1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3//                      The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SampleProfileLoader transformation. This pass
11// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13// profile information in the given profile.
14//
15// This pass generates branch weight annotations on the IR:
16//
17// - prof: Represents branch weights. This annotation is added to branches
18//      to indicate the weights of each edge coming out of the branch.
19//      The weight of each edge is the weight of the target block for
20//      that edge. The weight of a block B is computed as the maximum
21//      number of samples found in B.
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/PostDominators.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DebugInfo.h"
35#include "llvm/IR/DiagnosticInfo.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstIterator.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/MDBuilder.h"
42#include "llvm/IR/Metadata.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/LineIterator.h"
48#include "llvm/Support/MemoryBuffer.h"
49#include "llvm/Support/Regex.h"
50#include "llvm/Support/raw_ostream.h"
51#include <cctype>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "sample-profile"
56
57// Command line option to specify the file to read samples from. This is
58// mainly used for debugging.
59static cl::opt<std::string> SampleProfileFile(
60    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
61    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
62static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
63    "sample-profile-max-propagate-iterations", cl::init(100),
64    cl::desc("Maximum number of iterations to go through when propagating "
65             "sample block/edge weights through the CFG."));
66
67namespace {
68/// \brief Represents the relative location of an instruction.
69///
70/// Instruction locations are specified by the line offset from the
71/// beginning of the function (marked by the line where the function
72/// header is) and the discriminator value within that line.
73///
74/// The discriminator value is useful to distinguish instructions
75/// that are on the same line but belong to different basic blocks
76/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
77struct InstructionLocation {
78  InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
79  int LineOffset;
80  unsigned Discriminator;
81};
82}
83
84namespace llvm {
85template <> struct DenseMapInfo<InstructionLocation> {
86  typedef DenseMapInfo<int> OffsetInfo;
87  typedef DenseMapInfo<unsigned> DiscriminatorInfo;
88  static inline InstructionLocation getEmptyKey() {
89    return InstructionLocation(OffsetInfo::getEmptyKey(),
90                               DiscriminatorInfo::getEmptyKey());
91  }
92  static inline InstructionLocation getTombstoneKey() {
93    return InstructionLocation(OffsetInfo::getTombstoneKey(),
94                               DiscriminatorInfo::getTombstoneKey());
95  }
96  static inline unsigned getHashValue(InstructionLocation Val) {
97    return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
98        std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
99  }
100  static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
101    return LHS.LineOffset == RHS.LineOffset &&
102           LHS.Discriminator == RHS.Discriminator;
103  }
104};
105}
106
107namespace {
108typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
109typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
110typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
111typedef std::pair<BasicBlock *, BasicBlock *> Edge;
112typedef DenseMap<Edge, unsigned> EdgeWeightMap;
113typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
114
115/// \brief Representation of the runtime profile for a function.
116///
117/// This data structure contains the runtime profile for a given
118/// function. It contains the total number of samples collected
119/// in the function and a map of samples collected in every statement.
120class SampleFunctionProfile {
121public:
122  SampleFunctionProfile()
123      : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr),
124        PDT(nullptr), LI(nullptr), Ctx(nullptr) {}
125
126  unsigned getFunctionLoc(Function &F);
127  bool emitAnnotations(Function &F, DominatorTree *DomTree,
128                       PostDominatorTree *PostDomTree, LoopInfo *Loops);
129  unsigned getInstWeight(Instruction &I);
130  unsigned getBlockWeight(BasicBlock *B);
131  void addTotalSamples(unsigned Num) { TotalSamples += Num; }
132  void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
133  void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
134    assert(LineOffset >= 0);
135    BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
136  }
137  void print(raw_ostream &OS);
138  void printEdgeWeight(raw_ostream &OS, Edge E);
139  void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
140  void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
141  bool computeBlockWeights(Function &F);
142  void findEquivalenceClasses(Function &F);
143  void findEquivalencesFor(BasicBlock *BB1,
144                           SmallVector<BasicBlock *, 8> Descendants,
145                           DominatorTreeBase<BasicBlock> *DomTree);
146  void propagateWeights(Function &F);
147  unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
148  void buildEdges(Function &F);
149  bool propagateThroughEdges(Function &F);
150  bool empty() { return BodySamples.empty(); }
151
152protected:
153  /// \brief Total number of samples collected inside this function.
154  ///
155  /// Samples are cumulative, they include all the samples collected
156  /// inside this function and all its inlined callees.
157  unsigned TotalSamples;
158
159  /// \brief Total number of samples collected at the head of the function.
160  /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
161  unsigned TotalHeadSamples;
162
163  /// \brief Line number for the function header. Used to compute relative
164  /// line numbers from the absolute line LOCs found in instruction locations.
165  /// The relative line numbers are needed to address the samples from the
166  /// profile file.
167  unsigned HeaderLineno;
168
169  /// \brief Map line offsets to collected samples.
170  ///
171  /// Each entry in this map contains the number of samples
172  /// collected at the corresponding line offset. All line locations
173  /// are an offset from the start of the function.
174  BodySampleMap BodySamples;
175
176  /// \brief Map basic blocks to their computed weights.
177  ///
178  /// The weight of a basic block is defined to be the maximum
179  /// of all the instruction weights in that block.
180  BlockWeightMap BlockWeights;
181
182  /// \brief Map edges to their computed weights.
183  ///
184  /// Edge weights are computed by propagating basic block weights in
185  /// SampleProfile::propagateWeights.
186  EdgeWeightMap EdgeWeights;
187
188  /// \brief Set of visited blocks during propagation.
189  SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
190
191  /// \brief Set of visited edges during propagation.
192  SmallSet<Edge, 128> VisitedEdges;
193
194  /// \brief Equivalence classes for block weights.
195  ///
196  /// Two blocks BB1 and BB2 are in the same equivalence class if they
197  /// dominate and post-dominate each other, and they are in the same loop
198  /// nest. When this happens, the two blocks are guaranteed to execute
199  /// the same number of times.
200  EquivalenceClassMap EquivalenceClass;
201
202  /// \brief Dominance, post-dominance and loop information.
203  DominatorTree *DT;
204  PostDominatorTree *PDT;
205  LoopInfo *LI;
206
207  /// \brief Predecessors for each basic block in the CFG.
208  BlockEdgeMap Predecessors;
209
210  /// \brief Successors for each basic block in the CFG.
211  BlockEdgeMap Successors;
212
213  /// \brief LLVM context holding the debug data we need.
214  LLVMContext *Ctx;
215};
216
217/// \brief Sample-based profile reader.
218///
219/// Each profile contains sample counts for all the functions
220/// executed. Inside each function, statements are annotated with the
221/// collected samples on all the instructions associated with that
222/// statement.
223///
224/// For this to produce meaningful data, the program needs to be
225/// compiled with some debug information (at minimum, line numbers:
226/// -gline-tables-only). Otherwise, it will be impossible to match IR
227/// instructions to the line numbers collected by the profiler.
228///
229/// From the profile file, we are interested in collecting the
230/// following information:
231///
232/// * A list of functions included in the profile (mangled names).
233///
234/// * For each function F:
235///   1. The total number of samples collected in F.
236///
237///   2. The samples collected at each line in F. To provide some
238///      protection against source code shuffling, line numbers should
239///      be relative to the start of the function.
240class SampleModuleProfile {
241public:
242  SampleModuleProfile(const Module &M, StringRef F)
243      : Profiles(0), Filename(F), M(M) {}
244
245  void dump();
246  bool loadText();
247  void loadNative() { llvm_unreachable("not implemented"); }
248  void printFunctionProfile(raw_ostream &OS, StringRef FName);
249  void dumpFunctionProfile(StringRef FName);
250  SampleFunctionProfile &getProfile(const Function &F) {
251    return Profiles[F.getName()];
252  }
253
254  /// \brief Report a parse error message.
255  void reportParseError(int64_t LineNumber, Twine Msg) const {
256    DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
257    M.getContext().diagnose(Diag);
258  }
259
260protected:
261  /// \brief Map every function to its associated profile.
262  ///
263  /// The profile of every function executed at runtime is collected
264  /// in the structure SampleFunctionProfile. This maps function objects
265  /// to their corresponding profiles.
266  StringMap<SampleFunctionProfile> Profiles;
267
268  /// \brief Path name to the file holding the profile data.
269  ///
270  /// The format of this file is defined by each profiler
271  /// independently. If possible, the profiler should have a text
272  /// version of the profile format to be used in constructing test
273  /// cases and debugging.
274  StringRef Filename;
275
276  /// \brief Module being compiled. Used mainly to access the current
277  /// LLVM context for diagnostics.
278  const Module &M;
279};
280
281/// \brief Sample profile pass.
282///
283/// This pass reads profile data from the file specified by
284/// -sample-profile-file and annotates every affected function with the
285/// profile information found in that file.
286class SampleProfileLoader : public FunctionPass {
287public:
288  // Class identification, replacement for typeinfo
289  static char ID;
290
291  SampleProfileLoader(StringRef Name = SampleProfileFile)
292      : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
293    initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
294  }
295
296  bool doInitialization(Module &M) override;
297
298  void dump() { Profiler->dump(); }
299
300  const char *getPassName() const override { return "Sample profile pass"; }
301
302  bool runOnFunction(Function &F) override;
303
304  void getAnalysisUsage(AnalysisUsage &AU) const override {
305    AU.setPreservesCFG();
306    AU.addRequired<LoopInfo>();
307    AU.addRequired<DominatorTreeWrapperPass>();
308    AU.addRequired<PostDominatorTree>();
309  }
310
311protected:
312  /// \brief Profile reader object.
313  std::unique_ptr<SampleModuleProfile> Profiler;
314
315  /// \brief Name of the profile file to load.
316  StringRef Filename;
317
318  /// \brief Flag indicating whether the profile input loaded successfully.
319  bool ProfileIsValid;
320};
321}
322
323/// \brief Print this function profile on stream \p OS.
324///
325/// \param OS Stream to emit the output to.
326void SampleFunctionProfile::print(raw_ostream &OS) {
327  OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
328     << " sampled lines\n";
329  for (BodySampleMap::const_iterator SI = BodySamples.begin(),
330                                     SE = BodySamples.end();
331       SI != SE; ++SI)
332    OS << "\tline offset: " << SI->first.LineOffset
333       << ", discriminator: " << SI->first.Discriminator
334       << ", number of samples: " << SI->second << "\n";
335  OS << "\n";
336}
337
338/// \brief Print the weight of edge \p E on stream \p OS.
339///
340/// \param OS  Stream to emit the output to.
341/// \param E  Edge to print.
342void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
343  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
344     << "]: " << EdgeWeights[E] << "\n";
345}
346
347/// \brief Print the equivalence class of block \p BB on stream \p OS.
348///
349/// \param OS  Stream to emit the output to.
350/// \param BB  Block to print.
351void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
352                                                  BasicBlock *BB) {
353  BasicBlock *Equiv = EquivalenceClass[BB];
354  OS << "equivalence[" << BB->getName()
355     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
356}
357
358/// \brief Print the weight of block \p BB on stream \p OS.
359///
360/// \param OS  Stream to emit the output to.
361/// \param BB  Block to print.
362void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
363  OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
364}
365
366/// \brief Print the function profile for \p FName on stream \p OS.
367///
368/// \param OS Stream to emit the output to.
369/// \param FName Name of the function to print.
370void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
371                                               StringRef FName) {
372  OS << "Function: " << FName << ":\n";
373  Profiles[FName].print(OS);
374}
375
376/// \brief Dump the function profile for \p FName.
377///
378/// \param FName Name of the function to print.
379void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
380  printFunctionProfile(dbgs(), FName);
381}
382
383/// \brief Dump all the function profiles found.
384void SampleModuleProfile::dump() {
385  for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
386                                                        E = Profiles.end();
387       I != E; ++I)
388    dumpFunctionProfile(I->getKey());
389}
390
391/// \brief Load samples from a text file.
392///
393/// The file contains a list of samples for every function executed at
394/// runtime. Each function profile has the following format:
395///
396///    function1:total_samples:total_head_samples
397///    offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
398///    offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
399///    ...
400///    offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
401///
402/// Function names must be mangled in order for the profile loader to
403/// match them in the current translation unit. The two numbers in the
404/// function header specify how many total samples were accumulated in
405/// the function (first number), and the total number of samples accumulated
406/// at the prologue of the function (second number). This head sample
407/// count provides an indicator of how frequent is the function invoked.
408///
409/// Each sampled line may contain several items. Some are optional
410/// (marked below):
411///
412/// a- Source line offset. This number represents the line number
413///    in the function where the sample was collected. The line number
414///    is always relative to the line where symbol of the function
415///    is defined. So, if the function has its header at line 280,
416///    the offset 13 is at line 293 in the file.
417///
418/// b- [OPTIONAL] Discriminator. This is used if the sampled program
419///    was compiled with DWARF discriminator support
420///    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
421///
422/// c- Number of samples. This is the number of samples collected by
423///    the profiler at this source location.
424///
425/// d- [OPTIONAL] Potential call targets and samples. If present, this
426///    line contains a call instruction. This models both direct and
427///    indirect calls. Each called target is listed together with the
428///    number of samples. For example,
429///
430///    130: 7  foo:3  bar:2  baz:7
431///
432///    The above means that at relative line offset 130 there is a
433///    call instruction that calls one of foo(), bar() and baz(). With
434///    baz() being the relatively more frequent call target.
435///
436///    FIXME: This is currently unhandled, but it has a lot of
437///           potential for aiding the inliner.
438///
439///
440/// Since this is a flat profile, a function that shows up more than
441/// once gets all its samples aggregated across all its instances.
442///
443/// FIXME: flat profiles are too imprecise to provide good optimization
444///        opportunities. Convert them to context-sensitive profile.
445///
446/// This textual representation is useful to generate unit tests and
447/// for debugging purposes, but it should not be used to generate
448/// profiles for large programs, as the representation is extremely
449/// inefficient.
450///
451/// \returns true if the file was loaded successfully, false otherwise.
452bool SampleModuleProfile::loadText() {
453  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
454      MemoryBuffer::getFile(Filename);
455  if (std::error_code EC = BufferOrErr.getError()) {
456    std::string Msg(EC.message());
457    M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
458    return false;
459  }
460  std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
461  line_iterator LineIt(*Buffer, '#');
462
463  // Read the profile of each function. Since each function may be
464  // mentioned more than once, and we are collecting flat profiles,
465  // accumulate samples as we parse them.
466  Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
467  Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
468  while (!LineIt.is_at_eof()) {
469    // Read the header of each function.
470    //
471    // Note that for function identifiers we are actually expecting
472    // mangled names, but we may not always get them. This happens when
473    // the compiler decides not to emit the function (e.g., it was inlined
474    // and removed). In this case, the binary will not have the linkage
475    // name for the function, so the profiler will emit the function's
476    // unmangled name, which may contain characters like ':' and '>' in its
477    // name (member functions, templates, etc).
478    //
479    // The only requirement we place on the identifier, then, is that it
480    // should not begin with a number.
481    SmallVector<StringRef, 3> Matches;
482    if (!HeadRE.match(*LineIt, &Matches)) {
483      reportParseError(LineIt.line_number(),
484                       "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
485      return false;
486    }
487    assert(Matches.size() == 4);
488    StringRef FName = Matches[1];
489    unsigned NumSamples, NumHeadSamples;
490    Matches[2].getAsInteger(10, NumSamples);
491    Matches[3].getAsInteger(10, NumHeadSamples);
492    Profiles[FName] = SampleFunctionProfile();
493    SampleFunctionProfile &FProfile = Profiles[FName];
494    FProfile.addTotalSamples(NumSamples);
495    FProfile.addHeadSamples(NumHeadSamples);
496    ++LineIt;
497
498    // Now read the body. The body of the function ends when we reach
499    // EOF or when we see the start of the next function.
500    while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
501      if (!LineSample.match(*LineIt, &Matches)) {
502        reportParseError(
503            LineIt.line_number(),
504            "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
505        return false;
506      }
507      assert(Matches.size() == 5);
508      unsigned LineOffset, NumSamples, Discriminator = 0;
509      Matches[1].getAsInteger(10, LineOffset);
510      if (Matches[2] != "")
511        Matches[2].getAsInteger(10, Discriminator);
512      Matches[3].getAsInteger(10, NumSamples);
513
514      // FIXME: Handle called targets (in Matches[4]).
515
516      // When dealing with instruction weights, we use the value
517      // zero to indicate the absence of a sample. If we read an
518      // actual zero from the profile file, return it as 1 to
519      // avoid the confusion later on.
520      if (NumSamples == 0)
521        NumSamples = 1;
522      FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
523      ++LineIt;
524    }
525  }
526
527  return true;
528}
529
530/// \brief Get the weight for an instruction.
531///
532/// The "weight" of an instruction \p Inst is the number of samples
533/// collected on that instruction at runtime. To retrieve it, we
534/// need to compute the line number of \p Inst relative to the start of its
535/// function. We use HeaderLineno to compute the offset. We then
536/// look up the samples collected for \p Inst using BodySamples.
537///
538/// \param Inst Instruction to query.
539///
540/// \returns The profiled weight of I.
541unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
542  DebugLoc DLoc = Inst.getDebugLoc();
543  unsigned Lineno = DLoc.getLine();
544  if (Lineno < HeaderLineno)
545    return 0;
546
547  DILocation DIL(DLoc.getAsMDNode(*Ctx));
548  int LOffset = Lineno - HeaderLineno;
549  unsigned Discriminator = DIL.getDiscriminator();
550  unsigned Weight =
551      BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
552  DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
553               << " (line offset: " << LOffset << "." << Discriminator
554               << " - weight: " << Weight << ")\n");
555  return Weight;
556}
557
558/// \brief Compute the weight of a basic block.
559///
560/// The weight of basic block \p B is the maximum weight of all the
561/// instructions in B. The weight of \p B is computed and cached in
562/// the BlockWeights map.
563///
564/// \param B The basic block to query.
565///
566/// \returns The computed weight of B.
567unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
568  // If we've computed B's weight before, return it.
569  std::pair<BlockWeightMap::iterator, bool> Entry =
570      BlockWeights.insert(std::make_pair(B, 0));
571  if (!Entry.second)
572    return Entry.first->second;
573
574  // Otherwise, compute and cache B's weight.
575  unsigned Weight = 0;
576  for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
577    unsigned InstWeight = getInstWeight(*I);
578    if (InstWeight > Weight)
579      Weight = InstWeight;
580  }
581  Entry.first->second = Weight;
582  return Weight;
583}
584
585/// \brief Compute and store the weights of every basic block.
586///
587/// This populates the BlockWeights map by computing
588/// the weights of every basic block in the CFG.
589///
590/// \param F The function to query.
591bool SampleFunctionProfile::computeBlockWeights(Function &F) {
592  bool Changed = false;
593  DEBUG(dbgs() << "Block weights\n");
594  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
595    unsigned Weight = getBlockWeight(B);
596    Changed |= (Weight > 0);
597    DEBUG(printBlockWeight(dbgs(), B));
598  }
599
600  return Changed;
601}
602
603/// \brief Find equivalence classes for the given block.
604///
605/// This finds all the blocks that are guaranteed to execute the same
606/// number of times as \p BB1. To do this, it traverses all the the
607/// descendants of \p BB1 in the dominator or post-dominator tree.
608///
609/// A block BB2 will be in the same equivalence class as \p BB1 if
610/// the following holds:
611///
612/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
613///    is a descendant of \p BB1 in the dominator tree, then BB2 should
614///    dominate BB1 in the post-dominator tree.
615///
616/// 2- Both BB2 and \p BB1 must be in the same loop.
617///
618/// For every block BB2 that meets those two requirements, we set BB2's
619/// equivalence class to \p BB1.
620///
621/// \param BB1  Block to check.
622/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
623/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
624///                 with blocks from \p BB1's dominator tree, then
625///                 this is the post-dominator tree, and vice versa.
626void SampleFunctionProfile::findEquivalencesFor(
627    BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
628    DominatorTreeBase<BasicBlock> *DomTree) {
629  for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
630                                               E = Descendants.end();
631       I != E; ++I) {
632    BasicBlock *BB2 = *I;
633    bool IsDomParent = DomTree->dominates(BB2, BB1);
634    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
635    if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
636        IsInSameLoop) {
637      EquivalenceClass[BB2] = BB1;
638
639      // If BB2 is heavier than BB1, make BB2 have the same weight
640      // as BB1.
641      //
642      // Note that we don't worry about the opposite situation here
643      // (when BB2 is lighter than BB1). We will deal with this
644      // during the propagation phase. Right now, we just want to
645      // make sure that BB1 has the largest weight of all the
646      // members of its equivalence set.
647      unsigned &BB1Weight = BlockWeights[BB1];
648      unsigned &BB2Weight = BlockWeights[BB2];
649      BB1Weight = std::max(BB1Weight, BB2Weight);
650    }
651  }
652}
653
654/// \brief Find equivalence classes.
655///
656/// Since samples may be missing from blocks, we can fill in the gaps by setting
657/// the weights of all the blocks in the same equivalence class to the same
658/// weight. To compute the concept of equivalence, we use dominance and loop
659/// information. Two blocks B1 and B2 are in the same equivalence class if B1
660/// dominates B2, B2 post-dominates B1 and both are in the same loop.
661///
662/// \param F The function to query.
663void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
664  SmallVector<BasicBlock *, 8> DominatedBBs;
665  DEBUG(dbgs() << "\nBlock equivalence classes\n");
666  // Find equivalence sets based on dominance and post-dominance information.
667  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
668    BasicBlock *BB1 = B;
669
670    // Compute BB1's equivalence class once.
671    if (EquivalenceClass.count(BB1)) {
672      DEBUG(printBlockEquivalence(dbgs(), BB1));
673      continue;
674    }
675
676    // By default, blocks are in their own equivalence class.
677    EquivalenceClass[BB1] = BB1;
678
679    // Traverse all the blocks dominated by BB1. We are looking for
680    // every basic block BB2 such that:
681    //
682    // 1- BB1 dominates BB2.
683    // 2- BB2 post-dominates BB1.
684    // 3- BB1 and BB2 are in the same loop nest.
685    //
686    // If all those conditions hold, it means that BB2 is executed
687    // as many times as BB1, so they are placed in the same equivalence
688    // class by making BB2's equivalence class be BB1.
689    DominatedBBs.clear();
690    DT->getDescendants(BB1, DominatedBBs);
691    findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
692
693    // Repeat the same logic for all the blocks post-dominated by BB1.
694    // We are looking for every basic block BB2 such that:
695    //
696    // 1- BB1 post-dominates BB2.
697    // 2- BB2 dominates BB1.
698    // 3- BB1 and BB2 are in the same loop nest.
699    //
700    // If all those conditions hold, BB2's equivalence class is BB1.
701    DominatedBBs.clear();
702    PDT->getDescendants(BB1, DominatedBBs);
703    findEquivalencesFor(BB1, DominatedBBs, DT);
704
705    DEBUG(printBlockEquivalence(dbgs(), BB1));
706  }
707
708  // Assign weights to equivalence classes.
709  //
710  // All the basic blocks in the same equivalence class will execute
711  // the same number of times. Since we know that the head block in
712  // each equivalence class has the largest weight, assign that weight
713  // to all the blocks in that equivalence class.
714  DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
715  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
716    BasicBlock *BB = B;
717    BasicBlock *EquivBB = EquivalenceClass[BB];
718    if (BB != EquivBB)
719      BlockWeights[BB] = BlockWeights[EquivBB];
720    DEBUG(printBlockWeight(dbgs(), BB));
721  }
722}
723
724/// \brief Visit the given edge to decide if it has a valid weight.
725///
726/// If \p E has not been visited before, we copy to \p UnknownEdge
727/// and increment the count of unknown edges.
728///
729/// \param E  Edge to visit.
730/// \param NumUnknownEdges  Current number of unknown edges.
731/// \param UnknownEdge  Set if E has not been visited before.
732///
733/// \returns E's weight, if known. Otherwise, return 0.
734unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
735                                          Edge *UnknownEdge) {
736  if (!VisitedEdges.count(E)) {
737    (*NumUnknownEdges)++;
738    *UnknownEdge = E;
739    return 0;
740  }
741
742  return EdgeWeights[E];
743}
744
745/// \brief Propagate weights through incoming/outgoing edges.
746///
747/// If the weight of a basic block is known, and there is only one edge
748/// with an unknown weight, we can calculate the weight of that edge.
749///
750/// Similarly, if all the edges have a known count, we can calculate the
751/// count of the basic block, if needed.
752///
753/// \param F  Function to process.
754///
755/// \returns  True if new weights were assigned to edges or blocks.
756bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
757  bool Changed = false;
758  DEBUG(dbgs() << "\nPropagation through edges\n");
759  for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
760    BasicBlock *BB = BI;
761
762    // Visit all the predecessor and successor edges to determine
763    // which ones have a weight assigned already. Note that it doesn't
764    // matter that we only keep track of a single unknown edge. The
765    // only case we are interested in handling is when only a single
766    // edge is unknown (see setEdgeOrBlockWeight).
767    for (unsigned i = 0; i < 2; i++) {
768      unsigned TotalWeight = 0;
769      unsigned NumUnknownEdges = 0;
770      Edge UnknownEdge, SelfReferentialEdge;
771
772      if (i == 0) {
773        // First, visit all predecessor edges.
774        for (size_t I = 0; I < Predecessors[BB].size(); I++) {
775          Edge E = std::make_pair(Predecessors[BB][I], BB);
776          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
777          if (E.first == E.second)
778            SelfReferentialEdge = E;
779        }
780      } else {
781        // On the second round, visit all successor edges.
782        for (size_t I = 0; I < Successors[BB].size(); I++) {
783          Edge E = std::make_pair(BB, Successors[BB][I]);
784          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
785        }
786      }
787
788      // After visiting all the edges, there are three cases that we
789      // can handle immediately:
790      //
791      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
792      //   In this case, we simply check that the sum of all the edges
793      //   is the same as BB's weight. If not, we change BB's weight
794      //   to match. Additionally, if BB had not been visited before,
795      //   we mark it visited.
796      //
797      // - Only one edge is unknown and BB has already been visited.
798      //   In this case, we can compute the weight of the edge by
799      //   subtracting the total block weight from all the known
800      //   edge weights. If the edges weight more than BB, then the
801      //   edge of the last remaining edge is set to zero.
802      //
803      // - There exists a self-referential edge and the weight of BB is
804      //   known. In this case, this edge can be based on BB's weight.
805      //   We add up all the other known edges and set the weight on
806      //   the self-referential edge as we did in the previous case.
807      //
808      // In any other case, we must continue iterating. Eventually,
809      // all edges will get a weight, or iteration will stop when
810      // it reaches SampleProfileMaxPropagateIterations.
811      if (NumUnknownEdges <= 1) {
812        unsigned &BBWeight = BlockWeights[BB];
813        if (NumUnknownEdges == 0) {
814          // If we already know the weight of all edges, the weight of the
815          // basic block can be computed. It should be no larger than the sum
816          // of all edge weights.
817          if (TotalWeight > BBWeight) {
818            BBWeight = TotalWeight;
819            Changed = true;
820            DEBUG(dbgs() << "All edge weights for " << BB->getName()
821                         << " known. Set weight for block: ";
822                  printBlockWeight(dbgs(), BB););
823          }
824          if (VisitedBlocks.insert(BB))
825            Changed = true;
826        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
827          // If there is a single unknown edge and the block has been
828          // visited, then we can compute E's weight.
829          if (BBWeight >= TotalWeight)
830            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
831          else
832            EdgeWeights[UnknownEdge] = 0;
833          VisitedEdges.insert(UnknownEdge);
834          Changed = true;
835          DEBUG(dbgs() << "Set weight for edge: ";
836                printEdgeWeight(dbgs(), UnknownEdge));
837        }
838      } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
839        unsigned &BBWeight = BlockWeights[BB];
840        // We have a self-referential edge and the weight of BB is known.
841        if (BBWeight >= TotalWeight)
842          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
843        else
844          EdgeWeights[SelfReferentialEdge] = 0;
845        VisitedEdges.insert(SelfReferentialEdge);
846        Changed = true;
847        DEBUG(dbgs() << "Set self-referential edge weight to: ";
848              printEdgeWeight(dbgs(), SelfReferentialEdge));
849      }
850    }
851  }
852
853  return Changed;
854}
855
856/// \brief Build in/out edge lists for each basic block in the CFG.
857///
858/// We are interested in unique edges. If a block B1 has multiple
859/// edges to another block B2, we only add a single B1->B2 edge.
860void SampleFunctionProfile::buildEdges(Function &F) {
861  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
862    BasicBlock *B1 = I;
863
864    // Add predecessors for B1.
865    SmallPtrSet<BasicBlock *, 16> Visited;
866    if (!Predecessors[B1].empty())
867      llvm_unreachable("Found a stale predecessors list in a basic block.");
868    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
869      BasicBlock *B2 = *PI;
870      if (Visited.insert(B2))
871        Predecessors[B1].push_back(B2);
872    }
873
874    // Add successors for B1.
875    Visited.clear();
876    if (!Successors[B1].empty())
877      llvm_unreachable("Found a stale successors list in a basic block.");
878    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
879      BasicBlock *B2 = *SI;
880      if (Visited.insert(B2))
881        Successors[B1].push_back(B2);
882    }
883  }
884}
885
886/// \brief Propagate weights into edges
887///
888/// The following rules are applied to every block B in the CFG:
889///
890/// - If B has a single predecessor/successor, then the weight
891///   of that edge is the weight of the block.
892///
893/// - If all incoming or outgoing edges are known except one, and the
894///   weight of the block is already known, the weight of the unknown
895///   edge will be the weight of the block minus the sum of all the known
896///   edges. If the sum of all the known edges is larger than B's weight,
897///   we set the unknown edge weight to zero.
898///
899/// - If there is a self-referential edge, and the weight of the block is
900///   known, the weight for that edge is set to the weight of the block
901///   minus the weight of the other incoming edges to that block (if
902///   known).
903void SampleFunctionProfile::propagateWeights(Function &F) {
904  bool Changed = true;
905  unsigned i = 0;
906
907  // Before propagation starts, build, for each block, a list of
908  // unique predecessors and successors. This is necessary to handle
909  // identical edges in multiway branches. Since we visit all blocks and all
910  // edges of the CFG, it is cleaner to build these lists once at the start
911  // of the pass.
912  buildEdges(F);
913
914  // Propagate until we converge or we go past the iteration limit.
915  while (Changed && i++ < SampleProfileMaxPropagateIterations) {
916    Changed = propagateThroughEdges(F);
917  }
918
919  // Generate MD_prof metadata for every branch instruction using the
920  // edge weights computed during propagation.
921  DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
922  MDBuilder MDB(F.getContext());
923  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
924    BasicBlock *B = I;
925    TerminatorInst *TI = B->getTerminator();
926    if (TI->getNumSuccessors() == 1)
927      continue;
928    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
929      continue;
930
931    DEBUG(dbgs() << "\nGetting weights for branch at line "
932                 << TI->getDebugLoc().getLine() << ".\n");
933    SmallVector<unsigned, 4> Weights;
934    bool AllWeightsZero = true;
935    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
936      BasicBlock *Succ = TI->getSuccessor(I);
937      Edge E = std::make_pair(B, Succ);
938      unsigned Weight = EdgeWeights[E];
939      DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
940      Weights.push_back(Weight);
941      if (Weight != 0)
942        AllWeightsZero = false;
943    }
944
945    // Only set weights if there is at least one non-zero weight.
946    // In any other case, let the analyzer set weights.
947    if (!AllWeightsZero) {
948      DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
949      TI->setMetadata(llvm::LLVMContext::MD_prof,
950                      MDB.createBranchWeights(Weights));
951    } else {
952      DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
953    }
954  }
955}
956
957/// \brief Get the line number for the function header.
958///
959/// This looks up function \p F in the current compilation unit and
960/// retrieves the line number where the function is defined. This is
961/// line 0 for all the samples read from the profile file. Every line
962/// number is relative to this line.
963///
964/// \param F  Function object to query.
965///
966/// \returns the line number where \p F is defined. If it returns 0,
967///          it means that there is no debug information available for \p F.
968unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
969  NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
970  if (CUNodes) {
971    for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
972      DICompileUnit CU(CUNodes->getOperand(I));
973      DIArray Subprograms = CU.getSubprograms();
974      for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
975        DISubprogram Subprogram(Subprograms.getElement(J));
976        if (Subprogram.describes(&F))
977          return Subprogram.getLineNumber();
978      }
979    }
980  }
981
982  F.getContext().diagnose(DiagnosticInfoSampleProfile(
983      "No debug information found in function " + F.getName()));
984  return 0;
985}
986
987/// \brief Generate branch weight metadata for all branches in \p F.
988///
989/// Branch weights are computed out of instruction samples using a
990/// propagation heuristic. Propagation proceeds in 3 phases:
991///
992/// 1- Assignment of block weights. All the basic blocks in the function
993///    are initial assigned the same weight as their most frequently
994///    executed instruction.
995///
996/// 2- Creation of equivalence classes. Since samples may be missing from
997///    blocks, we can fill in the gaps by setting the weights of all the
998///    blocks in the same equivalence class to the same weight. To compute
999///    the concept of equivalence, we use dominance and loop information.
1000///    Two blocks B1 and B2 are in the same equivalence class if B1
1001///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1002///
1003/// 3- Propagation of block weights into edges. This uses a simple
1004///    propagation heuristic. The following rules are applied to every
1005///    block B in the CFG:
1006///
1007///    - If B has a single predecessor/successor, then the weight
1008///      of that edge is the weight of the block.
1009///
1010///    - If all the edges are known except one, and the weight of the
1011///      block is already known, the weight of the unknown edge will
1012///      be the weight of the block minus the sum of all the known
1013///      edges. If the sum of all the known edges is larger than B's weight,
1014///      we set the unknown edge weight to zero.
1015///
1016///    - If there is a self-referential edge, and the weight of the block is
1017///      known, the weight for that edge is set to the weight of the block
1018///      minus the weight of the other incoming edges to that block (if
1019///      known).
1020///
1021/// Since this propagation is not guaranteed to finalize for every CFG, we
1022/// only allow it to proceed for a limited number of iterations (controlled
1023/// by -sample-profile-max-propagate-iterations).
1024///
1025/// FIXME: Try to replace this propagation heuristic with a scheme
1026/// that is guaranteed to finalize. A work-list approach similar to
1027/// the standard value propagation algorithm used by SSA-CCP might
1028/// work here.
1029///
1030/// Once all the branch weights are computed, we emit the MD_prof
1031/// metadata on B using the computed values for each of its branches.
1032///
1033/// \param F The function to query.
1034///
1035/// \returns true if \p F was modified. Returns false, otherwise.
1036bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
1037                                            PostDominatorTree *PostDomTree,
1038                                            LoopInfo *Loops) {
1039  bool Changed = false;
1040
1041  // Initialize invariants used during computation and propagation.
1042  HeaderLineno = getFunctionLoc(F);
1043  if (HeaderLineno == 0)
1044    return false;
1045
1046  DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1047               << ": " << HeaderLineno << "\n");
1048  DT = DomTree;
1049  PDT = PostDomTree;
1050  LI = Loops;
1051  Ctx = &F.getParent()->getContext();
1052
1053  // Compute basic block weights.
1054  Changed |= computeBlockWeights(F);
1055
1056  if (Changed) {
1057    // Find equivalence classes.
1058    findEquivalenceClasses(F);
1059
1060    // Propagate weights to all edges.
1061    propagateWeights(F);
1062  }
1063
1064  return Changed;
1065}
1066
1067char SampleProfileLoader::ID = 0;
1068INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1069                      "Sample Profile loader", false, false)
1070INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1071INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
1072INITIALIZE_PASS_DEPENDENCY(LoopInfo)
1073INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1074INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1075                    "Sample Profile loader", false, false)
1076
1077bool SampleProfileLoader::doInitialization(Module &M) {
1078  Profiler.reset(new SampleModuleProfile(M, Filename));
1079  ProfileIsValid = Profiler->loadText();
1080  return true;
1081}
1082
1083FunctionPass *llvm::createSampleProfileLoaderPass() {
1084  return new SampleProfileLoader(SampleProfileFile);
1085}
1086
1087FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1088  return new SampleProfileLoader(Name);
1089}
1090
1091bool SampleProfileLoader::runOnFunction(Function &F) {
1092  if (!ProfileIsValid)
1093    return false;
1094  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1095  PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
1096  LoopInfo *LI = &getAnalysis<LoopInfo>();
1097  SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
1098  if (!FunctionProfile.empty())
1099    return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
1100  return false;
1101}
1102