TailRecursionElimination.cpp revision 13086a658ae06046ded902229f9918b8bad505bd
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/Analysis/CaptureTracking.h"
58#include "llvm/Analysis/InlineCost.h"
59#include "llvm/Analysis/InstructionSimplify.h"
60#include "llvm/Analysis/Loads.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/IR/Constants.h"
63#include "llvm/IR/DerivedTypes.h"
64#include "llvm/IR/Function.h"
65#include "llvm/IR/Instructions.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/Module.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/CFG.h"
70#include "llvm/Support/CallSite.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Utils/BasicBlockUtils.h"
74#include "llvm/Transforms/Utils/Local.h"
75using namespace llvm;
76
77STATISTIC(NumEliminated, "Number of tail calls removed");
78STATISTIC(NumRetDuped,   "Number of return duplicated");
79STATISTIC(NumAccumAdded, "Number of accumulators introduced");
80
81namespace {
82  struct TailCallElim : public FunctionPass {
83    const TargetTransformInfo *TTI;
84
85    static char ID; // Pass identification, replacement for typeid
86    TailCallElim() : FunctionPass(ID) {
87      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
88    }
89
90    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
91
92    virtual bool runOnFunction(Function &F);
93
94  private:
95    CallInst *FindTRECandidate(Instruction *I,
96                               bool CannotTailCallElimCallsMarkedTail);
97    bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
98                                    BasicBlock *&OldEntry,
99                                    bool &TailCallsAreMarkedTail,
100                                    SmallVector<PHINode*, 8> &ArgumentPHIs,
101                                    bool CannotTailCallElimCallsMarkedTail);
102    bool FoldReturnAndProcessPred(BasicBlock *BB,
103                                  ReturnInst *Ret, BasicBlock *&OldEntry,
104                                  bool &TailCallsAreMarkedTail,
105                                  SmallVector<PHINode*, 8> &ArgumentPHIs,
106                                  bool CannotTailCallElimCallsMarkedTail);
107    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
108                               bool &TailCallsAreMarkedTail,
109                               SmallVector<PHINode*, 8> &ArgumentPHIs,
110                               bool CannotTailCallElimCallsMarkedTail);
111    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
112    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
113  };
114}
115
116char TailCallElim::ID = 0;
117INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
118                      "Tail Call Elimination", false, false)
119INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
120INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
121                    "Tail Call Elimination", false, false)
122
123// Public interface to the TailCallElimination pass
124FunctionPass *llvm::createTailCallEliminationPass() {
125  return new TailCallElim();
126}
127
128void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
129  AU.addRequired<TargetTransformInfo>();
130}
131
132/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
133/// callees of this function.  We only do very simple analysis right now, this
134/// could be expanded in the future to use mod/ref information for particular
135/// call sites if desired.
136static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
137  // FIXME: do simple 'address taken' analysis.
138  return true;
139}
140
141/// CheckForEscapingAllocas - Scan the specified basic block for alloca
142/// instructions.  If it contains any that might be accessed by calls, return
143/// true.
144static bool CheckForEscapingAllocas(BasicBlock *BB,
145                                    bool &CannotTCETailMarkedCall) {
146  bool RetVal = false;
147  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
148    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
149      RetVal |= AllocaMightEscapeToCalls(AI);
150
151      // If this alloca is in the body of the function, or if it is a variable
152      // sized allocation, we cannot tail call eliminate calls marked 'tail'
153      // with this mechanism.
154      if (BB != &BB->getParent()->getEntryBlock() ||
155          !isa<ConstantInt>(AI->getArraySize()))
156        CannotTCETailMarkedCall = true;
157    }
158  return RetVal;
159}
160
161bool TailCallElim::runOnFunction(Function &F) {
162  // If this function is a varargs function, we won't be able to PHI the args
163  // right, so don't even try to convert it...
164  if (F.getFunctionType()->isVarArg()) return false;
165
166  TTI = &getAnalysis<TargetTransformInfo>();
167  BasicBlock *OldEntry = 0;
168  bool TailCallsAreMarkedTail = false;
169  SmallVector<PHINode*, 8> ArgumentPHIs;
170  bool MadeChange = false;
171  bool FunctionContainsEscapingAllocas = false;
172
173  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
174  // marked with the 'tail' attribute, because doing so would cause the stack
175  // size to increase (real TCE would deallocate variable sized allocas, TCE
176  // doesn't).
177  bool CannotTCETailMarkedCall = false;
178
179  // Loop over the function, looking for any returning blocks, and keeping track
180  // of whether this function has any non-trivially used allocas.
181  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
182    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
183      break;
184
185    FunctionContainsEscapingAllocas |=
186      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
187  }
188
189  /// FIXME: The code generator produces really bad code when an 'escaping
190  /// alloca' is changed from being a static alloca to being a dynamic alloca.
191  /// Until this is resolved, disable this transformation if that would ever
192  /// happen.  This bug is PR962.
193  if (FunctionContainsEscapingAllocas)
194    return false;
195
196  // Second pass, change any tail calls to loops.
197  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
198    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
199      bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
200                                          ArgumentPHIs,CannotTCETailMarkedCall);
201      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
202        Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
203                                          TailCallsAreMarkedTail, ArgumentPHIs,
204                                          CannotTCETailMarkedCall);
205      MadeChange |= Change;
206    }
207  }
208
209  // If we eliminated any tail recursions, it's possible that we inserted some
210  // silly PHI nodes which just merge an initial value (the incoming operand)
211  // with themselves.  Check to see if we did and clean up our mess if so.  This
212  // occurs when a function passes an argument straight through to its tail
213  // call.
214  if (!ArgumentPHIs.empty()) {
215    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
216      PHINode *PN = ArgumentPHIs[i];
217
218      // If the PHI Node is a dynamic constant, replace it with the value it is.
219      if (Value *PNV = SimplifyInstruction(PN)) {
220        PN->replaceAllUsesWith(PNV);
221        PN->eraseFromParent();
222      }
223    }
224  }
225
226  // Finally, if this function contains no non-escaping allocas, or calls
227  // setjmp, mark all calls in the function as eligible for tail calls
228  //(there is no stack memory for them to access).
229  if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice())
230    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
231      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
232        if (CallInst *CI = dyn_cast<CallInst>(I)) {
233          CI->setTailCall();
234          MadeChange = true;
235        }
236
237  return MadeChange;
238}
239
240
241/// CanMoveAboveCall - Return true if it is safe to move the specified
242/// instruction from after the call to before the call, assuming that all
243/// instructions between the call and this instruction are movable.
244///
245bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
246  // FIXME: We can move load/store/call/free instructions above the call if the
247  // call does not mod/ref the memory location being processed.
248  if (I->mayHaveSideEffects())  // This also handles volatile loads.
249    return false;
250
251  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
252    // Loads may always be moved above calls without side effects.
253    if (CI->mayHaveSideEffects()) {
254      // Non-volatile loads may be moved above a call with side effects if it
255      // does not write to memory and the load provably won't trap.
256      // FIXME: Writes to memory only matter if they may alias the pointer
257      // being loaded from.
258      if (CI->mayWriteToMemory() ||
259          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
260                                       L->getAlignment()))
261        return false;
262    }
263  }
264
265  // Otherwise, if this is a side-effect free instruction, check to make sure
266  // that it does not use the return value of the call.  If it doesn't use the
267  // return value of the call, it must only use things that are defined before
268  // the call, or movable instructions between the call and the instruction
269  // itself.
270  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
271    if (I->getOperand(i) == CI)
272      return false;
273  return true;
274}
275
276// isDynamicConstant - Return true if the specified value is the same when the
277// return would exit as it was when the initial iteration of the recursive
278// function was executed.
279//
280// We currently handle static constants and arguments that are not modified as
281// part of the recursion.
282//
283static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
284  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
285
286  // Check to see if this is an immutable argument, if so, the value
287  // will be available to initialize the accumulator.
288  if (Argument *Arg = dyn_cast<Argument>(V)) {
289    // Figure out which argument number this is...
290    unsigned ArgNo = 0;
291    Function *F = CI->getParent()->getParent();
292    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
293      ++ArgNo;
294
295    // If we are passing this argument into call as the corresponding
296    // argument operand, then the argument is dynamically constant.
297    // Otherwise, we cannot transform this function safely.
298    if (CI->getArgOperand(ArgNo) == Arg)
299      return true;
300  }
301
302  // Switch cases are always constant integers. If the value is being switched
303  // on and the return is only reachable from one of its cases, it's
304  // effectively constant.
305  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
306    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
307      if (SI->getCondition() == V)
308        return SI->getDefaultDest() != RI->getParent();
309
310  // Not a constant or immutable argument, we can't safely transform.
311  return false;
312}
313
314// getCommonReturnValue - Check to see if the function containing the specified
315// tail call consistently returns the same runtime-constant value at all exit
316// points except for IgnoreRI.  If so, return the returned value.
317//
318static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
319  Function *F = CI->getParent()->getParent();
320  Value *ReturnedValue = 0;
321
322  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
323    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
324    if (RI == 0 || RI == IgnoreRI) continue;
325
326    // We can only perform this transformation if the value returned is
327    // evaluatable at the start of the initial invocation of the function,
328    // instead of at the end of the evaluation.
329    //
330    Value *RetOp = RI->getOperand(0);
331    if (!isDynamicConstant(RetOp, CI, RI))
332      return 0;
333
334    if (ReturnedValue && RetOp != ReturnedValue)
335      return 0;     // Cannot transform if differing values are returned.
336    ReturnedValue = RetOp;
337  }
338  return ReturnedValue;
339}
340
341/// CanTransformAccumulatorRecursion - If the specified instruction can be
342/// transformed using accumulator recursion elimination, return the constant
343/// which is the start of the accumulator value.  Otherwise return null.
344///
345Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
346                                                      CallInst *CI) {
347  if (!I->isAssociative() || !I->isCommutative()) return 0;
348  assert(I->getNumOperands() == 2 &&
349         "Associative/commutative operations should have 2 args!");
350
351  // Exactly one operand should be the result of the call instruction.
352  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
353      (I->getOperand(0) != CI && I->getOperand(1) != CI))
354    return 0;
355
356  // The only user of this instruction we allow is a single return instruction.
357  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
358    return 0;
359
360  // Ok, now we have to check all of the other return instructions in this
361  // function.  If they return non-constants or differing values, then we cannot
362  // transform the function safely.
363  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
364}
365
366static Instruction *FirstNonDbg(BasicBlock::iterator I) {
367  while (isa<DbgInfoIntrinsic>(I))
368    ++I;
369  return &*I;
370}
371
372CallInst*
373TailCallElim::FindTRECandidate(Instruction *TI,
374                               bool CannotTailCallElimCallsMarkedTail) {
375  BasicBlock *BB = TI->getParent();
376  Function *F = BB->getParent();
377
378  if (&BB->front() == TI) // Make sure there is something before the terminator.
379    return 0;
380
381  // Scan backwards from the return, checking to see if there is a tail call in
382  // this block.  If so, set CI to it.
383  CallInst *CI = 0;
384  BasicBlock::iterator BBI = TI;
385  while (true) {
386    CI = dyn_cast<CallInst>(BBI);
387    if (CI && CI->getCalledFunction() == F)
388      break;
389
390    if (BBI == BB->begin())
391      return 0;          // Didn't find a potential tail call.
392    --BBI;
393  }
394
395  // If this call is marked as a tail call, and if there are dynamic allocas in
396  // the function, we cannot perform this optimization.
397  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
398    return 0;
399
400  // As a special case, detect code like this:
401  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
402  // and disable this xform in this case, because the code generator will
403  // lower the call to fabs into inline code.
404  if (BB == &F->getEntryBlock() &&
405      FirstNonDbg(BB->front()) == CI &&
406      FirstNonDbg(llvm::next(BB->begin())) == TI &&
407      CI->getCalledFunction() &&
408      !TTI->isLoweredToCall(CI->getCalledFunction())) {
409    // A single-block function with just a call and a return. Check that
410    // the arguments match.
411    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
412                           E = CallSite(CI).arg_end();
413    Function::arg_iterator FI = F->arg_begin(),
414                           FE = F->arg_end();
415    for (; I != E && FI != FE; ++I, ++FI)
416      if (*I != &*FI) break;
417    if (I == E && FI == FE)
418      return 0;
419  }
420
421  return CI;
422}
423
424bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
425                                       BasicBlock *&OldEntry,
426                                       bool &TailCallsAreMarkedTail,
427                                       SmallVector<PHINode*, 8> &ArgumentPHIs,
428                                       bool CannotTailCallElimCallsMarkedTail) {
429  // If we are introducing accumulator recursion to eliminate operations after
430  // the call instruction that are both associative and commutative, the initial
431  // value for the accumulator is placed in this variable.  If this value is set
432  // then we actually perform accumulator recursion elimination instead of
433  // simple tail recursion elimination.  If the operation is an LLVM instruction
434  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
435  // we are handling the case when the return instruction returns a constant C
436  // which is different to the constant returned by other return instructions
437  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
438  // special case of accumulator recursion, the operation being "return C".
439  Value *AccumulatorRecursionEliminationInitVal = 0;
440  Instruction *AccumulatorRecursionInstr = 0;
441
442  // Ok, we found a potential tail call.  We can currently only transform the
443  // tail call if all of the instructions between the call and the return are
444  // movable to above the call itself, leaving the call next to the return.
445  // Check that this is the case now.
446  BasicBlock::iterator BBI = CI;
447  for (++BBI; &*BBI != Ret; ++BBI) {
448    if (CanMoveAboveCall(BBI, CI)) continue;
449
450    // If we can't move the instruction above the call, it might be because it
451    // is an associative and commutative operation that could be transformed
452    // using accumulator recursion elimination.  Check to see if this is the
453    // case, and if so, remember the initial accumulator value for later.
454    if ((AccumulatorRecursionEliminationInitVal =
455                           CanTransformAccumulatorRecursion(BBI, CI))) {
456      // Yes, this is accumulator recursion.  Remember which instruction
457      // accumulates.
458      AccumulatorRecursionInstr = BBI;
459    } else {
460      return false;   // Otherwise, we cannot eliminate the tail recursion!
461    }
462  }
463
464  // We can only transform call/return pairs that either ignore the return value
465  // of the call and return void, ignore the value of the call and return a
466  // constant, return the value returned by the tail call, or that are being
467  // accumulator recursion variable eliminated.
468  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
469      !isa<UndefValue>(Ret->getReturnValue()) &&
470      AccumulatorRecursionEliminationInitVal == 0 &&
471      !getCommonReturnValue(0, CI)) {
472    // One case remains that we are able to handle: the current return
473    // instruction returns a constant, and all other return instructions
474    // return a different constant.
475    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
476      return false; // Current return instruction does not return a constant.
477    // Check that all other return instructions return a common constant.  If
478    // so, record it in AccumulatorRecursionEliminationInitVal.
479    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
480    if (!AccumulatorRecursionEliminationInitVal)
481      return false;
482  }
483
484  BasicBlock *BB = Ret->getParent();
485  Function *F = BB->getParent();
486
487  // OK! We can transform this tail call.  If this is the first one found,
488  // create the new entry block, allowing us to branch back to the old entry.
489  if (OldEntry == 0) {
490    OldEntry = &F->getEntryBlock();
491    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
492    NewEntry->takeName(OldEntry);
493    OldEntry->setName("tailrecurse");
494    BranchInst::Create(OldEntry, NewEntry);
495
496    // If this tail call is marked 'tail' and if there are any allocas in the
497    // entry block, move them up to the new entry block.
498    TailCallsAreMarkedTail = CI->isTailCall();
499    if (TailCallsAreMarkedTail)
500      // Move all fixed sized allocas from OldEntry to NewEntry.
501      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
502             NEBI = NewEntry->begin(); OEBI != E; )
503        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
504          if (isa<ConstantInt>(AI->getArraySize()))
505            AI->moveBefore(NEBI);
506
507    // Now that we have created a new block, which jumps to the entry
508    // block, insert a PHI node for each argument of the function.
509    // For now, we initialize each PHI to only have the real arguments
510    // which are passed in.
511    Instruction *InsertPos = OldEntry->begin();
512    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
513         I != E; ++I) {
514      PHINode *PN = PHINode::Create(I->getType(), 2,
515                                    I->getName() + ".tr", InsertPos);
516      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
517      PN->addIncoming(I, NewEntry);
518      ArgumentPHIs.push_back(PN);
519    }
520  }
521
522  // If this function has self recursive calls in the tail position where some
523  // are marked tail and some are not, only transform one flavor or another.  We
524  // have to choose whether we move allocas in the entry block to the new entry
525  // block or not, so we can't make a good choice for both.  NOTE: We could do
526  // slightly better here in the case that the function has no entry block
527  // allocas.
528  if (TailCallsAreMarkedTail && !CI->isTailCall())
529    return false;
530
531  // Ok, now that we know we have a pseudo-entry block WITH all of the
532  // required PHI nodes, add entries into the PHI node for the actual
533  // parameters passed into the tail-recursive call.
534  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
535    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
536
537  // If we are introducing an accumulator variable to eliminate the recursion,
538  // do so now.  Note that we _know_ that no subsequent tail recursion
539  // eliminations will happen on this function because of the way the
540  // accumulator recursion predicate is set up.
541  //
542  if (AccumulatorRecursionEliminationInitVal) {
543    Instruction *AccRecInstr = AccumulatorRecursionInstr;
544    // Start by inserting a new PHI node for the accumulator.
545    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
546    PHINode *AccPN =
547      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
548                      std::distance(PB, PE) + 1,
549                      "accumulator.tr", OldEntry->begin());
550
551    // Loop over all of the predecessors of the tail recursion block.  For the
552    // real entry into the function we seed the PHI with the initial value,
553    // computed earlier.  For any other existing branches to this block (due to
554    // other tail recursions eliminated) the accumulator is not modified.
555    // Because we haven't added the branch in the current block to OldEntry yet,
556    // it will not show up as a predecessor.
557    for (pred_iterator PI = PB; PI != PE; ++PI) {
558      BasicBlock *P = *PI;
559      if (P == &F->getEntryBlock())
560        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
561      else
562        AccPN->addIncoming(AccPN, P);
563    }
564
565    if (AccRecInstr) {
566      // Add an incoming argument for the current block, which is computed by
567      // our associative and commutative accumulator instruction.
568      AccPN->addIncoming(AccRecInstr, BB);
569
570      // Next, rewrite the accumulator recursion instruction so that it does not
571      // use the result of the call anymore, instead, use the PHI node we just
572      // inserted.
573      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
574    } else {
575      // Add an incoming argument for the current block, which is just the
576      // constant returned by the current return instruction.
577      AccPN->addIncoming(Ret->getReturnValue(), BB);
578    }
579
580    // Finally, rewrite any return instructions in the program to return the PHI
581    // node instead of the "initval" that they do currently.  This loop will
582    // actually rewrite the return value we are destroying, but that's ok.
583    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
584      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
585        RI->setOperand(0, AccPN);
586    ++NumAccumAdded;
587  }
588
589  // Now that all of the PHI nodes are in place, remove the call and
590  // ret instructions, replacing them with an unconditional branch.
591  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
592  NewBI->setDebugLoc(CI->getDebugLoc());
593
594  BB->getInstList().erase(Ret);  // Remove return.
595  BB->getInstList().erase(CI);   // Remove call.
596  ++NumEliminated;
597  return true;
598}
599
600bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
601                                       ReturnInst *Ret, BasicBlock *&OldEntry,
602                                       bool &TailCallsAreMarkedTail,
603                                       SmallVector<PHINode*, 8> &ArgumentPHIs,
604                                       bool CannotTailCallElimCallsMarkedTail) {
605  bool Change = false;
606
607  // If the return block contains nothing but the return and PHI's,
608  // there might be an opportunity to duplicate the return in its
609  // predecessors and perform TRC there. Look for predecessors that end
610  // in unconditional branch and recursive call(s).
611  SmallVector<BranchInst*, 8> UncondBranchPreds;
612  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
613    BasicBlock *Pred = *PI;
614    TerminatorInst *PTI = Pred->getTerminator();
615    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
616      if (BI->isUnconditional())
617        UncondBranchPreds.push_back(BI);
618  }
619
620  while (!UncondBranchPreds.empty()) {
621    BranchInst *BI = UncondBranchPreds.pop_back_val();
622    BasicBlock *Pred = BI->getParent();
623    if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
624      DEBUG(dbgs() << "FOLDING: " << *BB
625            << "INTO UNCOND BRANCH PRED: " << *Pred);
626      EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
627                                 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
628                                 CannotTailCallElimCallsMarkedTail);
629      ++NumRetDuped;
630      Change = true;
631    }
632  }
633
634  return Change;
635}
636
637bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
638                                         bool &TailCallsAreMarkedTail,
639                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
640                                       bool CannotTailCallElimCallsMarkedTail) {
641  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
642  if (!CI)
643    return false;
644
645  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
646                                    ArgumentPHIs,
647                                    CannotTailCallElimCallsMarkedTail);
648}
649