Sink.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/LoopInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28#define DEBUG_TYPE "sink"
29
30STATISTIC(NumSunk, "Number of instructions sunk");
31STATISTIC(NumSinkIter, "Number of sinking iterations");
32
33namespace {
34  class Sinking : public FunctionPass {
35    DominatorTree *DT;
36    LoopInfo *LI;
37    AliasAnalysis *AA;
38    const DataLayout *DL;
39
40  public:
41    static char ID; // Pass identification
42    Sinking() : FunctionPass(ID) {
43      initializeSinkingPass(*PassRegistry::getPassRegistry());
44    }
45
46    bool runOnFunction(Function &F) override;
47
48    void getAnalysisUsage(AnalysisUsage &AU) const override {
49      AU.setPreservesCFG();
50      FunctionPass::getAnalysisUsage(AU);
51      AU.addRequired<AliasAnalysis>();
52      AU.addRequired<DominatorTreeWrapperPass>();
53      AU.addRequired<LoopInfo>();
54      AU.addPreserved<DominatorTreeWrapperPass>();
55      AU.addPreserved<LoopInfo>();
56    }
57  private:
58    bool ProcessBlock(BasicBlock &BB);
59    bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
60    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
61    bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
62  };
63} // end anonymous namespace
64
65char Sinking::ID = 0;
66INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
67INITIALIZE_PASS_DEPENDENCY(LoopInfo)
68INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
69INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
70INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
71
72FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
73
74/// AllUsesDominatedByBlock - Return true if all uses of the specified value
75/// occur in blocks dominated by the specified block.
76bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
77                                      BasicBlock *BB) const {
78  // Ignoring debug uses is necessary so debug info doesn't affect the code.
79  // This may leave a referencing dbg_value in the original block, before
80  // the definition of the vreg.  Dwarf generator handles this although the
81  // user might not get the right info at runtime.
82  for (Use &U : Inst->uses()) {
83    // Determine the block of the use.
84    Instruction *UseInst = cast<Instruction>(U.getUser());
85    BasicBlock *UseBlock = UseInst->getParent();
86    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
87      // PHI nodes use the operand in the predecessor block, not the block with
88      // the PHI.
89      unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
90      UseBlock = PN->getIncomingBlock(Num);
91    }
92    // Check that it dominates.
93    if (!DT->dominates(BB, UseBlock))
94      return false;
95  }
96  return true;
97}
98
99bool Sinking::runOnFunction(Function &F) {
100  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
101  LI = &getAnalysis<LoopInfo>();
102  AA = &getAnalysis<AliasAnalysis>();
103  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
104  DL = DLP ? &DLP->getDataLayout() : nullptr;
105
106  bool MadeChange, EverMadeChange = false;
107
108  do {
109    MadeChange = false;
110    DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
111    // Process all basic blocks.
112    for (Function::iterator I = F.begin(), E = F.end();
113         I != E; ++I)
114      MadeChange |= ProcessBlock(*I);
115    EverMadeChange |= MadeChange;
116    NumSinkIter++;
117  } while (MadeChange);
118
119  return EverMadeChange;
120}
121
122bool Sinking::ProcessBlock(BasicBlock &BB) {
123  // Can't sink anything out of a block that has less than two successors.
124  if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
125
126  // Don't bother sinking code out of unreachable blocks. In addition to being
127  // unprofitable, it can also lead to infinite looping, because in an
128  // unreachable loop there may be nowhere to stop.
129  if (!DT->isReachableFromEntry(&BB)) return false;
130
131  bool MadeChange = false;
132
133  // Walk the basic block bottom-up.  Remember if we saw a store.
134  BasicBlock::iterator I = BB.end();
135  --I;
136  bool ProcessedBegin = false;
137  SmallPtrSet<Instruction *, 8> Stores;
138  do {
139    Instruction *Inst = I;  // The instruction to sink.
140
141    // Predecrement I (if it's not begin) so that it isn't invalidated by
142    // sinking.
143    ProcessedBegin = I == BB.begin();
144    if (!ProcessedBegin)
145      --I;
146
147    if (isa<DbgInfoIntrinsic>(Inst))
148      continue;
149
150    if (SinkInstruction(Inst, Stores))
151      ++NumSunk, MadeChange = true;
152
153    // If we just processed the first instruction in the block, we're done.
154  } while (!ProcessedBegin);
155
156  return MadeChange;
157}
158
159static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
160                         SmallPtrSet<Instruction *, 8> &Stores) {
161
162  if (Inst->mayWriteToMemory()) {
163    Stores.insert(Inst);
164    return false;
165  }
166
167  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
168    AliasAnalysis::Location Loc = AA->getLocation(L);
169    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
170         E = Stores.end(); I != E; ++I)
171      if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
172        return false;
173  }
174
175  if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
176    return false;
177
178  return true;
179}
180
181/// IsAcceptableTarget - Return true if it is possible to sink the instruction
182/// in the specified basic block.
183bool Sinking::IsAcceptableTarget(Instruction *Inst,
184                                 BasicBlock *SuccToSinkTo) const {
185  assert(Inst && "Instruction to be sunk is null");
186  assert(SuccToSinkTo && "Candidate sink target is null");
187
188  // It is not possible to sink an instruction into its own block.  This can
189  // happen with loops.
190  if (Inst->getParent() == SuccToSinkTo)
191    return false;
192
193  // If the block has multiple predecessors, this would introduce computation
194  // on different code paths.  We could split the critical edge, but for now we
195  // just punt.
196  // FIXME: Split critical edges if not backedges.
197  if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
198    // We cannot sink a load across a critical edge - there may be stores in
199    // other code paths.
200    if (!isSafeToSpeculativelyExecute(Inst, DL))
201      return false;
202
203    // We don't want to sink across a critical edge if we don't dominate the
204    // successor. We could be introducing calculations to new code paths.
205    if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
206      return false;
207
208    // Don't sink instructions into a loop.
209    Loop *succ = LI->getLoopFor(SuccToSinkTo);
210    Loop *cur = LI->getLoopFor(Inst->getParent());
211    if (succ != nullptr && succ != cur)
212      return false;
213  }
214
215  // Finally, check that all the uses of the instruction are actually
216  // dominated by the candidate
217  return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
218}
219
220/// SinkInstruction - Determine whether it is safe to sink the specified machine
221/// instruction out of its current block into a successor.
222bool Sinking::SinkInstruction(Instruction *Inst,
223                              SmallPtrSet<Instruction *, 8> &Stores) {
224
225  // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
226  // entry block are dynamically sized stack objects.
227  if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
228    if (AI->isStaticAlloca())
229      return false;
230
231  // Check if it's safe to move the instruction.
232  if (!isSafeToMove(Inst, AA, Stores))
233    return false;
234
235  // FIXME: This should include support for sinking instructions within the
236  // block they are currently in to shorten the live ranges.  We often get
237  // instructions sunk into the top of a large block, but it would be better to
238  // also sink them down before their first use in the block.  This xform has to
239  // be careful not to *increase* register pressure though, e.g. sinking
240  // "x = y + z" down if it kills y and z would increase the live ranges of y
241  // and z and only shrink the live range of x.
242
243  // SuccToSinkTo - This is the successor to sink this instruction to, once we
244  // decide.
245  BasicBlock *SuccToSinkTo = nullptr;
246
247  // Instructions can only be sunk if all their uses are in blocks
248  // dominated by one of the successors.
249  // Look at all the postdominators and see if we can sink it in one.
250  DomTreeNode *DTN = DT->getNode(Inst->getParent());
251  for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
252      I != E && SuccToSinkTo == nullptr; ++I) {
253    BasicBlock *Candidate = (*I)->getBlock();
254    if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
255        IsAcceptableTarget(Inst, Candidate))
256      SuccToSinkTo = Candidate;
257  }
258
259  // If no suitable postdominator was found, look at all the successors and
260  // decide which one we should sink to, if any.
261  for (succ_iterator I = succ_begin(Inst->getParent()),
262      E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
263    if (IsAcceptableTarget(Inst, *I))
264      SuccToSinkTo = *I;
265  }
266
267  // If we couldn't find a block to sink to, ignore this instruction.
268  if (!SuccToSinkTo)
269    return false;
270
271  DEBUG(dbgs() << "Sink" << *Inst << " (";
272        Inst->getParent()->printAsOperand(dbgs(), false);
273        dbgs() << " -> ";
274        SuccToSinkTo->printAsOperand(dbgs(), false);
275        dbgs() << ")\n");
276
277  // Move the instruction.
278  Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt());
279  return true;
280}
281