue(DL, NewAllocaTy, LI.getType())) {
2215      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2216                                LI.isVolatile(), LI.getName());
2217    } else {
2218      Type *LTy = TargetTy->getPointerTo();
2219      V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2220                                getSliceAlign(TargetTy), LI.isVolatile(),
2221                                LI.getName());
2222      IsPtrAdjusted = true;
2223    }
2224    V = convertValue(DL, IRB, V, TargetTy);
2225
2226    if (IsSplit) {
2227      assert(!LI.isVolatile());
2228      assert(LI.getType()->isIntegerTy() &&
2229             "Only integer type loads and stores are split");
2230      assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2231             "Split load isn't smaller than original load");
2232      assert(LI.getType()->getIntegerBitWidth() ==
2233             DL.getTypeStoreSizeInBits(LI.getType()) &&
2234             "Non-byte-multiple bit width");
2235      // Move the insertion point just past the load so that we can refer to it.
2236      IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
2237      // Create a placeholder value with the same type as LI to use as the
2238      // basis for the new value. This allows us to replace the uses of LI with
2239      // the computed value, and then replace the placeholder with LI, leaving
2240      // LI only used for this computation.
2241      Value *Placeholder
2242        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2243      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
2244                        "insert");
2245      LI.replaceAllUsesWith(V);
2246      Placeholder->replaceAllUsesWith(&LI);
2247      delete Placeholder;
2248    } else {
2249      LI.replaceAllUsesWith(V);
2250    }
2251
2252    Pass.DeadInsts.insert(&LI);
2253    deleteIfTriviallyDead(OldOp);
2254    DEBUG(dbgs() << "          to: " << *V << "\n");
2255    return !LI.isVolatile() && !IsPtrAdjusted;
2256  }
2257
2258  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
2259    if (V->getType() != VecTy) {
2260      unsigned BeginIndex = getIndex(NewBeginOffset);
2261      unsigned EndIndex = getIndex(NewEndOffset);
2262      assert(EndIndex > BeginIndex && "Empty vector!");
2263      unsigned NumElements = EndIndex - BeginIndex;
2264      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2265      Type *SliceTy =
2266          (NumElements == 1) ? ElementTy
2267                             : VectorType::get(ElementTy, NumElements);
2268      if (V->getType() != SliceTy)
2269        V = convertValue(DL, IRB, V, SliceTy);
2270
2271      // Mix in the existing elements.
2272      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2273                                         "load");
2274      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2275    }
2276    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2277    Pass.DeadInsts.insert(&SI);
2278
2279    (void)Store;
2280    DEBUG(dbgs() << "          to: " << *Store << "\n");
2281    return true;
2282  }
2283
2284  bool rewriteIntegerStore(Value *V, StoreInst &SI) {
2285    assert(IntTy && "We cannot extract an integer from the alloca");
2286    assert(!SI.isVolatile());
2287    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2288      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2289                                         "oldload");
2290      Old = convertValue(DL, IRB, Old, IntTy);
2291      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2292      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2293      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
2294                        "insert");
2295    }
2296    V = convertValue(DL, IRB, V, NewAllocaTy);
2297    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2298    Pass.DeadInsts.insert(&SI);
2299    (void)Store;
2300    DEBUG(dbgs() << "          to: " << *Store << "\n");
2301    return true;
2302  }
2303
2304  bool visitStoreInst(StoreInst &SI) {
2305    DEBUG(dbgs() << "    original: " << SI << "\n");
2306    Value *OldOp = SI.getOperand(1);
2307    assert(OldOp == OldPtr);
2308
2309    Value *V = SI.getValueOperand();
2310
2311    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2312    // alloca that should be re-examined after promoting this alloca.
2313    if (V->getType()->isPointerTy())
2314      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2315        Pass.PostPromotionWorklist.insert(AI);
2316
2317    if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2318      assert(!SI.isVolatile());
2319      assert(V->getType()->isIntegerTy() &&
2320             "Only integer type loads and stores are split");
2321      assert(V->getType()->getIntegerBitWidth() ==
2322             DL.getTypeStoreSizeInBits(V->getType()) &&
2323             "Non-byte-multiple bit width");
2324      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2325      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
2326                         "extract");
2327    }
2328
2329    if (VecTy)
2330      return rewriteVectorizedStoreInst(V, SI, OldOp);
2331    if (IntTy && V->getType()->isIntegerTy())
2332      return rewriteIntegerStore(V, SI);
2333
2334    StoreInst *NewSI;
2335    if (NewBeginOffset == NewAllocaBeginOffset &&
2336        NewEndOffset == NewAllocaEndOffset &&
2337        canConvertValue(DL, V->getType(), NewAllocaTy)) {
2338      V = convertValue(DL, IRB, V, NewAllocaTy);
2339      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2340                                     SI.isVolatile());
2341    } else {
2342      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
2343      NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2344                                     SI.isVolatile());
2345    }
2346    (void)NewSI;
2347    Pass.DeadInsts.insert(&SI);
2348    deleteIfTriviallyDead(OldOp);
2349
2350    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2351    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2352  }
2353
2354  /// \brief Compute an integer value from splatting an i8 across the given
2355  /// number of bytes.
2356  ///
2357  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2358  /// call this routine.
2359  /// FIXME: Heed the advice above.
2360  ///
2361  /// \param V The i8 value to splat.
2362  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2363  Value *getIntegerSplat(Value *V, unsigned Size) {
2364    assert(Size > 0 && "Expected a positive number of bytes.");
2365    IntegerType *VTy = cast<IntegerType>(V->getType());
2366    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2367    if (Size == 1)
2368      return V;
2369
2370    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2371    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
2372                      ConstantExpr::getUDiv(
2373                        Constant::getAllOnesValue(SplatIntTy),
2374                        ConstantExpr::getZExt(
2375                          Constant::getAllOnesValue(V->getType()),
2376                          SplatIntTy)),
2377                      "isplat");
2378    return V;
2379  }
2380
2381  /// \brief Compute a vector splat for a given element value.
2382  Value *getVectorSplat(Value *V, unsigned NumElements) {
2383    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2384    DEBUG(dbgs() << "       splat: " << *V << "\n");
2385    return V;
2386  }
2387
2388  bool visitMemSetInst(MemSetInst &II) {
2389    DEBUG(dbgs() << "    original: " << II << "\n");
2390    assert(II.getRawDest() == OldPtr);
2391
2392    // If the memset has a variable size, it cannot be split, just adjust the
2393    // pointer to the new alloca.
2394    if (!isa<Constant>(II.getLength())) {
2395      assert(!IsSplit);
2396      assert(NewBeginOffset == BeginOffset);
2397      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2398      Type *CstTy = II.getAlignmentCst()->getType();
2399      II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
2400
2401      deleteIfTriviallyDead(OldPtr);
2402      return false;
2403    }
2404
2405    // Record this instruction for deletion.
2406    Pass.DeadInsts.insert(&II);
2407
2408    Type *AllocaTy = NewAI.getAllocatedType();
2409    Type *ScalarTy = AllocaTy->getScalarType();
2410
2411    // If this doesn't map cleanly onto the alloca type, and that type isn't
2412    // a single value type, just emit a memset.
2413    if (!VecTy && !IntTy &&
2414        (BeginOffset > NewAllocaBeginOffset ||
2415         EndOffset < NewAllocaEndOffset ||
2416         !AllocaTy->isSingleValueType() ||
2417         !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2418         DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2419      Type *SizeTy = II.getLength()->getType();
2420      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2421      CallInst *New = IRB.CreateMemSet(
2422          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2423          getSliceAlign(), II.isVolatile());
2424      (void)New;
2425      DEBUG(dbgs() << "          to: " << *New << "\n");
2426      return false;
2427    }
2428
2429    // If we can represent this as a simple value, we have to build the actual
2430    // value to store, which requires expanding the byte present in memset to
2431    // a sensible representation for the alloca type. This is essentially
2432    // splatting the byte to a sufficiently wide integer, splatting it across
2433    // any desired vector width, and bitcasting to the final type.
2434    Value *V;
2435
2436    if (VecTy) {
2437      // If this is a memset of a vectorized alloca, insert it.
2438      assert(ElementTy == ScalarTy);
2439
2440      unsigned BeginIndex = getIndex(NewBeginOffset);
2441      unsigned EndIndex = getIndex(NewEndOffset);
2442      assert(EndIndex > BeginIndex && "Empty vector!");
2443      unsigned NumElements = EndIndex - BeginIndex;
2444      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2445
2446      Value *Splat =
2447          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2448      Splat = convertValue(DL, IRB, Splat, ElementTy);
2449      if (NumElements > 1)
2450        Splat = getVectorSplat(Splat, NumElements);
2451
2452      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2453                                         "oldload");
2454      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2455    } else if (IntTy) {
2456      // If this is a memset on an alloca where we can widen stores, insert the
2457      // set integer.
2458      assert(!II.isVolatile());
2459
2460      uint64_t Size = NewEndOffset - NewBeginOffset;
2461      V = getIntegerSplat(II.getValue(), Size);
2462
2463      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2464                    EndOffset != NewAllocaBeginOffset)) {
2465        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2466                                           "oldload");
2467        Old = convertValue(DL, IRB, Old, IntTy);
2468        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2469        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2470      } else {
2471        assert(V->getType() == IntTy &&
2472               "Wrong type for an alloca wide integer!");
2473      }
2474      V = convertValue(DL, IRB, V, AllocaTy);
2475    } else {
2476      // Established these invariants above.
2477      assert(NewBeginOffset == NewAllocaBeginOffset);
2478      assert(NewEndOffset == NewAllocaEndOffset);
2479
2480      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2481      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2482        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2483
2484      V = convertValue(DL, IRB, V, AllocaTy);
2485    }
2486
2487    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2488                                        II.isVolatile());
2489    (void)New;
2490    DEBUG(dbgs() << "          to: " << *New << "\n");
2491    return !II.isVolatile();
2492  }
2493
2494  bool visitMemTransferInst(MemTransferInst &II) {
2495    // Rewriting of memory transfer instructions can be a bit tricky. We break
2496    // them into two categories: split intrinsics and unsplit intrinsics.
2497
2498    DEBUG(dbgs() << "    original: " << II << "\n");
2499
2500    bool IsDest = &II.getRawDestUse() == OldUse;
2501    assert((IsDest && II.getRawDest() == OldPtr) ||
2502           (!IsDest && II.getRawSource() == OldPtr));
2503
2504    unsigned SliceAlign = getSliceAlign();
2505
2506    // For unsplit intrinsics, we simply modify the source and destination
2507    // pointers in place. This isn't just an optimization, it is a matter of
2508    // correctness. With unsplit intrinsics we may be dealing with transfers
2509    // within a single alloca before SROA ran, or with transfers that have
2510    // a variable length. We may also be dealing with memmove instead of
2511    // memcpy, and so simply updating the pointers is the necessary for us to
2512    // update both source and dest of a single call.
2513    if (!IsSplittable) {
2514      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2515      if (IsDest)
2516        II.setDest(AdjustedPtr);
2517      else
2518        II.setSource(AdjustedPtr);
2519
2520      if (II.getAlignment() > SliceAlign) {
2521        Type *CstTy = II.getAlignmentCst()->getType();
2522        II.setAlignment(
2523            ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
2524      }
2525
2526      DEBUG(dbgs() << "          to: " << II << "\n");
2527      deleteIfTriviallyDead(OldPtr);
2528      return false;
2529    }
2530    // For split transfer intrinsics we have an incredibly useful assurance:
2531    // the source and destination do not reside within the same alloca, and at
2532    // least one of them does not escape. This means that we can replace
2533    // memmove with memcpy, and we don't need to worry about all manner of
2534    // downsides to splitting and transforming the operations.
2535
2536    // If this doesn't map cleanly onto the alloca type, and that type isn't
2537    // a single value type, just emit a memcpy.
2538    bool EmitMemCpy
2539      = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2540                             EndOffset < NewAllocaEndOffset ||
2541                             !NewAI.getAllocatedType()->isSingleValueType());
2542
2543    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2544    // size hasn't been shrunk based on analysis of the viable range, this is
2545    // a no-op.
2546    if (EmitMemCpy && &OldAI == &NewAI) {
2547      // Ensure the start lines up.
2548      assert(NewBeginOffset == BeginOffset);
2549
2550      // Rewrite the size as needed.
2551      if (NewEndOffset != EndOffset)
2552        II.setLength(ConstantInt::get(II.getLength()->getType(),
2553                                      NewEndOffset - NewBeginOffset));
2554      return false;
2555    }
2556    // Record this instruction for deletion.
2557    Pass.DeadInsts.insert(&II);
2558
2559    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2560    // alloca that should be re-examined after rewriting this instruction.
2561    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2562    if (AllocaInst *AI
2563          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2564      assert(AI != &OldAI && AI != &NewAI &&
2565             "Splittable transfers cannot reach the same alloca on both ends.");
2566      Pass.Worklist.insert(AI);
2567    }
2568
2569    Type *OtherPtrTy = OtherPtr->getType();
2570    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2571
2572    // Compute the relative offset for the other pointer within the transfer.
2573    unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2574    APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2575    unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
2576                                   OtherOffset.zextOrTrunc(64).getZExtValue());
2577
2578    if (EmitMemCpy) {
2579      // Compute the other pointer, folding as much as possible to produce
2580      // a single, simple GEP in most cases.
2581      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2582                                OtherPtr->getName() + ".");
2583
2584      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2585      Type *SizeTy = II.getLength()->getType();
2586      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2587
2588      CallInst *New = IRB.CreateMemCpy(
2589          IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
2590          MinAlign(SliceAlign, OtherAlign), II.isVolatile());
2591      (void)New;
2592      DEBUG(dbgs() << "          to: " << *New << "\n");
2593      return false;
2594    }
2595
2596    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2597                         NewEndOffset == NewAllocaEndOffset;
2598    uint64_t Size = NewEndOffset - NewBeginOffset;
2599    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2600    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2601    unsigned NumElements = EndIndex - BeginIndex;
2602    IntegerType *SubIntTy
2603      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr;
2604
2605    // Reset the other pointer type to match the register type we're going to
2606    // use, but using the address space of the original other pointer.
2607    if (VecTy && !IsWholeAlloca) {
2608      if (NumElements == 1)
2609        OtherPtrTy = VecTy->getElementType();
2610      else
2611        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2612
2613      OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2614    } else if (IntTy && !IsWholeAlloca) {
2615      OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2616    } else {
2617      OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2618    }
2619
2620    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2621                                   OtherPtr->getName() + ".");
2622    unsigned SrcAlign = OtherAlign;
2623    Value *DstPtr = &NewAI;
2624    unsigned DstAlign = SliceAlign;
2625    if (!IsDest) {
2626      std::swap(SrcPtr, DstPtr);
2627      std::swap(SrcAlign, DstAlign);
2628    }
2629
2630    Value *Src;
2631    if (VecTy && !IsWholeAlloca && !IsDest) {
2632      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2633                                  "load");
2634      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2635    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2636      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2637                                  "load");
2638      Src = convertValue(DL, IRB, Src, IntTy);
2639      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2640      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2641    } else {
2642      Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
2643                                  "copyload");
2644    }
2645
2646    if (VecTy && !IsWholeAlloca && IsDest) {
2647      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2648                                         "oldload");
2649      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2650    } else if (IntTy && !IsWholeAlloca && IsDest) {
2651      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2652                                         "oldload");
2653      Old = convertValue(DL, IRB, Old, IntTy);
2654      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2655      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2656      Src = convertValue(DL, IRB, Src, NewAllocaTy);
2657    }
2658
2659    StoreInst *Store = cast<StoreInst>(
2660        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
2661    (void)Store;
2662    DEBUG(dbgs() << "          to: " << *Store << "\n");
2663    return !II.isVolatile();
2664  }
2665
2666  bool visitIntrinsicInst(IntrinsicInst &II) {
2667    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2668           II.getIntrinsicID() == Intrinsic::lifetime_end);
2669    DEBUG(dbgs() << "    original: " << II << "\n");
2670    assert(II.getArgOperand(1) == OldPtr);
2671
2672    // Record this instruction for deletion.
2673    Pass.DeadInsts.insert(&II);
2674
2675    ConstantInt *Size
2676      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2677                         NewEndOffset - NewBeginOffset);
2678    Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2679    Value *New;
2680    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2681      New = IRB.CreateLifetimeStart(Ptr, Size);
2682    else
2683      New = IRB.CreateLifetimeEnd(Ptr, Size);
2684
2685    (void)New;
2686    DEBUG(dbgs() << "          to: " << *New << "\n");
2687    return true;
2688  }
2689
2690  bool visitPHINode(PHINode &PN) {
2691    DEBUG(dbgs() << "    original: " << PN << "\n");
2692    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2693    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2694
2695    // We would like to compute a new pointer in only one place, but have it be
2696    // as local as possible to the PHI. To do that, we re-use the location of
2697    // the old pointer, which necessarily must be in the right position to
2698    // dominate the PHI.
2699    IRBuilderTy PtrBuilder(IRB);
2700    PtrBuilder.SetInsertPoint(OldPtr);
2701    PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
2702
2703    Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
2704    // Replace the operands which were using the old pointer.
2705    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2706
2707    DEBUG(dbgs() << "          to: " << PN << "\n");
2708    deleteIfTriviallyDead(OldPtr);
2709
2710    // PHIs can't be promoted on their own, but often can be speculated. We
2711    // check the speculation outside of the rewriter so that we see the
2712    // fully-rewritten alloca.
2713    PHIUsers.insert(&PN);
2714    return true;
2715  }
2716
2717  bool visitSelectInst(SelectInst &SI) {
2718    DEBUG(dbgs() << "    original: " << SI << "\n");
2719    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2720           "Pointer isn't an operand!");
2721    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2722    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2723
2724    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2725    // Replace the operands which were using the old pointer.
2726    if (SI.getOperand(1) == OldPtr)
2727      SI.setOperand(1, NewPtr);
2728    if (SI.getOperand(2) == OldPtr)
2729      SI.setOperand(2, NewPtr);
2730
2731    DEBUG(dbgs() << "          to: " << SI << "\n");
2732    deleteIfTriviallyDead(OldPtr);
2733
2734    // Selects can't be promoted on their own, but often can be speculated. We
2735    // check the speculation outside of the rewriter so that we see the
2736    // fully-rewritten alloca.
2737    SelectUsers.insert(&SI);
2738    return true;
2739  }
2740
2741};
2742}
2743
2744namespace {
2745/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2746///
2747/// This pass aggressively rewrites all aggregate loads and stores on
2748/// a particular pointer (or any pointer derived from it which we can identify)
2749/// with scalar loads and stores.
2750class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2751  // Befriend the base class so it can delegate to private visit methods.
2752  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2753
2754  const DataLayout &DL;
2755
2756  /// Queue of pointer uses to analyze and potentially rewrite.
2757  SmallVector<Use *, 8> Queue;
2758
2759  /// Set to prevent us from cycling with phi nodes and loops.
2760  SmallPtrSet<User *, 8> Visited;
2761
2762  /// The current pointer use being rewritten. This is used to dig up the used
2763  /// value (as opposed to the user).
2764  Use *U;
2765
2766public:
2767  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
2768
2769  /// Rewrite loads and stores through a pointer and all pointers derived from
2770  /// it.
2771  bool rewrite(Instruction &I) {
2772    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2773    enqueueUsers(I);
2774    bool Changed = false;
2775    while (!Queue.empty()) {
2776      U = Queue.pop_back_val();
2777      Changed |= visit(cast<Instruction>(U->getUser()));
2778    }
2779    return Changed;
2780  }
2781
2782private:
2783  /// Enqueue all the users of the given instruction for further processing.
2784  /// This uses a set to de-duplicate users.
2785  void enqueueUsers(Instruction &I) {
2786    for (Use &U : I.uses())
2787      if (Visited.insert(U.getUser()))
2788        Queue.push_back(&U);
2789  }
2790
2791  // Conservative default is to not rewrite anything.
2792  bool visitInstruction(Instruction &I) { return false; }
2793
2794  /// \brief Generic recursive split emission class.
2795  template <typename Derived>
2796  class OpSplitter {
2797  protected:
2798    /// The builder used to form new instructions.
2799    IRBuilderTy IRB;
2800    /// The indices which to be used with insert- or extractvalue to select the
2801    /// appropriate value within the aggregate.
2802    SmallVector<unsigned, 4> Indices;
2803    /// The indices to a GEP instruction which will move Ptr to the correct slot
2804    /// within the aggregate.
2805    SmallVector<Value *, 4> GEPIndices;
2806    /// The base pointer of the original op, used as a base for GEPing the
2807    /// split operations.
2808    Value *Ptr;
2809
2810    /// Initialize the splitter with an insertion point, Ptr and start with a
2811    /// single zero GEP index.
2812    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2813      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2814
2815  public:
2816    /// \brief Generic recursive split emission routine.
2817    ///
2818    /// This method recursively splits an aggregate op (load or store) into
2819    /// scalar or vector ops. It splits recursively until it hits a single value
2820    /// and emits that single value operation via the template argument.
2821    ///
2822    /// The logic of this routine relies on GEPs and insertvalue and
2823    /// extractvalue all operating with the same fundamental index list, merely
2824    /// formatted differently (GEPs need actual values).
2825    ///
2826    /// \param Ty  The type being split recursively into smaller ops.
2827    /// \param Agg The aggregate value being built up or stored, depending on
2828    /// whether this is splitting a load or a store respectively.
2829    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2830      if (Ty->isSingleValueType())
2831        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2832
2833      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2834        unsigned OldSize = Indices.size();
2835        (void)OldSize;
2836        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2837             ++Idx) {
2838          assert(Indices.size() == OldSize && "Did not return to the old size");
2839          Indices.push_back(Idx);
2840          GEPIndices.push_back(IRB.getInt32(Idx));
2841          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2842          GEPIndices.pop_back();
2843          Indices.pop_back();
2844        }
2845        return;
2846      }
2847
2848      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2849        unsigned OldSize = Indices.size();
2850        (void)OldSize;
2851        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2852             ++Idx) {
2853          assert(Indices.size() == OldSize && "Did not return to the old size");
2854          Indices.push_back(Idx);
2855          GEPIndices.push_back(IRB.getInt32(Idx));
2856          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2857          GEPIndices.pop_back();
2858          Indices.pop_back();
2859        }
2860        return;
2861      }
2862
2863      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2864    }
2865  };
2866
2867  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2868    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2869      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2870
2871    /// Emit a leaf load of a single value. This is called at the leaves of the
2872    /// recursive emission to actually load values.
2873    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2874      assert(Ty->isSingleValueType());
2875      // Load the single value and insert it using the indices.
2876      Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2877      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
2878      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2879      DEBUG(dbgs() << "          to: " << *Load << "\n");
2880    }
2881  };
2882
2883  bool visitLoadInst(LoadInst &LI) {
2884    assert(LI.getPointerOperand() == *U);
2885    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2886      return false;
2887
2888    // We have an aggregate being loaded, split it apart.
2889    DEBUG(dbgs() << "    original: " << LI << "\n");
2890    LoadOpSplitter Splitter(&LI, *U);
2891    Value *V = UndefValue::get(LI.getType());
2892    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2893    LI.replaceAllUsesWith(V);
2894    LI.eraseFromParent();
2895    return true;
2896  }
2897
2898  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2899    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2900      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2901
2902    /// Emit a leaf store of a single value. This is called at the leaves of the
2903    /// recursive emission to actually produce stores.
2904    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2905      assert(Ty->isSingleValueType());
2906      // Extract the single value and store it using the indices.
2907      Value *Store = IRB.CreateStore(
2908        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2909        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2910      (void)Store;
2911      DEBUG(dbgs() << "          to: " << *Store << "\n");
2912    }
2913  };
2914
2915  bool visitStoreInst(StoreInst &SI) {
2916    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2917      return false;
2918    Value *V = SI.getValueOperand();
2919    if (V->getType()->isSingleValueType())
2920      return false;
2921
2922    // We have an aggregate being stored, split it apart.
2923    DEBUG(dbgs() << "    original: " << SI << "\n");
2924    StoreOpSplitter Splitter(&SI, *U);
2925    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2926    SI.eraseFromParent();
2927    return true;
2928  }
2929
2930  bool visitBitCastInst(BitCastInst &BC) {
2931    enqueueUsers(BC);
2932    return false;
2933  }
2934
2935  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2936    enqueueUsers(GEPI);
2937    return false;
2938  }
2939
2940  bool visitPHINode(PHINode &PN) {
2941    enqueueUsers(PN);
2942    return false;
2943  }
2944
2945  bool visitSelectInst(SelectInst &SI) {
2946    enqueueUsers(SI);
2947    return false;
2948  }
2949};
2950}
2951
2952/// \brief Strip aggregate type wrapping.
2953///
2954/// This removes no-op aggregate types wrapping an underlying type. It will
2955/// strip as many layers of types as it can without changing either the type
2956/// size or the allocated size.
2957static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2958  if (Ty->isSingleValueType())
2959    return Ty;
2960
2961  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2962  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2963
2964  Type *InnerTy;
2965  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2966    InnerTy = ArrTy->getElementType();
2967  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2968    const StructLayout *SL = DL.getStructLayout(STy);
2969    unsigned Index = SL->getElementContainingOffset(0);
2970    InnerTy = STy->getElementType(Index);
2971  } else {
2972    return Ty;
2973  }
2974
2975  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2976      TypeSize > DL.getTypeSizeInBits(InnerTy))
2977    return Ty;
2978
2979  return stripAggregateTypeWrapping(DL, InnerTy);
2980}
2981
2982/// \brief Try to find a partition of the aggregate type passed in for a given
2983/// offset and size.
2984///
2985/// This recurses through the aggregate type and tries to compute a subtype
2986/// based on the offset and size. When the offset and size span a sub-section
2987/// of an array, it will even compute a new array type for that sub-section,
2988/// and the same for structs.
2989///
2990/// Note that this routine is very strict and tries to find a partition of the
2991/// type which produces the *exact* right offset and size. It is not forgiving
2992/// when the size or offset cause either end of type-based partition to be off.
2993/// Also, this is a best-effort routine. It is reasonable to give up and not
2994/// return a type if necessary.
2995static Type *getTypePartition(const DataLayout &DL, Type *Ty,
2996                              uint64_t Offset, uint64_t Size) {
2997  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2998    return stripAggregateTypeWrapping(DL, Ty);
2999  if (Offset > DL.getTypeAllocSize(Ty) ||
3000      (DL.getTypeAllocSize(Ty) - Offset) < Size)
3001    return nullptr;
3002
3003  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3004    // We can't partition pointers...
3005    if (SeqTy->isPointerTy())
3006      return nullptr;
3007
3008    Type *ElementTy = SeqTy->getElementType();
3009    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3010    uint64_t NumSkippedElements = Offset / ElementSize;
3011    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
3012      if (NumSkippedElements >= ArrTy->getNumElements())
3013        return nullptr;
3014    } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
3015      if (NumSkippedElements >= VecTy->getNumElements())
3016        return nullptr;
3017    }
3018    Offset -= NumSkippedElements * ElementSize;
3019
3020    // First check if we need to recurse.
3021    if (Offset > 0 || Size < ElementSize) {
3022      // Bail if the partition ends in a different array element.
3023      if ((Offset + Size) > ElementSize)
3024        return nullptr;
3025      // Recurse through the element type trying to peel off offset bytes.
3026      return getTypePartition(DL, ElementTy, Offset, Size);
3027    }
3028    assert(Offset == 0);
3029
3030    if (Size == ElementSize)
3031      return stripAggregateTypeWrapping(DL, ElementTy);
3032    assert(Size > ElementSize);
3033    uint64_t NumElements = Size / ElementSize;
3034    if (NumElements * ElementSize != Size)
3035      return nullptr;
3036    return ArrayType::get(ElementTy, NumElements);
3037  }
3038
3039  StructType *STy = dyn_cast<StructType>(Ty);
3040  if (!STy)
3041    return nullptr;
3042
3043  const StructLayout *SL = DL.getStructLayout(STy);
3044  if (Offset >= SL->getSizeInBytes())
3045    return nullptr;
3046  uint64_t EndOffset = Offset + Size;
3047  if (EndOffset > SL->getSizeInBytes())
3048    return nullptr;
3049
3050  unsigned Index = SL->getElementContainingOffset(Offset);
3051  Offset -= SL->getElementOffset(Index);
3052
3053  Type *ElementTy = STy->getElementType(Index);
3054  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3055  if (Offset >= ElementSize)
3056    return nullptr; // The offset points into alignment padding.
3057
3058  // See if any partition must be contained by the element.
3059  if (Offset > 0 || Size < ElementSize) {
3060    if ((Offset + Size) > ElementSize)
3061      return nullptr;
3062    return getTypePartition(DL, ElementTy, Offset, Size);
3063  }
3064  assert(Offset == 0);
3065
3066  if (Size == ElementSize)
3067    return stripAggregateTypeWrapping(DL, ElementTy);
3068
3069  StructType::element_iterator EI = STy->element_begin() + Index,
3070                               EE = STy->element_end();
3071  if (EndOffset < SL->getSizeInBytes()) {
3072    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3073    if (Index == EndIndex)
3074      return nullptr; // Within a single element and its padding.
3075
3076    // Don't try to form "natural" types if the elements don't line up with the
3077    // expected size.
3078    // FIXME: We could potentially recurse down through the last element in the
3079    // sub-struct to find a natural end point.
3080    if (SL->getElementOffset(EndIndex) != EndOffset)
3081      return nullptr;
3082
3083    assert(Index < EndIndex);
3084    EE = STy->element_begin() + EndIndex;
3085  }
3086
3087  // Try to build up a sub-structure.
3088  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3089                                      STy->isPacked());
3090  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3091  if (Size != SubSL->getSizeInBytes())
3092    return nullptr; // The sub-struct doesn't have quite the size needed.
3093
3094  return SubTy;
3095}
3096
3097/// \brief Rewrite an alloca partition's users.
3098///
3099/// This routine drives both of the rewriting goals of the SROA pass. It tries
3100/// to rewrite uses of an alloca partition to be conducive for SSA value
3101/// promotion. If the partition needs a new, more refined alloca, this will
3102/// build that new alloca, preserving as much type information as possible, and
3103/// rewrite the uses of the old alloca to point at the new one and have the
3104/// appropriate new offsets. It also evaluates how successful the rewrite was
3105/// at enabling promotion and if it was successful queues the alloca to be
3106/// promoted.
3107bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
3108                            AllocaSlices::iterator B, AllocaSlices::iterator E,
3109                            int64_t BeginOffset, int64_t EndOffset,
3110                            ArrayRef<AllocaSlices::iterator> SplitUses) {
3111  assert(BeginOffset < EndOffset);
3112  uint64_t SliceSize = EndOffset - BeginOffset;
3113
3114  // Try to compute a friendly type for this partition of the alloca. This
3115  // won't always succeed, in which case we fall back to a legal integer type
3116  // or an i8 array of an appropriate size.
3117  Type *SliceTy = nullptr;
3118  if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
3119    if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
3120      SliceTy = CommonUseTy;
3121  if (!SliceTy)
3122    if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3123                                                 BeginOffset, SliceSize))
3124      SliceTy = TypePartitionTy;
3125  if ((!SliceTy || (SliceTy->isArrayTy() &&
3126                    SliceTy->getArrayElementType()->isIntegerTy())) &&
3127      DL->isLegalInteger(SliceSize * 8))
3128    SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3129  if (!SliceTy)
3130    SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3131  assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
3132
3133  bool IsVectorPromotable = isVectorPromotionViable(
3134      *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
3135
3136  bool IsIntegerPromotable =
3137      !IsVectorPromotable &&
3138      isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
3139
3140  // Check for the case where we're going to rewrite to a new alloca of the
3141  // exact same type as the original, and with the same access offsets. In that
3142  // case, re-use the existing alloca, but still run through the rewriter to
3143  // perform phi and select speculation.
3144  AllocaInst *NewAI;
3145  if (SliceTy == AI.getAllocatedType()) {
3146    assert(BeginOffset == 0 &&
3147           "Non-zero begin offset but same alloca type");
3148    NewAI = &AI;
3149    // FIXME: We should be able to bail at this point with "nothing changed".
3150    // FIXME: We might want to defer PHI speculation until after here.
3151  } else {
3152    unsigned Alignment = AI.getAlignment();
3153    if (!Alignment) {
3154      // The minimum alignment which users can rely on when the explicit
3155      // alignment is omitted or zero is that required by the ABI for this
3156      // type.
3157      Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
3158    }
3159    Alignment = MinAlign(Alignment, BeginOffset);
3160    // If we will get at least this much alignment from the type alone, leave
3161    // the alloca's alignment unconstrained.
3162    if (Alignment <= DL->getABITypeAlignment(SliceTy))
3163      Alignment = 0;
3164    NewAI = new AllocaInst(SliceTy, nullptr, Alignment,
3165                           AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
3166    ++NumNewAllocas;
3167  }
3168
3169  DEBUG(dbgs() << "Rewriting alloca partition "
3170               << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3171               << "\n");
3172
3173  // Track the high watermark on the worklist as it is only relevant for
3174  // promoted allocas. We will reset it to this point if the alloca is not in
3175  // fact scheduled for promotion.
3176  unsigned PPWOldSize = PostPromotionWorklist.size();
3177  unsigned NumUses = 0;
3178  SmallPtrSet<PHINode *, 8> PHIUsers;
3179  SmallPtrSet<SelectInst *, 8> SelectUsers;
3180
3181  AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3182                               EndOffset, IsVectorPromotable,
3183                               IsIntegerPromotable, PHIUsers, SelectUsers);
3184  bool Promotable = true;
3185  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3186                                                        SUE = SplitUses.end();
3187       SUI != SUE; ++SUI) {
3188    DEBUG(dbgs() << "  rewriting split ");
3189    DEBUG(S.printSlice(dbgs(), *SUI, ""));
3190    Promotable &= Rewriter.visit(*SUI);
3191    ++NumUses;
3192  }
3193  for (AllocaSlices::iterator I = B; I != E; ++I) {
3194    DEBUG(dbgs() << "  rewriting ");
3195    DEBUG(S.printSlice(dbgs(), I, ""));
3196    Promotable &= Rewriter.visit(I);
3197    ++NumUses;
3198  }
3199
3200  NumAllocaPartitionUses += NumUses;
3201  MaxUsesPerAllocaPartition =
3202      std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3203
3204  // Now that we've processed all the slices in the new partition, check if any
3205  // PHIs or Selects would block promotion.
3206  for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3207                                            E = PHIUsers.end();
3208       I != E; ++I)
3209    if (!isSafePHIToSpeculate(**I, DL)) {
3210      Promotable = false;
3211      PHIUsers.clear();
3212      SelectUsers.clear();
3213      break;
3214    }
3215  for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3216                                               E = SelectUsers.end();
3217       I != E; ++I)
3218    if (!isSafeSelectToSpeculate(**I, DL)) {
3219      Promotable = false;
3220      PHIUsers.clear();
3221      SelectUsers.clear();
3222      break;
3223    }
3224
3225  if (Promotable) {
3226    if (PHIUsers.empty() && SelectUsers.empty()) {
3227      // Promote the alloca.
3228      PromotableAllocas.push_back(NewAI);
3229    } else {
3230      // If we have either PHIs or Selects to speculate, add them to those
3231      // worklists and re-queue the new alloca so that we promote in on the
3232      // next iteration.
3233      for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
3234                                                E = PHIUsers.end();
3235           I != E; ++I)
3236        SpeculatablePHIs.insert(*I);
3237      for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
3238                                                   E = SelectUsers.end();
3239           I != E; ++I)
3240        SpeculatableSelects.insert(*I);
3241      Worklist.insert(NewAI);
3242    }
3243  } else {
3244    // If we can't promote the alloca, iterate on it to check for new
3245    // refinements exposed by splitting the current alloca. Don't iterate on an
3246    // alloca which didn't actually change and didn't get promoted.
3247    if (NewAI != &AI)
3248      Worklist.insert(NewAI);
3249
3250    // Drop any post-promotion work items if promotion didn't happen.
3251    while (PostPromotionWorklist.size() > PPWOldSize)
3252      PostPromotionWorklist.pop_back();
3253  }
3254
3255  return true;
3256}
3257
3258static void
3259removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3260                        uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3261  if (Offset >= MaxSplitUseEndOffset) {
3262    SplitUses.clear();
3263    MaxSplitUseEndOffset = 0;
3264    return;
3265  }
3266
3267  size_t SplitUsesOldSize = SplitUses.size();
3268  SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3269                                 [Offset](const AllocaSlices::iterator &I) {
3270                    return I->endOffset() <= Offset;
3271                  }),
3272                  SplitUses.end());
3273  if (SplitUsesOldSize == SplitUses.size())
3274    return;
3275
3276  // Recompute the max. While this is linear, so is remove_if.
3277  MaxSplitUseEndOffset = 0;
3278  for (SmallVectorImpl<AllocaSlices::iterator>::iterator
3279           SUI = SplitUses.begin(),
3280           SUE = SplitUses.end();
3281       SUI != SUE; ++SUI)
3282    MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3283}
3284
3285/// \brief Walks the slices of an alloca and form partitions based on them,
3286/// rewriting each of their uses.
3287bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3288  if (S.begin() == S.end())
3289    return false;
3290
3291  unsigned NumPartitions = 0;
3292  bool Changed = false;
3293  SmallVector<AllocaSlices::iterator, 4> SplitUses;
3294  uint64_t MaxSplitUseEndOffset = 0;
3295
3296  uint64_t BeginOffset = S.begin()->beginOffset();
3297
3298  for (AllocaSlices::iterator SI = S.begin(), SJ = std::next(SI), SE = S.end();
3299       SI != SE; SI = SJ) {
3300    uint64_t MaxEndOffset = SI->endOffset();
3301
3302    if (!SI->isSplittable()) {
3303      // When we're forming an unsplittable region, it must always start at the
3304      // first slice and will extend through its end.
3305      assert(BeginOffset == SI->beginOffset());
3306
3307      // Form a partition including all of the overlapping slices with this
3308      // unsplittable slice.
3309      while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3310        if (!SJ->isSplittable())
3311          MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3312        ++SJ;
3313      }
3314    } else {
3315      assert(SI->isSplittable()); // Established above.
3316
3317      // Collect all of the overlapping splittable slices.
3318      while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3319             SJ->isSplittable()) {
3320        MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3321        ++SJ;
3322      }
3323
3324      // Back up MaxEndOffset and SJ if we ended the span early when
3325      // encountering an unsplittable slice.
3326      if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3327        assert(!SJ->isSplittable());
3328        MaxEndOffset = SJ->beginOffset();
3329      }
3330    }
3331
3332    // Check if we have managed to move the end offset forward yet. If so,
3333    // we'll have to rewrite uses and erase old split uses.
3334    if (BeginOffset < MaxEndOffset) {
3335      // Rewrite a sequence of overlapping slices.
3336      Changed |=
3337          rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
3338      ++NumPartitions;
3339
3340      removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3341    }
3342
3343    // Accumulate all the splittable slices from the [SI,SJ) region which
3344    // overlap going forward.
3345    for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3346      if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3347        SplitUses.push_back(SK);
3348        MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
3349      }
3350
3351    // If we're already at the end and we have no split uses, we're done.
3352    if (SJ == SE && SplitUses.empty())
3353      break;
3354
3355    // If we have no split uses or no gap in offsets, we're ready to move to
3356    // the next slice.
3357    if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3358      BeginOffset = SJ->beginOffset();
3359      continue;
3360    }
3361
3362    // Even if we have split slices, if the next slice is splittable and the
3363    // split slices reach it, we can simply set up the beginning offset of the
3364    // next iteration to bridge between them.
3365    if (SJ != SE && SJ->isSplittable() &&
3366        MaxSplitUseEndOffset > SJ->beginOffset()) {
3367      BeginOffset = MaxEndOffset;
3368      continue;
3369    }
3370
3371    // Otherwise, we have a tail of split slices. Rewrite them with an empty
3372    // range of slices.
3373    uint64_t PostSplitEndOffset =
3374        SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
3375
3376    Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3377                                SplitUses);
3378    ++NumPartitions;
3379
3380    if (SJ == SE)
3381      break; // Skip the rest, we don't need to do any cleanup.
3382
3383    removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3384                            PostSplitEndOffset);
3385
3386    // Now just reset the begin offset for the next iteration.
3387    BeginOffset = SJ->beginOffset();
3388  }
3389
3390  NumAllocaPartitions += NumPartitions;
3391  MaxPartitionsPerAlloca =
3392      std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
3393
3394  return Changed;
3395}
3396
3397/// \brief Clobber a use with undef, deleting the used value if it becomes dead.
3398void SROA::clobberUse(Use &U) {
3399  Value *OldV = U;
3400  // Replace the use with an undef value.
3401  U = UndefValue::get(OldV->getType());
3402
3403  // Check for this making an instruction dead. We have to garbage collect
3404  // all the dead instructions to ensure the uses of any alloca end up being
3405  // minimal.
3406  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3407    if (isInstructionTriviallyDead(OldI)) {
3408      DeadInsts.insert(OldI);
3409    }
3410}
3411
3412/// \brief Analyze an alloca for SROA.
3413///
3414/// This analyzes the alloca to ensure we can reason about it, builds
3415/// the slices of the alloca, and then hands it off to be split and
3416/// rewritten as needed.
3417bool SROA::runOnAlloca(AllocaInst &AI) {
3418  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3419  ++NumAllocasAnalyzed;
3420
3421  // Special case dead allocas, as they're trivial.
3422  if (AI.use_empty()) {
3423    AI.eraseFromParent();
3424    return true;
3425  }
3426
3427  // Skip alloca forms that this analysis can't handle.
3428  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3429      DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
3430    return false;
3431
3432  bool Changed = false;
3433
3434  // First, split any FCA loads and stores touching this alloca to promote
3435  // better splitting and promotion opportunities.
3436  AggLoadStoreRewriter AggRewriter(*DL);
3437  Changed |= AggRewriter.rewrite(AI);
3438
3439  // Build the slices using a recursive instruction-visiting builder.
3440  AllocaSlices S(*DL, AI);
3441  DEBUG(S.print(dbgs()));
3442  if (S.isEscaped())
3443    return Changed;
3444
3445  // Delete all the dead users of this alloca before splitting and rewriting it.
3446  for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3447                                        DE = S.dead_user_end();
3448       DI != DE; ++DI) {
3449    // Free up everything used by this instruction.
3450    for (Use &DeadOp : (*DI)->operands())
3451      clobberUse(DeadOp);
3452
3453    // Now replace the uses of this instruction.
3454    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3455
3456    // And mark it for deletion.
3457    DeadInsts.insert(*DI);
3458    Changed = true;
3459  }
3460  for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3461                                      DE = S.dead_op_end();
3462       DO != DE; ++DO) {
3463    clobberUse(**DO);
3464    Changed = true;
3465  }
3466
3467  // No slices to split. Leave the dead alloca for a later pass to clean up.
3468  if (S.begin() == S.end())
3469    return Changed;
3470
3471  Changed |= splitAlloca(AI, S);
3472
3473  DEBUG(dbgs() << "  Speculating PHIs\n");
3474  while (!SpeculatablePHIs.empty())
3475    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3476
3477  DEBUG(dbgs() << "  Speculating Selects\n");
3478  while (!SpeculatableSelects.empty())
3479    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3480
3481  return Changed;
3482}
3483
3484/// \brief Delete the dead instructions accumulated in this run.
3485///
3486/// Recursively deletes the dead instructions we've accumulated. This is done
3487/// at the very end to maximize locality of the recursive delete and to
3488/// minimize the problems of invalidated instruction pointers as such pointers
3489/// are used heavily in the intermediate stages of the algorithm.
3490///
3491/// We also record the alloca instructions deleted here so that they aren't
3492/// subsequently handed to mem2reg to promote.
3493void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3494  while (!DeadInsts.empty()) {
3495    Instruction *I = DeadInsts.pop_back_val();
3496    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3497
3498    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3499
3500    for (Use &Operand : I->operands())
3501      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
3502        // Zero out the operand and see if it becomes trivially dead.
3503        Operand = nullptr;
3504        if (isInstructionTriviallyDead(U))
3505          DeadInsts.insert(U);
3506      }
3507
3508    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3509      DeletedAllocas.insert(AI);
3510
3511    ++NumDeleted;
3512    I->eraseFromParent();
3513  }
3514}
3515
3516static void enqueueUsersInWorklist(Instruction &I,
3517                                   SmallVectorImpl<Instruction *> &Worklist,
3518                                   SmallPtrSet<Instruction *, 8> &Visited) {
3519  for (User *U : I.users())
3520    if (Visited.insert(cast<Instruction>(U)))
3521      Worklist.push_back(cast<Instruction>(U));
3522}
3523
3524/// \brief Promote the allocas, using the best available technique.
3525///
3526/// This attempts to promote whatever allocas have been identified as viable in
3527/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3528/// If there is a domtree available, we attempt to promote using the full power
3529/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3530/// based on the SSAUpdater utilities. This function returns whether any
3531/// promotion occurred.
3532bool SROA::promoteAllocas(Function &F) {
3533  if (PromotableAllocas.empty())
3534    return false;
3535
3536  NumPromoted += PromotableAllocas.size();
3537
3538  if (DT && !ForceSSAUpdater) {
3539    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3540    PromoteMemToReg(PromotableAllocas, *DT);
3541    PromotableAllocas.clear();
3542    return true;
3543  }
3544
3545  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3546  SSAUpdater SSA;
3547  DIBuilder DIB(*F.getParent());
3548  SmallVector<Instruction *, 64> Insts;
3549
3550  // We need a worklist to walk the uses of each alloca.
3551  SmallVector<Instruction *, 8> Worklist;
3552  SmallPtrSet<Instruction *, 8> Visited;
3553  SmallVector<Instruction *, 32> DeadInsts;
3554
3555  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3556    AllocaInst *AI = PromotableAllocas[Idx];
3557    Insts.clear();
3558    Worklist.clear();
3559    Visited.clear();
3560
3561    enqueueUsersInWorklist(*AI, Worklist, Visited);
3562
3563    while (!Worklist.empty()) {
3564      Instruction *I = Worklist.pop_back_val();
3565
3566      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3567      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3568      // leading to them) here. Eventually it should use them to optimize the
3569      // scalar values produced.
3570      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3571        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3572               II->getIntrinsicID() == Intrinsic::lifetime_end);
3573        II->eraseFromParent();
3574        continue;
3575      }
3576
3577      // Push the loads and stores we find onto the list. SROA will already
3578      // have validated that all loads and stores are viable candidates for
3579      // promotion.
3580      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3581        assert(LI->getType() == AI->getAllocatedType());
3582        Insts.push_back(LI);
3583        continue;
3584      }
3585      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3586        assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3587        Insts.push_back(SI);
3588        continue;
3589      }
3590
3591      // For everything else, we know that only no-op bitcasts and GEPs will
3592      // make it this far, just recurse through them and recall them for later
3593      // removal.
3594      DeadInsts.push_back(I);
3595      enqueueUsersInWorklist(*I, Worklist, Visited);
3596    }
3597    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3598    while (!DeadInsts.empty())
3599      DeadInsts.pop_back_val()->eraseFromParent();
3600    AI->eraseFromParent();
3601  }
3602
3603  PromotableAllocas.clear();
3604  return true;
3605}
3606
3607bool SROA::runOnFunction(Function &F) {
3608  if (skipOptnoneFunction(F))
3609    return false;
3610
3611  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3612  C = &F.getContext();
3613  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
3614  if (!DLP) {
3615    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3616    return false;
3617  }
3618  DL = &DLP->getDataLayout();
3619  DominatorTreeWrapperPass *DTWP =
3620      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
3621  DT = DTWP ? &DTWP->getDomTree() : nullptr;
3622
3623  BasicBlock &EntryBB = F.getEntryBlock();
3624  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
3625       I != E; ++I)
3626    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3627      Worklist.insert(AI);
3628
3629  bool Changed = false;
3630  // A set of deleted alloca instruction pointers which should be removed from
3631  // the list of promotable allocas.
3632  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3633
3634  do {
3635    while (!Worklist.empty()) {
3636      Changed |= runOnAlloca(*Worklist.pop_back_val());
3637      deleteDeadInstructions(DeletedAllocas);
3638
3639      // Remove the deleted allocas from various lists so that we don't try to
3640      // continue processing them.
3641      if (!DeletedAllocas.empty()) {
3642        auto IsInSet = [&](AllocaInst *AI) {
3643          return DeletedAllocas.count(AI);
3644        };
3645        Worklist.remove_if(IsInSet);
3646        PostPromotionWorklist.remove_if(IsInSet);
3647        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3648                                               PromotableAllocas.end(),
3649                                               IsInSet),
3650                                PromotableAllocas.end());
3651        DeletedAllocas.clear();
3652      }
3653    }
3654
3655    Changed |= promoteAllocas(F);
3656
3657    Worklist = PostPromotionWorklist;
3658    PostPromotionWorklist.clear();
3659  } while (!Worklist.empty());
3660
3661  return Changed;
3662}
3663
3664void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3665  if (RequiresDomTree)
3666    AU.addRequired<DominatorTreeWrapperPass>();
3667  AU.setPreservesCFG();
3668}
3669