1//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loop unrolling may create many similar GEPs for array accesses.
11// e.g., a 2-level loop
12//
13// float a[32][32]; // global variable
14//
15// for (int i = 0; i < 2; ++i) {
16//   for (int j = 0; j < 2; ++j) {
17//     ...
18//     ... = a[x + i][y + j];
19//     ...
20//   }
21// }
22//
23// will probably be unrolled to:
24//
25// gep %a, 0, %x, %y; load
26// gep %a, 0, %x, %y + 1; load
27// gep %a, 0, %x + 1, %y; load
28// gep %a, 0, %x + 1, %y + 1; load
29//
30// LLVM's GVN does not use partial redundancy elimination yet, and is thus
31// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32// significant slowdown in targets with limited addressing modes. For instance,
33// because the PTX target does not support the reg+reg addressing mode, the
34// NVPTX backend emits PTX code that literally computes the pointer address of
35// each GEP, wasting tons of registers. It emits the following PTX for the
36// first load and similar PTX for other loads.
37//
38// mov.u32         %r1, %x;
39// mov.u32         %r2, %y;
40// mul.wide.u32    %rl2, %r1, 128;
41// mov.u64         %rl3, a;
42// add.s64         %rl4, %rl3, %rl2;
43// mul.wide.u32    %rl5, %r2, 4;
44// add.s64         %rl6, %rl4, %rl5;
45// ld.global.f32   %f1, [%rl6];
46//
47// To reduce the register pressure, the optimization implemented in this file
48// merges the common part of a group of GEPs, so we can compute each pointer
49// address by adding a simple offset to the common part, saving many registers.
50//
51// It works by splitting each GEP into a variadic base and a constant offset.
52// The variadic base can be computed once and reused by multiple GEPs, and the
53// constant offsets can be nicely folded into the reg+immediate addressing mode
54// (supported by most targets) without using any extra register.
55//
56// For instance, we transform the four GEPs and four loads in the above example
57// into:
58//
59// base = gep a, 0, x, y
60// load base
61// laod base + 1  * sizeof(float)
62// load base + 32 * sizeof(float)
63// load base + 33 * sizeof(float)
64//
65// Given the transformed IR, a backend that supports the reg+immediate
66// addressing mode can easily fold the pointer arithmetics into the loads. For
67// example, the NVPTX backend can easily fold the pointer arithmetics into the
68// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69//
70// mov.u32         %r1, %tid.x;
71// mov.u32         %r2, %tid.y;
72// mul.wide.u32    %rl2, %r1, 128;
73// mov.u64         %rl3, a;
74// add.s64         %rl4, %rl3, %rl2;
75// mul.wide.u32    %rl5, %r2, 4;
76// add.s64         %rl6, %rl4, %rl5;
77// ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
78// ld.global.f32   %f2, [%rl6+4]; // much better
79// ld.global.f32   %f3, [%rl6+128]; // much better
80// ld.global.f32   %f4, [%rl6+132]; // much better
81//
82//===----------------------------------------------------------------------===//
83
84#include "llvm/Analysis/TargetTransformInfo.h"
85#include "llvm/Analysis/ValueTracking.h"
86#include "llvm/IR/Constants.h"
87#include "llvm/IR/DataLayout.h"
88#include "llvm/IR/Instructions.h"
89#include "llvm/IR/LLVMContext.h"
90#include "llvm/IR/Module.h"
91#include "llvm/IR/Operator.h"
92#include "llvm/Support/CommandLine.h"
93#include "llvm/Support/raw_ostream.h"
94#include "llvm/Transforms/Scalar.h"
95
96using namespace llvm;
97
98static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
99    "disable-separate-const-offset-from-gep", cl::init(false),
100    cl::desc("Do not separate the constant offset from a GEP instruction"),
101    cl::Hidden);
102
103namespace {
104
105/// \brief A helper class for separating a constant offset from a GEP index.
106///
107/// In real programs, a GEP index may be more complicated than a simple addition
108/// of something and a constant integer which can be trivially splitted. For
109/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
110/// constant offset, so that we can separate the index to (a << 3) + b and 5.
111///
112/// Therefore, this class looks into the expression that computes a given GEP
113/// index, and tries to find a constant integer that can be hoisted to the
114/// outermost level of the expression as an addition. Not every constant in an
115/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
116/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
117/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
118class ConstantOffsetExtractor {
119 public:
120  /// Extracts a constant offset from the given GEP index. It outputs the
121  /// numeric value of the extracted constant offset (0 if failed), and a
122  /// new index representing the remainder (equal to the original index minus
123  /// the constant offset).
124  /// \p Idx    The given GEP index
125  /// \p NewIdx The new index to replace (output)
126  /// \p DL     The datalayout of the module
127  /// \p GEP    The given GEP
128  static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
129                         GetElementPtrInst *GEP);
130  /// Looks for a constant offset without extracting it. The meaning of the
131  /// arguments and the return value are the same as Extract.
132  static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
133
134 private:
135  ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
136      : DL(Layout), IP(InsertionPt) {}
137  /// Searches the expression that computes V for a non-zero constant C s.t.
138  /// V can be reassociated into the form V' + C. If the searching is
139  /// successful, returns C and update UserChain as a def-use chain from C to V;
140  /// otherwise, UserChain is empty.
141  ///
142  /// \p V            The given expression
143  /// \p SignExtended Whether V will be sign-extended in the computation of the
144  ///                 GEP index
145  /// \p ZeroExtended Whether V will be zero-extended in the computation of the
146  ///                 GEP index
147  /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
148  ///                 an index of an inbounds GEP is guaranteed to be
149  ///                 non-negative. Levaraging this, we can better split
150  ///                 inbounds GEPs.
151  APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
152  /// A helper function to look into both operands of a binary operator.
153  APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
154                            bool ZeroExtended);
155  /// After finding the constant offset C from the GEP index I, we build a new
156  /// index I' s.t. I' + C = I. This function builds and returns the new
157  /// index I' according to UserChain produced by function "find".
158  ///
159  /// The building conceptually takes two steps:
160  /// 1) iteratively distribute s/zext towards the leaves of the expression tree
161  /// that computes I
162  /// 2) reassociate the expression tree to the form I' + C.
163  ///
164  /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
165  /// sext to a, b and 5 so that we have
166  ///   sext(a) + (sext(b) + 5).
167  /// Then, we reassociate it to
168  ///   (sext(a) + sext(b)) + 5.
169  /// Given this form, we know I' is sext(a) + sext(b).
170  Value *rebuildWithoutConstOffset();
171  /// After the first step of rebuilding the GEP index without the constant
172  /// offset, distribute s/zext to the operands of all operators in UserChain.
173  /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
174  /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
175  ///
176  /// The function also updates UserChain to point to new subexpressions after
177  /// distributing s/zext. e.g., the old UserChain of the above example is
178  /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
179  /// and the new UserChain is
180  /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
181  ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
182  ///
183  /// \p ChainIndex The index to UserChain. ChainIndex is initially
184  ///               UserChain.size() - 1, and is decremented during
185  ///               the recursion.
186  Value *distributeExtsAndCloneChain(unsigned ChainIndex);
187  /// Reassociates the GEP index to the form I' + C and returns I'.
188  Value *removeConstOffset(unsigned ChainIndex);
189  /// A helper function to apply ExtInsts, a list of s/zext, to value V.
190  /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
191  /// returns "sext i32 (zext i16 V to i32) to i64".
192  Value *applyExts(Value *V);
193
194  /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
195  bool NoCommonBits(Value *LHS, Value *RHS) const;
196  /// Computes which bits are known to be one or zero.
197  /// \p KnownOne Mask of all bits that are known to be one.
198  /// \p KnownZero Mask of all bits that are known to be zero.
199  void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
200  /// A helper function that returns whether we can trace into the operands
201  /// of binary operator BO for a constant offset.
202  ///
203  /// \p SignExtended Whether BO is surrounded by sext
204  /// \p ZeroExtended Whether BO is surrounded by zext
205  /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
206  ///                array index.
207  bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
208                    bool NonNegative);
209
210  /// The path from the constant offset to the old GEP index. e.g., if the GEP
211  /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
212  /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
213  /// UserChain[2] will be the entire expression "a * b + (c + 5)".
214  ///
215  /// This path helps to rebuild the new GEP index.
216  SmallVector<User *, 8> UserChain;
217  /// A data structure used in rebuildWithoutConstOffset. Contains all
218  /// sext/zext instructions along UserChain.
219  SmallVector<CastInst *, 16> ExtInsts;
220  /// The data layout of the module. Used in ComputeKnownBits.
221  const DataLayout *DL;
222  Instruction *IP;  /// Insertion position of cloned instructions.
223};
224
225/// \brief A pass that tries to split every GEP in the function into a variadic
226/// base and a constant offset. It is a FunctionPass because searching for the
227/// constant offset may inspect other basic blocks.
228class SeparateConstOffsetFromGEP : public FunctionPass {
229 public:
230  static char ID;
231  SeparateConstOffsetFromGEP() : FunctionPass(ID) {
232    initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
233  }
234
235  void getAnalysisUsage(AnalysisUsage &AU) const override {
236    AU.addRequired<DataLayoutPass>();
237    AU.addRequired<TargetTransformInfo>();
238  }
239
240  bool doInitialization(Module &M) override {
241    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
242    if (DLP == nullptr)
243      report_fatal_error("data layout missing");
244    DL = &DLP->getDataLayout();
245    return false;
246  }
247
248  bool runOnFunction(Function &F) override;
249
250 private:
251  /// Tries to split the given GEP into a variadic base and a constant offset,
252  /// and returns true if the splitting succeeds.
253  bool splitGEP(GetElementPtrInst *GEP);
254  /// Finds the constant offset within each index, and accumulates them. This
255  /// function only inspects the GEP without changing it. The output
256  /// NeedsExtraction indicates whether we can extract a non-zero constant
257  /// offset from any index.
258  int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
259  /// Canonicalize array indices to pointer-size integers. This helps to
260  /// simplify the logic of splitting a GEP. For example, if a + b is a
261  /// pointer-size integer, we have
262  ///   gep base, a + b = gep (gep base, a), b
263  /// However, this equality may not hold if the size of a + b is smaller than
264  /// the pointer size, because LLVM conceptually sign-extends GEP indices to
265  /// pointer size before computing the address
266  /// (http://llvm.org/docs/LangRef.html#id181).
267  ///
268  /// This canonicalization is very likely already done in clang and
269  /// instcombine. Therefore, the program will probably remain the same.
270  ///
271  /// Returns true if the module changes.
272  ///
273  /// Verified in @i32_add in split-gep.ll
274  bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
275  /// For each array index that is in the form of zext(a), convert it to sext(a)
276  /// if we can prove zext(a) <= max signed value of typeof(a). We prefer
277  /// sext(a) to zext(a), because in the special case where x + y >= 0 and
278  /// (x >= 0 or y >= 0), function CanTraceInto can split sext(x + y),
279  /// while no such case exists for zext(x + y).
280  ///
281  /// Note that
282  ///   zext(x + y) = zext(x) + zext(y)
283  /// is wrong, e.g.,
284  ///   zext i32(UINT_MAX + 1) to i64 !=
285  ///   (zext i32 UINT_MAX to i64) + (zext i32 1 to i64)
286  ///
287  /// Returns true if the module changes.
288  ///
289  /// Verified in @inbounds_zext_add in split-gep.ll and @sum_of_array3 in
290  /// split-gep-and-gvn.ll
291  bool convertInBoundsZExtToSExt(GetElementPtrInst *GEP);
292
293  const DataLayout *DL;
294};
295}  // anonymous namespace
296
297char SeparateConstOffsetFromGEP::ID = 0;
298INITIALIZE_PASS_BEGIN(
299    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
300    "Split GEPs to a variadic base and a constant offset for better CSE", false,
301    false)
302INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
303INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
304INITIALIZE_PASS_END(
305    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
306    "Split GEPs to a variadic base and a constant offset for better CSE", false,
307    false)
308
309FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
310  return new SeparateConstOffsetFromGEP();
311}
312
313bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
314                                            bool ZeroExtended,
315                                            BinaryOperator *BO,
316                                            bool NonNegative) {
317  // We only consider ADD, SUB and OR, because a non-zero constant found in
318  // expressions composed of these operations can be easily hoisted as a
319  // constant offset by reassociation.
320  if (BO->getOpcode() != Instruction::Add &&
321      BO->getOpcode() != Instruction::Sub &&
322      BO->getOpcode() != Instruction::Or) {
323    return false;
324  }
325
326  Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
327  // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
328  // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
329  if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
330    return false;
331
332  // In addition, tracing into BO requires that its surrounding s/zext (if
333  // any) is distributable to both operands.
334  //
335  // Suppose BO = A op B.
336  //  SignExtended | ZeroExtended | Distributable?
337  // --------------+--------------+----------------------------------
338  //       0       |      0       | true because no s/zext exists
339  //       0       |      1       | zext(BO) == zext(A) op zext(B)
340  //       1       |      0       | sext(BO) == sext(A) op sext(B)
341  //       1       |      1       | zext(sext(BO)) ==
342  //               |              |     zext(sext(A)) op zext(sext(B))
343  if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
344    // If a + b >= 0 and (a >= 0 or b >= 0), then
345    //   sext(a + b) = sext(a) + sext(b)
346    // even if the addition is not marked nsw.
347    //
348    // Leveraging this invarient, we can trace into an sext'ed inbound GEP
349    // index if the constant offset is non-negative.
350    //
351    // Verified in @sext_add in split-gep.ll.
352    if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
353      if (!ConstLHS->isNegative())
354        return true;
355    }
356    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
357      if (!ConstRHS->isNegative())
358        return true;
359    }
360  }
361
362  // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
363  // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
364  if (BO->getOpcode() == Instruction::Add ||
365      BO->getOpcode() == Instruction::Sub) {
366    if (SignExtended && !BO->hasNoSignedWrap())
367      return false;
368    if (ZeroExtended && !BO->hasNoUnsignedWrap())
369      return false;
370  }
371
372  return true;
373}
374
375APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
376                                                   bool SignExtended,
377                                                   bool ZeroExtended) {
378  // BO being non-negative does not shed light on whether its operands are
379  // non-negative. Clear the NonNegative flag here.
380  APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
381                              /* NonNegative */ false);
382  // If we found a constant offset in the left operand, stop and return that.
383  // This shortcut might cause us to miss opportunities of combining the
384  // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
385  // However, such cases are probably already handled by -instcombine,
386  // given this pass runs after the standard optimizations.
387  if (ConstantOffset != 0) return ConstantOffset;
388  ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
389                        /* NonNegative */ false);
390  // If U is a sub operator, negate the constant offset found in the right
391  // operand.
392  if (BO->getOpcode() == Instruction::Sub)
393    ConstantOffset = -ConstantOffset;
394  return ConstantOffset;
395}
396
397APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
398                                    bool ZeroExtended, bool NonNegative) {
399  // TODO(jingyue): We could trace into integer/pointer casts, such as
400  // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
401  // integers because it gives good enough results for our benchmarks.
402  unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
403
404  // We cannot do much with Values that are not a User, such as an Argument.
405  User *U = dyn_cast<User>(V);
406  if (U == nullptr) return APInt(BitWidth, 0);
407
408  APInt ConstantOffset(BitWidth, 0);
409  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
410    // Hooray, we found it!
411    ConstantOffset = CI->getValue();
412  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
413    // Trace into subexpressions for more hoisting opportunities.
414    if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
415      ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
416    }
417  } else if (isa<SExtInst>(V)) {
418    ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
419                          ZeroExtended, NonNegative).sext(BitWidth);
420  } else if (isa<ZExtInst>(V)) {
421    // As an optimization, we can clear the SignExtended flag because
422    // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
423    //
424    // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
425    ConstantOffset =
426        find(U->getOperand(0), /* SignExtended */ false,
427             /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
428  }
429
430  // If we found a non-zero constant offset, add it to the path for
431  // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
432  // help this optimization.
433  if (ConstantOffset != 0)
434    UserChain.push_back(U);
435  return ConstantOffset;
436}
437
438Value *ConstantOffsetExtractor::applyExts(Value *V) {
439  Value *Current = V;
440  // ExtInsts is built in the use-def order. Therefore, we apply them to V
441  // in the reversed order.
442  for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
443    if (Constant *C = dyn_cast<Constant>(Current)) {
444      // If Current is a constant, apply s/zext using ConstantExpr::getCast.
445      // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
446      Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
447    } else {
448      Instruction *Ext = (*I)->clone();
449      Ext->setOperand(0, Current);
450      Ext->insertBefore(IP);
451      Current = Ext;
452    }
453  }
454  return Current;
455}
456
457Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
458  distributeExtsAndCloneChain(UserChain.size() - 1);
459  // Remove all nullptrs (used to be s/zext) from UserChain.
460  unsigned NewSize = 0;
461  for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
462    if (*I != nullptr) {
463      UserChain[NewSize] = *I;
464      NewSize++;
465    }
466  }
467  UserChain.resize(NewSize);
468  return removeConstOffset(UserChain.size() - 1);
469}
470
471Value *
472ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
473  User *U = UserChain[ChainIndex];
474  if (ChainIndex == 0) {
475    assert(isa<ConstantInt>(U));
476    // If U is a ConstantInt, applyExts will return a ConstantInt as well.
477    return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
478  }
479
480  if (CastInst *Cast = dyn_cast<CastInst>(U)) {
481    assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
482           "We only traced into two types of CastInst: sext and zext");
483    ExtInsts.push_back(Cast);
484    UserChain[ChainIndex] = nullptr;
485    return distributeExtsAndCloneChain(ChainIndex - 1);
486  }
487
488  // Function find only trace into BinaryOperator and CastInst.
489  BinaryOperator *BO = cast<BinaryOperator>(U);
490  // OpNo = which operand of BO is UserChain[ChainIndex - 1]
491  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
492  Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
493  Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
494
495  BinaryOperator *NewBO = nullptr;
496  if (OpNo == 0) {
497    NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
498                                   BO->getName(), IP);
499  } else {
500    NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
501                                   BO->getName(), IP);
502  }
503  return UserChain[ChainIndex] = NewBO;
504}
505
506Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
507  if (ChainIndex == 0) {
508    assert(isa<ConstantInt>(UserChain[ChainIndex]));
509    return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
510  }
511
512  BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
513  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
514  assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
515  Value *NextInChain = removeConstOffset(ChainIndex - 1);
516  Value *TheOther = BO->getOperand(1 - OpNo);
517
518  // If NextInChain is 0 and not the LHS of a sub, we can simplify the
519  // sub-expression to be just TheOther.
520  if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
521    if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
522      return TheOther;
523  }
524
525  if (BO->getOpcode() == Instruction::Or) {
526    // Rebuild "or" as "add", because "or" may be invalid for the new
527    // epxression.
528    //
529    // For instance, given
530    //   a | (b + 5) where a and b + 5 have no common bits,
531    // we can extract 5 as the constant offset.
532    //
533    // However, reusing the "or" in the new index would give us
534    //   (a | b) + 5
535    // which does not equal a | (b + 5).
536    //
537    // Replacing the "or" with "add" is fine, because
538    //   a | (b + 5) = a + (b + 5) = (a + b) + 5
539    return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
540                                     BO->getName(), IP);
541  }
542
543  // We can reuse BO in this case, because the new expression shares the same
544  // instruction type and BO is used at most once.
545  assert(BO->getNumUses() <= 1 &&
546         "distributeExtsAndCloneChain clones each BinaryOperator in "
547         "UserChain, so no one should be used more than "
548         "once");
549  BO->setOperand(OpNo, NextInChain);
550  BO->setHasNoSignedWrap(false);
551  BO->setHasNoUnsignedWrap(false);
552  // Make sure it appears after all instructions we've inserted so far.
553  BO->moveBefore(IP);
554  return BO;
555}
556
557int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
558                                         const DataLayout *DL,
559                                         GetElementPtrInst *GEP) {
560  ConstantOffsetExtractor Extractor(DL, GEP);
561  // Find a non-zero constant offset first.
562  APInt ConstantOffset =
563      Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
564                     GEP->isInBounds());
565  if (ConstantOffset != 0) {
566    // Separates the constant offset from the GEP index.
567    NewIdx = Extractor.rebuildWithoutConstOffset();
568  }
569  return ConstantOffset.getSExtValue();
570}
571
572int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
573      GetElementPtrInst *GEP) {
574  // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
575  return ConstantOffsetExtractor(DL, GEP)
576      .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
577            GEP->isInBounds())
578      .getSExtValue();
579}
580
581void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
582                                               APInt &KnownZero) const {
583  IntegerType *IT = cast<IntegerType>(V->getType());
584  KnownOne = APInt(IT->getBitWidth(), 0);
585  KnownZero = APInt(IT->getBitWidth(), 0);
586  llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
587}
588
589bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
590  assert(LHS->getType() == RHS->getType() &&
591         "LHS and RHS should have the same type");
592  APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
593  ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
594  ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
595  return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
596}
597
598bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
599    GetElementPtrInst *GEP) {
600  bool Changed = false;
601  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
602  gep_type_iterator GTI = gep_type_begin(*GEP);
603  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
604       I != E; ++I, ++GTI) {
605    // Skip struct member indices which must be i32.
606    if (isa<SequentialType>(*GTI)) {
607      if ((*I)->getType() != IntPtrTy) {
608        *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
609        Changed = true;
610      }
611    }
612  }
613  return Changed;
614}
615
616bool
617SeparateConstOffsetFromGEP::convertInBoundsZExtToSExt(GetElementPtrInst *GEP) {
618  if (!GEP->isInBounds())
619    return false;
620
621  // TODO: consider alloca
622  GlobalVariable *UnderlyingObject =
623      dyn_cast<GlobalVariable>(GEP->getPointerOperand());
624  if (UnderlyingObject == nullptr)
625    return false;
626
627  uint64_t ObjectSize =
628      DL->getTypeAllocSize(UnderlyingObject->getType()->getElementType());
629  gep_type_iterator GTI = gep_type_begin(*GEP);
630  bool Changed = false;
631  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
632       ++I, ++GTI) {
633    if (isa<SequentialType>(*GTI)) {
634      if (ZExtInst *Extended = dyn_cast<ZExtInst>(*I)) {
635        unsigned SrcBitWidth =
636            cast<IntegerType>(Extended->getSrcTy())->getBitWidth();
637        // For GEP operand zext(a), if a <= max signed value of typeof(a), then
638        // the sign bit of a is zero and sext(a) = zext(a). Because the GEP is
639        // in bounds, we know a <= ObjectSize, so the condition can be reduced
640        // to ObjectSize <= max signed value of typeof(a).
641        if (ObjectSize <=
642            APInt::getSignedMaxValue(SrcBitWidth).getZExtValue()) {
643          *I = new SExtInst(Extended->getOperand(0), Extended->getType(),
644                            Extended->getName(), GEP);
645          Changed = true;
646        }
647      }
648    }
649  }
650  return Changed;
651}
652
653int64_t
654SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
655                                                 bool &NeedsExtraction) {
656  NeedsExtraction = false;
657  int64_t AccumulativeByteOffset = 0;
658  gep_type_iterator GTI = gep_type_begin(*GEP);
659  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
660    if (isa<SequentialType>(*GTI)) {
661      // Tries to extract a constant offset from this GEP index.
662      int64_t ConstantOffset =
663          ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
664      if (ConstantOffset != 0) {
665        NeedsExtraction = true;
666        // A GEP may have multiple indices.  We accumulate the extracted
667        // constant offset to a byte offset, and later offset the remainder of
668        // the original GEP with this byte offset.
669        AccumulativeByteOffset +=
670            ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
671      }
672    }
673  }
674  return AccumulativeByteOffset;
675}
676
677bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
678  // Skip vector GEPs.
679  if (GEP->getType()->isVectorTy())
680    return false;
681
682  // The backend can already nicely handle the case where all indices are
683  // constant.
684  if (GEP->hasAllConstantIndices())
685    return false;
686
687  bool Changed = false;
688  Changed |= canonicalizeArrayIndicesToPointerSize(GEP);
689  Changed |= convertInBoundsZExtToSExt(GEP);
690
691  bool NeedsExtraction;
692  int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
693
694  if (!NeedsExtraction)
695    return Changed;
696  // Before really splitting the GEP, check whether the backend supports the
697  // addressing mode we are about to produce. If no, this splitting probably
698  // won't be beneficial.
699  TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
700  if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
701                                 /*BaseGV=*/nullptr, AccumulativeByteOffset,
702                                 /*HasBaseReg=*/true, /*Scale=*/0)) {
703    return Changed;
704  }
705
706  // Remove the constant offset in each GEP index. The resultant GEP computes
707  // the variadic base.
708  gep_type_iterator GTI = gep_type_begin(*GEP);
709  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
710    if (isa<SequentialType>(*GTI)) {
711      Value *NewIdx = nullptr;
712      // Tries to extract a constant offset from this GEP index.
713      int64_t ConstantOffset =
714          ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
715      if (ConstantOffset != 0) {
716        assert(NewIdx != nullptr &&
717               "ConstantOffset != 0 implies NewIdx is set");
718        GEP->setOperand(I, NewIdx);
719      }
720    }
721  }
722  // Clear the inbounds attribute because the new index may be off-bound.
723  // e.g.,
724  //
725  // b = add i64 a, 5
726  // addr = gep inbounds float* p, i64 b
727  //
728  // is transformed to:
729  //
730  // addr2 = gep float* p, i64 a
731  // addr = gep float* addr2, i64 5
732  //
733  // If a is -4, although the old index b is in bounds, the new index a is
734  // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
735  // inbounds keyword is not present, the offsets are added to the base
736  // address with silently-wrapping two's complement arithmetic".
737  // Therefore, the final code will be a semantically equivalent.
738  //
739  // TODO(jingyue): do some range analysis to keep as many inbounds as
740  // possible. GEPs with inbounds are more friendly to alias analysis.
741  GEP->setIsInBounds(false);
742
743  // Offsets the base with the accumulative byte offset.
744  //
745  //   %gep                        ; the base
746  //   ... %gep ...
747  //
748  // => add the offset
749  //
750  //   %gep2                       ; clone of %gep
751  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
752  //   %gep                        ; will be removed
753  //   ... %gep ...
754  //
755  // => replace all uses of %gep with %new.gep and remove %gep
756  //
757  //   %gep2                       ; clone of %gep
758  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
759  //   ... %new.gep ...
760  //
761  // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
762  // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
763  // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
764  // type of %gep.
765  //
766  //   %gep2                       ; clone of %gep
767  //   %0       = bitcast %gep2 to i8*
768  //   %uglygep = gep %0, <offset>
769  //   %new.gep = bitcast %uglygep to <type of %gep>
770  //   ... %new.gep ...
771  Instruction *NewGEP = GEP->clone();
772  NewGEP->insertBefore(GEP);
773
774  uint64_t ElementTypeSizeOfGEP =
775      DL->getTypeAllocSize(GEP->getType()->getElementType());
776  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
777  if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
778    // Very likely. As long as %gep is natually aligned, the byte offset we
779    // extracted should be a multiple of sizeof(*%gep).
780    // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
781    // cast ElementTypeSizeOfGEP to signed.
782    int64_t Index =
783        AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
784    NewGEP = GetElementPtrInst::Create(
785        NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
786  } else {
787    // Unlikely but possible. For example,
788    // #pragma pack(1)
789    // struct S {
790    //   int a[3];
791    //   int64 b[8];
792    // };
793    // #pragma pack()
794    //
795    // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
796    // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
797    // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
798    // sizeof(int64).
799    //
800    // Emit an uglygep in this case.
801    Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
802                                       GEP->getPointerAddressSpace());
803    NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
804    NewGEP = GetElementPtrInst::Create(
805        NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
806        "uglygep", GEP);
807    if (GEP->getType() != I8PtrTy)
808      NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
809  }
810
811  GEP->replaceAllUsesWith(NewGEP);
812  GEP->eraseFromParent();
813
814  return true;
815}
816
817bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
818  if (DisableSeparateConstOffsetFromGEP)
819    return false;
820
821  bool Changed = false;
822  for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
823    for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
824      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
825        Changed |= splitGEP(GEP);
826      }
827      // No need to split GEP ConstantExprs because all its indices are constant
828      // already.
829    }
830  }
831  return Changed;
832}
833