TailRecursionElimination.cpp revision 3e8b6631e67e01e4960a7ba4668a50c596607473
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative expression to use an accumulator variable,
20//     thus compiling the typical naive factorial or 'fib' implementation into
21//     efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access theier caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Constants.h"
57#include "llvm/DerivedTypes.h"
58#include "llvm/Function.h"
59#include "llvm/Instructions.h"
60#include "llvm/Pass.h"
61#include "llvm/Support/CFG.h"
62#include "llvm/ADT/Statistic.h"
63using namespace llvm;
64
65STATISTIC(NumEliminated, "Number of tail calls removed");
66STATISTIC(NumAccumAdded, "Number of accumulators introduced");
67
68namespace {
69  struct TailCallElim : public FunctionPass {
70    static char ID; // Pass identification, replacement for typeid
71    TailCallElim() : FunctionPass(&ID) {}
72
73    virtual bool runOnFunction(Function &F);
74
75  private:
76    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
77                               bool &TailCallsAreMarkedTail,
78                               std::vector<PHINode*> &ArgumentPHIs,
79                               bool CannotTailCallElimCallsMarkedTail);
80    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
81    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
82  };
83}
84
85char TailCallElim::ID = 0;
86static RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
87
88// Public interface to the TailCallElimination pass
89FunctionPass *llvm::createTailCallEliminationPass() {
90  return new TailCallElim();
91}
92
93
94/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
95/// callees of this function.  We only do very simple analysis right now, this
96/// could be expanded in the future to use mod/ref information for particular
97/// call sites if desired.
98static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
99  // FIXME: do simple 'address taken' analysis.
100  return true;
101}
102
103/// FunctionContainsAllocas - Scan the specified basic block for alloca
104/// instructions.  If it contains any that might be accessed by calls, return
105/// true.
106static bool CheckForEscapingAllocas(BasicBlock *BB,
107                                    bool &CannotTCETailMarkedCall) {
108  bool RetVal = false;
109  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
110    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
111      RetVal |= AllocaMightEscapeToCalls(AI);
112
113      // If this alloca is in the body of the function, or if it is a variable
114      // sized allocation, we cannot tail call eliminate calls marked 'tail'
115      // with this mechanism.
116      if (BB != &BB->getParent()->getEntryBlock() ||
117          !isa<ConstantInt>(AI->getArraySize()))
118        CannotTCETailMarkedCall = true;
119    }
120  return RetVal;
121}
122
123bool TailCallElim::runOnFunction(Function &F) {
124  // If this function is a varargs function, we won't be able to PHI the args
125  // right, so don't even try to convert it...
126  if (F.getFunctionType()->isVarArg()) return false;
127
128  BasicBlock *OldEntry = 0;
129  bool TailCallsAreMarkedTail = false;
130  std::vector<PHINode*> ArgumentPHIs;
131  bool MadeChange = false;
132
133  bool FunctionContainsEscapingAllocas = false;
134
135  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
136  // marked with the 'tail' attribute, because doing so would cause the stack
137  // size to increase (real TCE would deallocate variable sized allocas, TCE
138  // doesn't).
139  bool CannotTCETailMarkedCall = false;
140
141  // Loop over the function, looking for any returning blocks, and keeping track
142  // of whether this function has any non-trivially used allocas.
143  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
144    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
145      break;
146
147    FunctionContainsEscapingAllocas |=
148      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
149  }
150
151  /// FIXME: The code generator produces really bad code when an 'escaping
152  /// alloca' is changed from being a static alloca to being a dynamic alloca.
153  /// Until this is resolved, disable this transformation if that would ever
154  /// happen.  This bug is PR962.
155  if (FunctionContainsEscapingAllocas)
156    return false;
157
158
159  // Second pass, change any tail calls to loops.
160  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
161    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
162      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
163                                          ArgumentPHIs,CannotTCETailMarkedCall);
164
165  // If we eliminated any tail recursions, it's possible that we inserted some
166  // silly PHI nodes which just merge an initial value (the incoming operand)
167  // with themselves.  Check to see if we did and clean up our mess if so.  This
168  // occurs when a function passes an argument straight through to its tail
169  // call.
170  if (!ArgumentPHIs.empty()) {
171    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
172      PHINode *PN = ArgumentPHIs[i];
173
174      // If the PHI Node is a dynamic constant, replace it with the value it is.
175      if (Value *PNV = PN->hasConstantValue()) {
176        PN->replaceAllUsesWith(PNV);
177        PN->eraseFromParent();
178      }
179    }
180  }
181
182  // Finally, if this function contains no non-escaping allocas, mark all calls
183  // in the function as eligible for tail calls (there is no stack memory for
184  // them to access).
185  if (!FunctionContainsEscapingAllocas)
186    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
187      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
188        if (CallInst *CI = dyn_cast<CallInst>(I)) {
189          CI->setTailCall();
190          MadeChange = true;
191        }
192
193  return MadeChange;
194}
195
196
197/// CanMoveAboveCall - Return true if it is safe to move the specified
198/// instruction from after the call to before the call, assuming that all
199/// instructions between the call and this instruction are movable.
200///
201bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
202  // FIXME: We can move load/store/call/free instructions above the call if the
203  // call does not mod/ref the memory location being processed.
204  if (I->mayHaveSideEffects())  // This also handles volatile loads.
205    return false;
206
207  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
208    // Loads may always be moved above calls without side effects.
209    if (CI->mayHaveSideEffects()) {
210      // Non-volatile loads may be moved above a call with side effects if it
211      // does not write to memory and the load provably won't trap.
212      // FIXME: Writes to memory only matter if they may alias the pointer
213      // being loaded from.
214      if (CI->mayWriteToMemory() ||
215          !isSafeToLoadUnconditionally(L->getPointerOperand(), L))
216        return false;
217    }
218  }
219
220  // Otherwise, if this is a side-effect free instruction, check to make sure
221  // that it does not use the return value of the call.  If it doesn't use the
222  // return value of the call, it must only use things that are defined before
223  // the call, or movable instructions between the call and the instruction
224  // itself.
225  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
226    if (I->getOperand(i) == CI)
227      return false;
228  return true;
229}
230
231// isDynamicConstant - Return true if the specified value is the same when the
232// return would exit as it was when the initial iteration of the recursive
233// function was executed.
234//
235// We currently handle static constants and arguments that are not modified as
236// part of the recursion.
237//
238static bool isDynamicConstant(Value *V, CallInst *CI) {
239  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
240
241  // Check to see if this is an immutable argument, if so, the value
242  // will be available to initialize the accumulator.
243  if (Argument *Arg = dyn_cast<Argument>(V)) {
244    // Figure out which argument number this is...
245    unsigned ArgNo = 0;
246    Function *F = CI->getParent()->getParent();
247    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
248      ++ArgNo;
249
250    // If we are passing this argument into call as the corresponding
251    // argument operand, then the argument is dynamically constant.
252    // Otherwise, we cannot transform this function safely.
253    if (CI->getOperand(ArgNo+1) == Arg)
254      return true;
255  }
256  // Not a constant or immutable argument, we can't safely transform.
257  return false;
258}
259
260// getCommonReturnValue - Check to see if the function containing the specified
261// return instruction and tail call consistently returns the same
262// runtime-constant value at all exit points.  If so, return the returned value.
263//
264static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
265  Function *F = TheRI->getParent()->getParent();
266  Value *ReturnedValue = 0;
267
268  // TODO: Handle multiple value ret instructions;
269  if (isa<StructType>(F->getReturnType()))
270      return 0;
271
272  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
273    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
274      if (RI != TheRI) {
275        Value *RetOp = RI->getOperand(0);
276
277        // We can only perform this transformation if the value returned is
278        // evaluatable at the start of the initial invocation of the function,
279        // instead of at the end of the evaluation.
280        //
281        if (!isDynamicConstant(RetOp, CI))
282          return 0;
283
284        if (ReturnedValue && RetOp != ReturnedValue)
285          return 0;     // Cannot transform if differing values are returned.
286        ReturnedValue = RetOp;
287      }
288  return ReturnedValue;
289}
290
291/// CanTransformAccumulatorRecursion - If the specified instruction can be
292/// transformed using accumulator recursion elimination, return the constant
293/// which is the start of the accumulator value.  Otherwise return null.
294///
295Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
296                                                      CallInst *CI) {
297  if (!I->isAssociative()) return 0;
298  assert(I->getNumOperands() == 2 &&
299         "Associative operations should have 2 args!");
300
301  // Exactly one operand should be the result of the call instruction...
302  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
303      (I->getOperand(0) != CI && I->getOperand(1) != CI))
304    return 0;
305
306  // The only user of this instruction we allow is a single return instruction.
307  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
308    return 0;
309
310  // Ok, now we have to check all of the other return instructions in this
311  // function.  If they return non-constants or differing values, then we cannot
312  // transform the function safely.
313  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
314}
315
316bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
317                                         bool &TailCallsAreMarkedTail,
318                                         std::vector<PHINode*> &ArgumentPHIs,
319                                       bool CannotTailCallElimCallsMarkedTail) {
320  BasicBlock *BB = Ret->getParent();
321  Function *F = BB->getParent();
322
323  if (&BB->front() == Ret) // Make sure there is something before the ret...
324    return false;
325
326  // If the return is in the entry block, then making this transformation would
327  // turn infinite recursion into an infinite loop.  This transformation is ok
328  // in theory, but breaks some code like:
329  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
330  // disable this xform in this case, because the code generator will lower the
331  // call to fabs into inline code.
332  if (BB == &F->getEntryBlock())
333    return false;
334
335  // Scan backwards from the return, checking to see if there is a tail call in
336  // this block.  If so, set CI to it.
337  CallInst *CI;
338  BasicBlock::iterator BBI = Ret;
339  while (1) {
340    CI = dyn_cast<CallInst>(BBI);
341    if (CI && CI->getCalledFunction() == F)
342      break;
343
344    if (BBI == BB->begin())
345      return false;          // Didn't find a potential tail call.
346    --BBI;
347  }
348
349  // If this call is marked as a tail call, and if there are dynamic allocas in
350  // the function, we cannot perform this optimization.
351  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
352    return false;
353
354  // If we are introducing accumulator recursion to eliminate associative
355  // operations after the call instruction, this variable contains the initial
356  // value for the accumulator.  If this value is set, we actually perform
357  // accumulator recursion elimination instead of simple tail recursion
358  // elimination.
359  Value *AccumulatorRecursionEliminationInitVal = 0;
360  Instruction *AccumulatorRecursionInstr = 0;
361
362  // Ok, we found a potential tail call.  We can currently only transform the
363  // tail call if all of the instructions between the call and the return are
364  // movable to above the call itself, leaving the call next to the return.
365  // Check that this is the case now.
366  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
367    if (!CanMoveAboveCall(BBI, CI)) {
368      // If we can't move the instruction above the call, it might be because it
369      // is an associative operation that could be tranformed using accumulator
370      // recursion elimination.  Check to see if this is the case, and if so,
371      // remember the initial accumulator value for later.
372      if ((AccumulatorRecursionEliminationInitVal =
373                             CanTransformAccumulatorRecursion(BBI, CI))) {
374        // Yes, this is accumulator recursion.  Remember which instruction
375        // accumulates.
376        AccumulatorRecursionInstr = BBI;
377      } else {
378        return false;   // Otherwise, we cannot eliminate the tail recursion!
379      }
380    }
381
382  // We can only transform call/return pairs that either ignore the return value
383  // of the call and return void, ignore the value of the call and return a
384  // constant, return the value returned by the tail call, or that are being
385  // accumulator recursion variable eliminated.
386  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
387      !isa<UndefValue>(Ret->getReturnValue()) &&
388      AccumulatorRecursionEliminationInitVal == 0 &&
389      !getCommonReturnValue(Ret, CI))
390    return false;
391
392  // OK! We can transform this tail call.  If this is the first one found,
393  // create the new entry block, allowing us to branch back to the old entry.
394  if (OldEntry == 0) {
395    OldEntry = &F->getEntryBlock();
396    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
397    NewEntry->takeName(OldEntry);
398    OldEntry->setName("tailrecurse");
399    BranchInst::Create(OldEntry, NewEntry);
400
401    // If this tail call is marked 'tail' and if there are any allocas in the
402    // entry block, move them up to the new entry block.
403    TailCallsAreMarkedTail = CI->isTailCall();
404    if (TailCallsAreMarkedTail)
405      // Move all fixed sized allocas from OldEntry to NewEntry.
406      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
407             NEBI = NewEntry->begin(); OEBI != E; )
408        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
409          if (isa<ConstantInt>(AI->getArraySize()))
410            AI->moveBefore(NEBI);
411
412    // Now that we have created a new block, which jumps to the entry
413    // block, insert a PHI node for each argument of the function.
414    // For now, we initialize each PHI to only have the real arguments
415    // which are passed in.
416    Instruction *InsertPos = OldEntry->begin();
417    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
418         I != E; ++I) {
419      PHINode *PN = PHINode::Create(I->getType(),
420                                    I->getName() + ".tr", InsertPos);
421      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
422      PN->addIncoming(I, NewEntry);
423      ArgumentPHIs.push_back(PN);
424    }
425  }
426
427  // If this function has self recursive calls in the tail position where some
428  // are marked tail and some are not, only transform one flavor or another.  We
429  // have to choose whether we move allocas in the entry block to the new entry
430  // block or not, so we can't make a good choice for both.  NOTE: We could do
431  // slightly better here in the case that the function has no entry block
432  // allocas.
433  if (TailCallsAreMarkedTail && !CI->isTailCall())
434    return false;
435
436  // Ok, now that we know we have a pseudo-entry block WITH all of the
437  // required PHI nodes, add entries into the PHI node for the actual
438  // parameters passed into the tail-recursive call.
439  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
440    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
441
442  // If we are introducing an accumulator variable to eliminate the recursion,
443  // do so now.  Note that we _know_ that no subsequent tail recursion
444  // eliminations will happen on this function because of the way the
445  // accumulator recursion predicate is set up.
446  //
447  if (AccumulatorRecursionEliminationInitVal) {
448    Instruction *AccRecInstr = AccumulatorRecursionInstr;
449    // Start by inserting a new PHI node for the accumulator.
450    PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
451                                     OldEntry->begin());
452
453    // Loop over all of the predecessors of the tail recursion block.  For the
454    // real entry into the function we seed the PHI with the initial value,
455    // computed earlier.  For any other existing branches to this block (due to
456    // other tail recursions eliminated) the accumulator is not modified.
457    // Because we haven't added the branch in the current block to OldEntry yet,
458    // it will not show up as a predecessor.
459    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
460         PI != PE; ++PI) {
461      if (*PI == &F->getEntryBlock())
462        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
463      else
464        AccPN->addIncoming(AccPN, *PI);
465    }
466
467    // Add an incoming argument for the current block, which is computed by our
468    // associative accumulator instruction.
469    AccPN->addIncoming(AccRecInstr, BB);
470
471    // Next, rewrite the accumulator recursion instruction so that it does not
472    // use the result of the call anymore, instead, use the PHI node we just
473    // inserted.
474    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
475
476    // Finally, rewrite any return instructions in the program to return the PHI
477    // node instead of the "initval" that they do currently.  This loop will
478    // actually rewrite the return value we are destroying, but that's ok.
479    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
480      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
481        RI->setOperand(0, AccPN);
482    ++NumAccumAdded;
483  }
484
485  // Now that all of the PHI nodes are in place, remove the call and
486  // ret instructions, replacing them with an unconditional branch.
487  BranchInst::Create(OldEntry, Ret);
488  BB->getInstList().erase(Ret);  // Remove return.
489  BB->getInstList().erase(CI);   // Remove call.
490  ++NumEliminated;
491  return true;
492}
493