Sink.cpp revision 90c579de5a383cee278acc3f7e7b9d0a656e6a35
1//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sink"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28STATISTIC(NumSunk, "Number of instructions sunk");
29
30namespace {
31  class Sinking : public FunctionPass {
32    DominatorTree *DT;
33    LoopInfo *LI;
34    AliasAnalysis *AA;
35
36  public:
37    static char ID; // Pass identification
38    Sinking() : FunctionPass(ID) {}
39
40    virtual bool runOnFunction(Function &F);
41
42    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
43      AU.setPreservesCFG();
44      FunctionPass::getAnalysisUsage(AU);
45      AU.addRequired<AliasAnalysis>();
46      AU.addRequired<DominatorTree>();
47      AU.addRequired<LoopInfo>();
48      AU.addPreserved<DominatorTree>();
49      AU.addPreserved<LoopInfo>();
50    }
51  private:
52    bool ProcessBlock(BasicBlock &BB);
53    bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
54    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
55  };
56} // end anonymous namespace
57
58char Sinking::ID = 0;
59INITIALIZE_PASS(Sinking, "sink", "Code sinking", false, false);
60
61FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
62
63/// AllUsesDominatedByBlock - Return true if all uses of the specified value
64/// occur in blocks dominated by the specified block.
65bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
66                                      BasicBlock *BB) const {
67  // Ignoring debug uses is necessary so debug info doesn't affect the code.
68  // This may leave a referencing dbg_value in the original block, before
69  // the definition of the vreg.  Dwarf generator handles this although the
70  // user might not get the right info at runtime.
71  for (Value::use_iterator I = Inst->use_begin(),
72       E = Inst->use_end(); I != E; ++I) {
73    // Determine the block of the use.
74    Instruction *UseInst = cast<Instruction>(*I);
75    BasicBlock *UseBlock = UseInst->getParent();
76    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
77      // PHI nodes use the operand in the predecessor block, not the block with
78      // the PHI.
79      unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
80      UseBlock = PN->getIncomingBlock(Num);
81    }
82    // Check that it dominates.
83    if (!DT->dominates(BB, UseBlock))
84      return false;
85  }
86  return true;
87}
88
89bool Sinking::runOnFunction(Function &F) {
90  DT = &getAnalysis<DominatorTree>();
91  LI = &getAnalysis<LoopInfo>();
92  AA = &getAnalysis<AliasAnalysis>();
93
94  bool EverMadeChange = false;
95
96  while (1) {
97    bool MadeChange = false;
98
99    // Process all basic blocks.
100    for (Function::iterator I = F.begin(), E = F.end();
101         I != E; ++I)
102      MadeChange |= ProcessBlock(*I);
103
104    // If this iteration over the code changed anything, keep iterating.
105    if (!MadeChange) break;
106    EverMadeChange = true;
107  }
108  return EverMadeChange;
109}
110
111bool Sinking::ProcessBlock(BasicBlock &BB) {
112  // Can't sink anything out of a block that has less than two successors.
113  if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
114
115  // Don't bother sinking code out of unreachable blocks. In addition to being
116  // unprofitable, it can also lead to infinite looping, because in an unreachable
117  // loop there may be nowhere to stop.
118  if (!DT->isReachableFromEntry(&BB)) return false;
119
120  bool MadeChange = false;
121
122  // Walk the basic block bottom-up.  Remember if we saw a store.
123  BasicBlock::iterator I = BB.end();
124  --I;
125  bool ProcessedBegin = false;
126  SmallPtrSet<Instruction *, 8> Stores;
127  do {
128    Instruction *Inst = I;  // The instruction to sink.
129
130    // Predecrement I (if it's not begin) so that it isn't invalidated by
131    // sinking.
132    ProcessedBegin = I == BB.begin();
133    if (!ProcessedBegin)
134      --I;
135
136    if (isa<DbgInfoIntrinsic>(Inst))
137      continue;
138
139    if (SinkInstruction(Inst, Stores))
140      ++NumSunk, MadeChange = true;
141
142    // If we just processed the first instruction in the block, we're done.
143  } while (!ProcessedBegin);
144
145  return MadeChange;
146}
147
148static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
149                         SmallPtrSet<Instruction *, 8> &Stores) {
150  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
151    if (L->isVolatile()) return false;
152
153    Value *Ptr = L->getPointerOperand();
154    unsigned Size = AA->getTypeStoreSize(L->getType());
155    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
156         E = Stores.end(); I != E; ++I)
157      if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
158        return false;
159  }
160
161  if (Inst->mayWriteToMemory()) {
162    Stores.insert(Inst);
163    return false;
164  }
165
166  return Inst->isSafeToSpeculativelyExecute();
167}
168
169/// SinkInstruction - Determine whether it is safe to sink the specified machine
170/// instruction out of its current block into a successor.
171bool Sinking::SinkInstruction(Instruction *Inst,
172                              SmallPtrSet<Instruction *, 8> &Stores) {
173  // Check if it's safe to move the instruction.
174  if (!isSafeToMove(Inst, AA, Stores))
175    return false;
176
177  // FIXME: This should include support for sinking instructions within the
178  // block they are currently in to shorten the live ranges.  We often get
179  // instructions sunk into the top of a large block, but it would be better to
180  // also sink them down before their first use in the block.  This xform has to
181  // be careful not to *increase* register pressure though, e.g. sinking
182  // "x = y + z" down if it kills y and z would increase the live ranges of y
183  // and z and only shrink the live range of x.
184
185  // Loop over all the operands of the specified instruction.  If there is
186  // anything we can't handle, bail out.
187  BasicBlock *ParentBlock = Inst->getParent();
188
189  // SuccToSinkTo - This is the successor to sink this instruction to, once we
190  // decide.
191  BasicBlock *SuccToSinkTo = 0;
192
193  // FIXME: This picks a successor to sink into based on having one
194  // successor that dominates all the uses.  However, there are cases where
195  // sinking can happen but where the sink point isn't a successor.  For
196  // example:
197  //   x = computation
198  //   if () {} else {}
199  //   use x
200  // the instruction could be sunk over the whole diamond for the
201  // if/then/else (or loop, etc), allowing it to be sunk into other blocks
202  // after that.
203
204  // Instructions can only be sunk if all their uses are in blocks
205  // dominated by one of the successors.
206  // Look at all the successors and decide which one
207  // we should sink to.
208  for (succ_iterator SI = succ_begin(ParentBlock),
209       E = succ_end(ParentBlock); SI != E; ++SI) {
210    if (AllUsesDominatedByBlock(Inst, *SI)) {
211      SuccToSinkTo = *SI;
212      break;
213    }
214  }
215
216  // If we couldn't find a block to sink to, ignore this instruction.
217  if (SuccToSinkTo == 0)
218    return false;
219
220  // It is not possible to sink an instruction into its own block.  This can
221  // happen with loops.
222  if (Inst->getParent() == SuccToSinkTo)
223    return false;
224
225  DEBUG(dbgs() << "Sink instr " << *Inst);
226  DEBUG(dbgs() << "to block ";
227        WriteAsOperand(dbgs(), SuccToSinkTo, false));
228
229  // If the block has multiple predecessors, this would introduce computation on
230  // a path that it doesn't already exist.  We could split the critical edge,
231  // but for now we just punt.
232  // FIXME: Split critical edges if not backedges.
233  if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
234    // We cannot sink a load across a critical edge - there may be stores in
235    // other code paths.
236    if (!Inst->isSafeToSpeculativelyExecute()) {
237      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
238      return false;
239    }
240
241    // We don't want to sink across a critical edge if we don't dominate the
242    // successor. We could be introducing calculations to new code paths.
243    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
244      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
245      return false;
246    }
247
248    // Don't sink instructions into a loop.
249    if (LI->isLoopHeader(SuccToSinkTo)) {
250      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
251      return false;
252    }
253
254    // Otherwise we are OK with sinking along a critical edge.
255    DEBUG(dbgs() << "Sinking along critical edge.\n");
256  }
257
258  // Determine where to insert into.  Skip phi nodes.
259  BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
260  while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
261    ++InsertPos;
262
263  // Move the instruction.
264  Inst->moveBefore(InsertPos);
265  return true;
266}
267