SeparateConstOffsetFromGEP.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loop unrolling may create many similar GEPs for array accesses.
11// e.g., a 2-level loop
12//
13// float a[32][32]; // global variable
14//
15// for (int i = 0; i < 2; ++i) {
16//   for (int j = 0; j < 2; ++j) {
17//     ...
18//     ... = a[x + i][y + j];
19//     ...
20//   }
21// }
22//
23// will probably be unrolled to:
24//
25// gep %a, 0, %x, %y; load
26// gep %a, 0, %x, %y + 1; load
27// gep %a, 0, %x + 1, %y; load
28// gep %a, 0, %x + 1, %y + 1; load
29//
30// LLVM's GVN does not use partial redundancy elimination yet, and is thus
31// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32// significant slowdown in targets with limited addressing modes. For instance,
33// because the PTX target does not support the reg+reg addressing mode, the
34// NVPTX backend emits PTX code that literally computes the pointer address of
35// each GEP, wasting tons of registers. It emits the following PTX for the
36// first load and similar PTX for other loads.
37//
38// mov.u32         %r1, %x;
39// mov.u32         %r2, %y;
40// mul.wide.u32    %rl2, %r1, 128;
41// mov.u64         %rl3, a;
42// add.s64         %rl4, %rl3, %rl2;
43// mul.wide.u32    %rl5, %r2, 4;
44// add.s64         %rl6, %rl4, %rl5;
45// ld.global.f32   %f1, [%rl6];
46//
47// To reduce the register pressure, the optimization implemented in this file
48// merges the common part of a group of GEPs, so we can compute each pointer
49// address by adding a simple offset to the common part, saving many registers.
50//
51// It works by splitting each GEP into a variadic base and a constant offset.
52// The variadic base can be computed once and reused by multiple GEPs, and the
53// constant offsets can be nicely folded into the reg+immediate addressing mode
54// (supported by most targets) without using any extra register.
55//
56// For instance, we transform the four GEPs and four loads in the above example
57// into:
58//
59// base = gep a, 0, x, y
60// load base
61// laod base + 1  * sizeof(float)
62// load base + 32 * sizeof(float)
63// load base + 33 * sizeof(float)
64//
65// Given the transformed IR, a backend that supports the reg+immediate
66// addressing mode can easily fold the pointer arithmetics into the loads. For
67// example, the NVPTX backend can easily fold the pointer arithmetics into the
68// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69//
70// mov.u32         %r1, %tid.x;
71// mov.u32         %r2, %tid.y;
72// mul.wide.u32    %rl2, %r1, 128;
73// mov.u64         %rl3, a;
74// add.s64         %rl4, %rl3, %rl2;
75// mul.wide.u32    %rl5, %r2, 4;
76// add.s64         %rl6, %rl4, %rl5;
77// ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
78// ld.global.f32   %f2, [%rl6+4]; // much better
79// ld.global.f32   %f3, [%rl6+128]; // much better
80// ld.global.f32   %f4, [%rl6+132]; // much better
81//
82//===----------------------------------------------------------------------===//
83
84#include "llvm/Analysis/TargetTransformInfo.h"
85#include "llvm/Analysis/ValueTracking.h"
86#include "llvm/IR/Constants.h"
87#include "llvm/IR/DataLayout.h"
88#include "llvm/IR/Instructions.h"
89#include "llvm/IR/LLVMContext.h"
90#include "llvm/IR/Module.h"
91#include "llvm/IR/Operator.h"
92#include "llvm/Support/CommandLine.h"
93#include "llvm/Support/raw_ostream.h"
94#include "llvm/Transforms/Scalar.h"
95
96using namespace llvm;
97
98static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
99    "disable-separate-const-offset-from-gep", cl::init(false),
100    cl::desc("Do not separate the constant offset from a GEP instruction"),
101    cl::Hidden);
102
103namespace {
104
105/// \brief A helper class for separating a constant offset from a GEP index.
106///
107/// In real programs, a GEP index may be more complicated than a simple addition
108/// of something and a constant integer which can be trivially splitted. For
109/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
110/// constant offset, so that we can separate the index to (a << 3) + b and 5.
111///
112/// Therefore, this class looks into the expression that computes a given GEP
113/// index, and tries to find a constant integer that can be hoisted to the
114/// outermost level of the expression as an addition. Not every constant in an
115/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
116/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
117/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
118class ConstantOffsetExtractor {
119 public:
120  /// Extracts a constant offset from the given GEP index. It outputs the
121  /// numeric value of the extracted constant offset (0 if failed), and a
122  /// new index representing the remainder (equal to the original index minus
123  /// the constant offset).
124  /// \p Idx The given GEP index
125  /// \p NewIdx The new index to replace
126  /// \p DL The datalayout of the module
127  /// \p IP Calculating the new index requires new instructions. IP indicates
128  /// where to insert them (typically right before the GEP).
129  static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
130                         Instruction *IP);
131  /// Looks for a constant offset without extracting it. The meaning of the
132  /// arguments and the return value are the same as Extract.
133  static int64_t Find(Value *Idx, const DataLayout *DL);
134
135 private:
136  ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
137      : DL(Layout), IP(InsertionPt) {}
138  /// Searches the expression that computes V for a constant offset. If the
139  /// searching is successful, update UserChain as a path from V to the constant
140  /// offset.
141  int64_t find(Value *V);
142  /// A helper function to look into both operands of a binary operator U.
143  /// \p IsSub Whether U is a sub operator. If so, we need to negate the
144  /// constant offset at some point.
145  int64_t findInEitherOperand(User *U, bool IsSub);
146  /// After finding the constant offset and how it is reached from the GEP
147  /// index, we build a new index which is a clone of the old one except the
148  /// constant offset is removed. For example, given (a + (b + 5)) and knowning
149  /// the constant offset is 5, this function returns (a + b).
150  ///
151  /// We cannot simply change the constant to zero because the expression that
152  /// computes the index or its intermediate result may be used by others.
153  Value *rebuildWithoutConstantOffset();
154  // A helper function for rebuildWithoutConstantOffset that rebuilds the direct
155  // user (U) of the constant offset (C).
156  Value *rebuildLeafWithoutConstantOffset(User *U, Value *C);
157  /// Returns a clone of U except the first occurrence of From with To.
158  Value *cloneAndReplace(User *U, Value *From, Value *To);
159
160  /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
161  bool NoCommonBits(Value *LHS, Value *RHS) const;
162  /// Computes which bits are known to be one or zero.
163  /// \p KnownOne Mask of all bits that are known to be one.
164  /// \p KnownZero Mask of all bits that are known to be zero.
165  void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
166  /// Finds the first use of Used in U. Returns -1 if not found.
167  static unsigned FindFirstUse(User *U, Value *Used);
168  /// Returns whether OPC (sext or zext) can be distributed to the operands of
169  /// BO. e.g., sext can be distributed to the operands of an "add nsw" because
170  /// sext (add nsw a, b) == add nsw (sext a), (sext b).
171  static bool Distributable(unsigned OPC, BinaryOperator *BO);
172
173  /// The path from the constant offset to the old GEP index. e.g., if the GEP
174  /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
175  /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
176  /// UserChain[2] will be the entire expression "a * b + (c + 5)".
177  ///
178  /// This path helps rebuildWithoutConstantOffset rebuild the new GEP index.
179  SmallVector<User *, 8> UserChain;
180  /// The data layout of the module. Used in ComputeKnownBits.
181  const DataLayout *DL;
182  Instruction *IP;  /// Insertion position of cloned instructions.
183};
184
185/// \brief A pass that tries to split every GEP in the function into a variadic
186/// base and a constant offset. It is a FunctionPass because searching for the
187/// constant offset may inspect other basic blocks.
188class SeparateConstOffsetFromGEP : public FunctionPass {
189 public:
190  static char ID;
191  SeparateConstOffsetFromGEP() : FunctionPass(ID) {
192    initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
193  }
194
195  void getAnalysisUsage(AnalysisUsage &AU) const override {
196    AU.addRequired<DataLayoutPass>();
197    AU.addRequired<TargetTransformInfo>();
198  }
199  bool runOnFunction(Function &F) override;
200
201 private:
202  /// Tries to split the given GEP into a variadic base and a constant offset,
203  /// and returns true if the splitting succeeds.
204  bool splitGEP(GetElementPtrInst *GEP);
205  /// Finds the constant offset within each index, and accumulates them. This
206  /// function only inspects the GEP without changing it. The output
207  /// NeedsExtraction indicates whether we can extract a non-zero constant
208  /// offset from any index.
209  int64_t accumulateByteOffset(GetElementPtrInst *GEP, const DataLayout *DL,
210                               bool &NeedsExtraction);
211};
212}  // anonymous namespace
213
214char SeparateConstOffsetFromGEP::ID = 0;
215INITIALIZE_PASS_BEGIN(
216    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
217    "Split GEPs to a variadic base and a constant offset for better CSE", false,
218    false)
219INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
220INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
221INITIALIZE_PASS_END(
222    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
223    "Split GEPs to a variadic base and a constant offset for better CSE", false,
224    false)
225
226FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
227  return new SeparateConstOffsetFromGEP();
228}
229
230bool ConstantOffsetExtractor::Distributable(unsigned OPC, BinaryOperator *BO) {
231  assert(OPC == Instruction::SExt || OPC == Instruction::ZExt);
232
233  // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
234  // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
235  if (BO->getOpcode() == Instruction::Add ||
236      BO->getOpcode() == Instruction::Sub) {
237    return (OPC == Instruction::SExt && BO->hasNoSignedWrap()) ||
238           (OPC == Instruction::ZExt && BO->hasNoUnsignedWrap());
239  }
240
241  // sext/zext (and/or/xor A, B) == and/or/xor (sext/zext A), (sext/zext B)
242  // -instcombine also leverages this invariant to do the reverse
243  // transformation to reduce integer casts.
244  return BO->getOpcode() == Instruction::And ||
245         BO->getOpcode() == Instruction::Or ||
246         BO->getOpcode() == Instruction::Xor;
247}
248
249int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) {
250  assert(U->getNumOperands() == 2);
251  int64_t ConstantOffset = find(U->getOperand(0));
252  // If we found a constant offset in the left operand, stop and return that.
253  // This shortcut might cause us to miss opportunities of combining the
254  // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
255  // However, such cases are probably already handled by -instcombine,
256  // given this pass runs after the standard optimizations.
257  if (ConstantOffset != 0) return ConstantOffset;
258  ConstantOffset = find(U->getOperand(1));
259  // If U is a sub operator, negate the constant offset found in the right
260  // operand.
261  return IsSub ? -ConstantOffset : ConstantOffset;
262}
263
264int64_t ConstantOffsetExtractor::find(Value *V) {
265  // TODO(jingyue): We can even trace into integer/pointer casts, such as
266  // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
267  // integers because it gives good enough results for our benchmarks.
268  assert(V->getType()->isIntegerTy());
269
270  User *U = dyn_cast<User>(V);
271  // We cannot do much with Values that are not a User, such as BasicBlock and
272  // MDNode.
273  if (U == nullptr) return 0;
274
275  int64_t ConstantOffset = 0;
276  if (ConstantInt *CI = dyn_cast<ConstantInt>(U)) {
277    // Hooray, we found it!
278    ConstantOffset = CI->getSExtValue();
279  } else if (Operator *O = dyn_cast<Operator>(U)) {
280    // The GEP index may be more complicated than a simple addition of a
281    // varaible and a constant. Therefore, we trace into subexpressions for more
282    // hoisting opportunities.
283    switch (O->getOpcode()) {
284      case Instruction::Add: {
285        ConstantOffset = findInEitherOperand(U, false);
286        break;
287      }
288      case Instruction::Sub: {
289        ConstantOffset = findInEitherOperand(U, true);
290        break;
291      }
292      case Instruction::Or: {
293        // If LHS and RHS don't have common bits, (LHS | RHS) is equivalent to
294        // (LHS + RHS).
295        if (NoCommonBits(U->getOperand(0), U->getOperand(1)))
296          ConstantOffset = findInEitherOperand(U, false);
297        break;
298      }
299      case Instruction::SExt:
300      case Instruction::ZExt: {
301        // We trace into sext/zext if the operator can be distributed to its
302        // operand. e.g., we can transform into "sext (add nsw a, 5)" and
303        // extract constant 5, because
304        //   sext (add nsw a, 5) == add nsw (sext a), 5
305        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
306          if (Distributable(O->getOpcode(), BO))
307            ConstantOffset = find(U->getOperand(0));
308        }
309        break;
310      }
311    }
312  }
313  // If we found a non-zero constant offset, adds it to the path for future
314  // transformation (rebuildWithoutConstantOffset). Zero is a valid constant
315  // offset, but doesn't help this optimization.
316  if (ConstantOffset != 0)
317    UserChain.push_back(U);
318  return ConstantOffset;
319}
320
321unsigned ConstantOffsetExtractor::FindFirstUse(User *U, Value *Used) {
322  for (unsigned I = 0, E = U->getNumOperands(); I < E; ++I) {
323    if (U->getOperand(I) == Used)
324      return I;
325  }
326  return -1;
327}
328
329Value *ConstantOffsetExtractor::cloneAndReplace(User *U, Value *From,
330                                                Value *To) {
331  // Finds in U the first use of From. It is safe to ignore future occurrences
332  // of From, because findInEitherOperand similarly stops searching the right
333  // operand when the first operand has a non-zero constant offset.
334  unsigned OpNo = FindFirstUse(U, From);
335  assert(OpNo != (unsigned)-1 && "UserChain wasn't built correctly");
336
337  // ConstantOffsetExtractor::find only follows Operators (i.e., Instructions
338  // and ConstantExprs). Therefore, U is either an Instruction or a
339  // ConstantExpr.
340  if (Instruction *I = dyn_cast<Instruction>(U)) {
341    Instruction *Clone = I->clone();
342    Clone->setOperand(OpNo, To);
343    Clone->insertBefore(IP);
344    return Clone;
345  }
346  // cast<Constant>(To) is safe because a ConstantExpr only uses Constants.
347  return cast<ConstantExpr>(U)
348      ->getWithOperandReplaced(OpNo, cast<Constant>(To));
349}
350
351Value *ConstantOffsetExtractor::rebuildLeafWithoutConstantOffset(User *U,
352                                                                 Value *C) {
353  assert(U->getNumOperands() <= 2 &&
354         "We didn't trace into any operator with more than 2 operands");
355  // If U has only one operand which is the constant offset, removing the
356  // constant offset leaves U as a null value.
357  if (U->getNumOperands() == 1)
358    return Constant::getNullValue(U->getType());
359
360  // U->getNumOperands() == 2
361  unsigned OpNo = FindFirstUse(U, C); // U->getOperand(OpNo) == C
362  assert(OpNo < 2 && "UserChain wasn't built correctly");
363  Value *TheOther = U->getOperand(1 - OpNo); // The other operand of U
364  // If U = C - X, removing C makes U = -X; otherwise U will simply be X.
365  if (!isa<SubOperator>(U) || OpNo == 1)
366    return TheOther;
367  if (isa<ConstantExpr>(U))
368    return ConstantExpr::getNeg(cast<Constant>(TheOther));
369  return BinaryOperator::CreateNeg(TheOther, "", IP);
370}
371
372Value *ConstantOffsetExtractor::rebuildWithoutConstantOffset() {
373  assert(UserChain.size() > 0 && "you at least found a constant, right?");
374  // Start with the constant and go up through UserChain, each time building a
375  // clone of the subexpression but with the constant removed.
376  // e.g., to build a clone of (a + (b + (c + 5)) but with the 5 removed, we
377  // first c, then (b + c), and finally (a + (b + c)).
378  //
379  // Fast path: if the GEP index is a constant, simply returns 0.
380  if (UserChain.size() == 1)
381    return ConstantInt::get(UserChain[0]->getType(), 0);
382
383  Value *Remainder =
384      rebuildLeafWithoutConstantOffset(UserChain[1], UserChain[0]);
385  for (size_t I = 2; I < UserChain.size(); ++I)
386    Remainder = cloneAndReplace(UserChain[I], UserChain[I - 1], Remainder);
387  return Remainder;
388}
389
390int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
391                                         const DataLayout *DL,
392                                         Instruction *IP) {
393  ConstantOffsetExtractor Extractor(DL, IP);
394  // Find a non-zero constant offset first.
395  int64_t ConstantOffset = Extractor.find(Idx);
396  if (ConstantOffset == 0)
397    return 0;
398  // Then rebuild a new index with the constant removed.
399  NewIdx = Extractor.rebuildWithoutConstantOffset();
400  return ConstantOffset;
401}
402
403int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL) {
404  return ConstantOffsetExtractor(DL, nullptr).find(Idx);
405}
406
407void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
408                                               APInt &KnownZero) const {
409  IntegerType *IT = cast<IntegerType>(V->getType());
410  KnownOne = APInt(IT->getBitWidth(), 0);
411  KnownZero = APInt(IT->getBitWidth(), 0);
412  llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
413}
414
415bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
416  assert(LHS->getType() == RHS->getType() &&
417         "LHS and RHS should have the same type");
418  APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
419  ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
420  ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
421  return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
422}
423
424int64_t SeparateConstOffsetFromGEP::accumulateByteOffset(
425    GetElementPtrInst *GEP, const DataLayout *DL, bool &NeedsExtraction) {
426  NeedsExtraction = false;
427  int64_t AccumulativeByteOffset = 0;
428  gep_type_iterator GTI = gep_type_begin(*GEP);
429  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
430    if (isa<SequentialType>(*GTI)) {
431      // Tries to extract a constant offset from this GEP index.
432      int64_t ConstantOffset =
433          ConstantOffsetExtractor::Find(GEP->getOperand(I), DL);
434      if (ConstantOffset != 0) {
435        NeedsExtraction = true;
436        // A GEP may have multiple indices.  We accumulate the extracted
437        // constant offset to a byte offset, and later offset the remainder of
438        // the original GEP with this byte offset.
439        AccumulativeByteOffset +=
440            ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
441      }
442    }
443  }
444  return AccumulativeByteOffset;
445}
446
447bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
448  // Skip vector GEPs.
449  if (GEP->getType()->isVectorTy())
450    return false;
451
452  // The backend can already nicely handle the case where all indices are
453  // constant.
454  if (GEP->hasAllConstantIndices())
455    return false;
456
457  bool Changed = false;
458
459  // Shortcuts integer casts. Eliminating these explicit casts can make
460  // subsequent optimizations more obvious: ConstantOffsetExtractor needn't
461  // trace into these casts.
462  if (GEP->isInBounds()) {
463    // Doing this to inbounds GEPs is safe because their indices are guaranteed
464    // to be non-negative and in bounds.
465    gep_type_iterator GTI = gep_type_begin(*GEP);
466    for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
467      if (isa<SequentialType>(*GTI)) {
468        if (Operator *O = dyn_cast<Operator>(GEP->getOperand(I))) {
469          if (O->getOpcode() == Instruction::SExt ||
470              O->getOpcode() == Instruction::ZExt) {
471            GEP->setOperand(I, O->getOperand(0));
472            Changed = true;
473          }
474        }
475      }
476    }
477  }
478
479  const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
480  bool NeedsExtraction;
481  int64_t AccumulativeByteOffset =
482      accumulateByteOffset(GEP, DL, NeedsExtraction);
483
484  if (!NeedsExtraction)
485    return Changed;
486  // Before really splitting the GEP, check whether the backend supports the
487  // addressing mode we are about to produce. If no, this splitting probably
488  // won't be beneficial.
489  TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
490  if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
491                                 /*BaseGV=*/nullptr, AccumulativeByteOffset,
492                                 /*HasBaseReg=*/true, /*Scale=*/0)) {
493    return Changed;
494  }
495
496  // Remove the constant offset in each GEP index. The resultant GEP computes
497  // the variadic base.
498  gep_type_iterator GTI = gep_type_begin(*GEP);
499  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
500    if (isa<SequentialType>(*GTI)) {
501      Value *NewIdx = nullptr;
502      // Tries to extract a constant offset from this GEP index.
503      int64_t ConstantOffset =
504          ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
505      if (ConstantOffset != 0) {
506        assert(NewIdx != nullptr &&
507               "ConstantOffset != 0 implies NewIdx is set");
508        GEP->setOperand(I, NewIdx);
509        // Clear the inbounds attribute because the new index may be off-bound.
510        // e.g.,
511        //
512        // b = add i64 a, 5
513        // addr = gep inbounds float* p, i64 b
514        //
515        // is transformed to:
516        //
517        // addr2 = gep float* p, i64 a
518        // addr = gep float* addr2, i64 5
519        //
520        // If a is -4, although the old index b is in bounds, the new index a is
521        // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
522        // inbounds keyword is not present, the offsets are added to the base
523        // address with silently-wrapping two's complement arithmetic".
524        // Therefore, the final code will be a semantically equivalent.
525        //
526        // TODO(jingyue): do some range analysis to keep as many inbounds as
527        // possible. GEPs with inbounds are more friendly to alias analysis.
528        GEP->setIsInBounds(false);
529        Changed = true;
530      }
531    }
532  }
533
534  // Offsets the base with the accumulative byte offset.
535  //
536  //   %gep                        ; the base
537  //   ... %gep ...
538  //
539  // => add the offset
540  //
541  //   %gep2                       ; clone of %gep
542  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
543  //   %gep                        ; will be removed
544  //   ... %gep ...
545  //
546  // => replace all uses of %gep with %new.gep and remove %gep
547  //
548  //   %gep2                       ; clone of %gep
549  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
550  //   ... %new.gep ...
551  //
552  // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
553  // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
554  // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
555  // type of %gep.
556  //
557  //   %gep2                       ; clone of %gep
558  //   %0       = bitcast %gep2 to i8*
559  //   %uglygep = gep %0, <offset>
560  //   %new.gep = bitcast %uglygep to <type of %gep>
561  //   ... %new.gep ...
562  Instruction *NewGEP = GEP->clone();
563  NewGEP->insertBefore(GEP);
564
565  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
566  uint64_t ElementTypeSizeOfGEP =
567      DL->getTypeAllocSize(GEP->getType()->getElementType());
568  if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
569    // Very likely. As long as %gep is natually aligned, the byte offset we
570    // extracted should be a multiple of sizeof(*%gep).
571    // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
572    // cast ElementTypeSizeOfGEP to signed.
573    int64_t Index =
574        AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
575    NewGEP = GetElementPtrInst::Create(
576        NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
577  } else {
578    // Unlikely but possible. For example,
579    // #pragma pack(1)
580    // struct S {
581    //   int a[3];
582    //   int64 b[8];
583    // };
584    // #pragma pack()
585    //
586    // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
587    // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
588    // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
589    // sizeof(int64).
590    //
591    // Emit an uglygep in this case.
592    Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
593                                       GEP->getPointerAddressSpace());
594    NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
595    NewGEP = GetElementPtrInst::Create(
596        NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
597        "uglygep", GEP);
598    if (GEP->getType() != I8PtrTy)
599      NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
600  }
601
602  GEP->replaceAllUsesWith(NewGEP);
603  GEP->eraseFromParent();
604
605  return true;
606}
607
608bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
609  if (DisableSeparateConstOffsetFromGEP)
610    return false;
611
612  bool Changed = false;
613  for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
614    for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
615      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
616        Changed |= splitGEP(GEP);
617      }
618      // No need to split GEP ConstantExprs because all its indices are constant
619      // already.
620    }
621  }
622  return Changed;
623}
624