TailRecursionElimination.cpp revision 4c0e4cdc40bbf94766242294fe386f4eb2d32d2e
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative expression to use an accumulator variable,
20//     thus compiling the typical naive factorial or 'fib' implementation into
21//     efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access theier caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar.h"
54#include "llvm/Constants.h"
55#include "llvm/DerivedTypes.h"
56#include "llvm/Function.h"
57#include "llvm/Instructions.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CFG.h"
60#include "llvm/ADT/Statistic.h"
61using namespace llvm;
62
63namespace {
64  Statistic<> NumEliminated("tailcallelim", "Number of tail calls removed");
65  Statistic<> NumAccumAdded("tailcallelim","Number of accumulators introduced");
66
67  struct TailCallElim : public FunctionPass {
68    virtual bool runOnFunction(Function &F);
69
70  private:
71    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
72                               bool &TailCallsAreMarkedTail,
73                               std::vector<PHINode*> &ArgumentPHIs,
74                               bool CannotTailCallElimCallsMarkedTail);
75    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
76    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
77  };
78  RegisterOpt<TailCallElim> X("tailcallelim", "Tail Call Elimination");
79}
80
81// Public interface to the TailCallElimination pass
82FunctionPass *llvm::createTailCallEliminationPass() {
83  return new TailCallElim();
84}
85
86
87/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
88/// callees of this function.  We only do very simple analysis right now, this
89/// could be expanded in the future to use mod/ref information for particular
90/// call sites if desired.
91static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
92  // FIXME: do simple 'address taken' analysis.
93  return true;
94}
95
96/// FunctionContainsAllocas - Scan the specified basic block for alloca
97/// instructions.  If it contains any that might be accessed by calls, return
98/// true.
99static bool CheckForEscapingAllocas(BasicBlock *BB,
100                                    bool &CannotTCETailMarkedCall) {
101  bool RetVal = false;
102  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
103    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
104      RetVal |= AllocaMightEscapeToCalls(AI);
105
106      // If this alloca is in the body of the function, or if it is a variable
107      // sized allocation, we cannot tail call eliminate calls marked 'tail'
108      // with this mechanism.
109      if (BB != &BB->getParent()->front() ||
110          !isa<ConstantInt>(AI->getArraySize()))
111        CannotTCETailMarkedCall = true;
112    }
113  return RetVal;
114}
115
116bool TailCallElim::runOnFunction(Function &F) {
117  // If this function is a varargs function, we won't be able to PHI the args
118  // right, so don't even try to convert it...
119  if (F.getFunctionType()->isVarArg()) return false;
120
121  BasicBlock *OldEntry = 0;
122  bool TailCallsAreMarkedTail = false;
123  std::vector<PHINode*> ArgumentPHIs;
124  bool MadeChange = false;
125
126  bool FunctionContainsEscapingAllocas = false;
127
128  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
129  // marked with the 'tail' attribute, because doing so would cause the stack
130  // size to increase (real TCE would deallocate variable sized allocas, TCE
131  // doesn't).
132  bool CannotTCETailMarkedCall = false;
133
134  // Loop over the function, looking for any returning blocks, and keeping track
135  // of whether this function has any non-trivially used allocas.
136  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
137    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
138      break;
139
140    FunctionContainsEscapingAllocas |=
141      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
142  }
143
144  // Second pass, change any tail calls to loops.
145  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
146    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
147      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
148                                          ArgumentPHIs,CannotTCETailMarkedCall);
149
150  // If we eliminated any tail recursions, it's possible that we inserted some
151  // silly PHI nodes which just merge an initial value (the incoming operand)
152  // with themselves.  Check to see if we did and clean up our mess if so.  This
153  // occurs when a function passes an argument straight through to its tail
154  // call.
155  if (!ArgumentPHIs.empty()) {
156    unsigned NumIncoming = ArgumentPHIs[0]->getNumIncomingValues();
157    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
158      PHINode *PN = ArgumentPHIs[i];
159
160      // If the PHI Node is a dynamic constant, replace it with the value it is.
161      if (Value *PNV = PN->hasConstantValue()) {
162        PN->replaceAllUsesWith(PNV);
163        PN->eraseFromParent();
164      }
165    }
166  }
167
168  // Finally, if this function contains no non-escaping allocas, mark all calls
169  // in the function as eligible for tail calls (there is no stack memory for
170  // them to access).
171  if (!FunctionContainsEscapingAllocas)
172    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
173      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
174        if (CallInst *CI = dyn_cast<CallInst>(I))
175          CI->setTailCall();
176
177  return MadeChange;
178}
179
180
181/// CanMoveAboveCall - Return true if it is safe to move the specified
182/// instruction from after the call to before the call, assuming that all
183/// instructions between the call and this instruction are movable.
184///
185bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
186  // FIXME: We can move load/store/call/free instructions above the call if the
187  // call does not mod/ref the memory location being processed.
188  if (I->mayWriteToMemory() || isa<LoadInst>(I))
189    return false;
190
191  // Otherwise, if this is a side-effect free instruction, check to make sure
192  // that it does not use the return value of the call.  If it doesn't use the
193  // return value of the call, it must only use things that are defined before
194  // the call, or movable instructions between the call and the instruction
195  // itself.
196  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
197    if (I->getOperand(i) == CI)
198      return false;
199  return true;
200}
201
202// isDynamicConstant - Return true if the specified value is the same when the
203// return would exit as it was when the initial iteration of the recursive
204// function was executed.
205//
206// We currently handle static constants and arguments that are not modified as
207// part of the recursion.
208//
209static bool isDynamicConstant(Value *V, CallInst *CI) {
210  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
211
212  // Check to see if this is an immutable argument, if so, the value
213  // will be available to initialize the accumulator.
214  if (Argument *Arg = dyn_cast<Argument>(V)) {
215    // Figure out which argument number this is...
216    unsigned ArgNo = 0;
217    Function *F = CI->getParent()->getParent();
218    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
219      ++ArgNo;
220
221    // If we are passing this argument into call as the corresponding
222    // argument operand, then the argument is dynamically constant.
223    // Otherwise, we cannot transform this function safely.
224    if (CI->getOperand(ArgNo+1) == Arg)
225      return true;
226  }
227  // Not a constant or immutable argument, we can't safely transform.
228  return false;
229}
230
231// getCommonReturnValue - Check to see if the function containing the specified
232// return instruction and tail call consistently returns the same
233// runtime-constant value at all exit points.  If so, return the returned value.
234//
235static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
236  Function *F = TheRI->getParent()->getParent();
237  Value *ReturnedValue = 0;
238
239  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
240    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
241      if (RI != TheRI) {
242        Value *RetOp = RI->getOperand(0);
243
244        // We can only perform this transformation if the value returned is
245        // evaluatable at the start of the initial invocation of the function,
246        // instead of at the end of the evaluation.
247        //
248        if (!isDynamicConstant(RetOp, CI))
249          return 0;
250
251        if (ReturnedValue && RetOp != ReturnedValue)
252          return 0;     // Cannot transform if differing values are returned.
253        ReturnedValue = RetOp;
254      }
255  return ReturnedValue;
256}
257
258/// CanTransformAccumulatorRecursion - If the specified instruction can be
259/// transformed using accumulator recursion elimination, return the constant
260/// which is the start of the accumulator value.  Otherwise return null.
261///
262Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
263                                                      CallInst *CI) {
264  if (!I->isAssociative()) return 0;
265  assert(I->getNumOperands() == 2 &&
266         "Associative operations should have 2 args!");
267
268  // Exactly one operand should be the result of the call instruction...
269  if (I->getOperand(0) == CI && I->getOperand(1) == CI ||
270      I->getOperand(0) != CI && I->getOperand(1) != CI)
271    return 0;
272
273  // The only user of this instruction we allow is a single return instruction.
274  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
275    return 0;
276
277  // Ok, now we have to check all of the other return instructions in this
278  // function.  If they return non-constants or differing values, then we cannot
279  // transform the function safely.
280  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
281}
282
283bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
284                                         bool &TailCallsAreMarkedTail,
285                                         std::vector<PHINode*> &ArgumentPHIs,
286                                       bool CannotTailCallElimCallsMarkedTail) {
287  BasicBlock *BB = Ret->getParent();
288  Function *F = BB->getParent();
289
290  if (&BB->front() == Ret) // Make sure there is something before the ret...
291    return false;
292
293  // Scan backwards from the return, checking to see if there is a tail call in
294  // this block.  If so, set CI to it.
295  CallInst *CI;
296  BasicBlock::iterator BBI = Ret;
297  while (1) {
298    CI = dyn_cast<CallInst>(BBI);
299    if (CI && CI->getCalledFunction() == F)
300      break;
301
302    if (BBI == BB->begin())
303      return false;          // Didn't find a potential tail call.
304    --BBI;
305  }
306
307  // If this call is marked as a tail call, and if there are dynamic allocas in
308  // the function, we cannot perform this optimization.
309  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
310    return false;
311
312  // If we are introducing accumulator recursion to eliminate associative
313  // operations after the call instruction, this variable contains the initial
314  // value for the accumulator.  If this value is set, we actually perform
315  // accumulator recursion elimination instead of simple tail recursion
316  // elimination.
317  Value *AccumulatorRecursionEliminationInitVal = 0;
318  Instruction *AccumulatorRecursionInstr = 0;
319
320  // Ok, we found a potential tail call.  We can currently only transform the
321  // tail call if all of the instructions between the call and the return are
322  // movable to above the call itself, leaving the call next to the return.
323  // Check that this is the case now.
324  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
325    if (!CanMoveAboveCall(BBI, CI)) {
326      // If we can't move the instruction above the call, it might be because it
327      // is an associative operation that could be tranformed using accumulator
328      // recursion elimination.  Check to see if this is the case, and if so,
329      // remember the initial accumulator value for later.
330      if ((AccumulatorRecursionEliminationInitVal =
331                             CanTransformAccumulatorRecursion(BBI, CI))) {
332        // Yes, this is accumulator recursion.  Remember which instruction
333        // accumulates.
334        AccumulatorRecursionInstr = BBI;
335      } else {
336        return false;   // Otherwise, we cannot eliminate the tail recursion!
337      }
338    }
339
340  // We can only transform call/return pairs that either ignore the return value
341  // of the call and return void, ignore the value of the call and return a
342  // constant, return the value returned by the tail call, or that are being
343  // accumulator recursion variable eliminated.
344  if (Ret->getNumOperands() != 0 && Ret->getReturnValue() != CI &&
345      AccumulatorRecursionEliminationInitVal == 0 &&
346      !getCommonReturnValue(Ret, CI))
347    return false;
348
349  // OK! We can transform this tail call.  If this is the first one found,
350  // create the new entry block, allowing us to branch back to the old entry.
351  if (OldEntry == 0) {
352    OldEntry = &F->getEntryBlock();
353    std::string OldName = OldEntry->getName(); OldEntry->setName("tailrecurse");
354    BasicBlock *NewEntry = new BasicBlock(OldName, F, OldEntry);
355    new BranchInst(OldEntry, NewEntry);
356
357    // If this tail call is marked 'tail' and if there are any allocas in the
358    // entry block, move them up to the new entry block.
359    TailCallsAreMarkedTail = CI->isTailCall();
360    if (TailCallsAreMarkedTail)
361      // Move all fixed sized allocas from OldEntry to NewEntry.
362      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
363             NEBI = NewEntry->begin(); OEBI != E; )
364        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
365          if (isa<ConstantInt>(AI->getArraySize()))
366            NewEntry->getInstList().splice(NEBI, OldEntry->getInstList(), AI);
367
368    // Now that we have created a new block, which jumps to the entry
369    // block, insert a PHI node for each argument of the function.
370    // For now, we initialize each PHI to only have the real arguments
371    // which are passed in.
372    Instruction *InsertPos = OldEntry->begin();
373    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
374         I != E; ++I) {
375      PHINode *PN = new PHINode(I->getType(), I->getName()+".tr", InsertPos);
376      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
377      PN->addIncoming(I, NewEntry);
378      ArgumentPHIs.push_back(PN);
379    }
380  }
381
382  // If this function has self recursive calls in the tail position where some
383  // are marked tail and some are not, only transform one flavor or another.  We
384  // have to choose whether we move allocas in the entry block to the new entry
385  // block or not, so we can't make a good choice for both.  NOTE: We could do
386  // slightly better here in the case that the function has no entry block
387  // allocas.
388  if (TailCallsAreMarkedTail && !CI->isTailCall())
389    return false;
390
391  // Ok, now that we know we have a pseudo-entry block WITH all of the
392  // required PHI nodes, add entries into the PHI node for the actual
393  // parameters passed into the tail-recursive call.
394  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
395    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
396
397  // If we are introducing an accumulator variable to eliminate the recursion,
398  // do so now.  Note that we _know_ that no subsequent tail recursion
399  // eliminations will happen on this function because of the way the
400  // accumulator recursion predicate is set up.
401  //
402  if (AccumulatorRecursionEliminationInitVal) {
403    Instruction *AccRecInstr = AccumulatorRecursionInstr;
404    // Start by inserting a new PHI node for the accumulator.
405    PHINode *AccPN = new PHINode(AccRecInstr->getType(), "accumulator.tr",
406                                 OldEntry->begin());
407
408    // Loop over all of the predecessors of the tail recursion block.  For the
409    // real entry into the function we seed the PHI with the initial value,
410    // computed earlier.  For any other existing branches to this block (due to
411    // other tail recursions eliminated) the accumulator is not modified.
412    // Because we haven't added the branch in the current block to OldEntry yet,
413    // it will not show up as a predecessor.
414    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
415         PI != PE; ++PI) {
416      if (*PI == &F->getEntryBlock())
417        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
418      else
419        AccPN->addIncoming(AccPN, *PI);
420    }
421
422    // Add an incoming argument for the current block, which is computed by our
423    // associative accumulator instruction.
424    AccPN->addIncoming(AccRecInstr, BB);
425
426    // Next, rewrite the accumulator recursion instruction so that it does not
427    // use the result of the call anymore, instead, use the PHI node we just
428    // inserted.
429    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
430
431    // Finally, rewrite any return instructions in the program to return the PHI
432    // node instead of the "initval" that they do currently.  This loop will
433    // actually rewrite the return value we are destroying, but that's ok.
434    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
435      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
436        RI->setOperand(0, AccPN);
437    ++NumAccumAdded;
438  }
439
440  // Now that all of the PHI nodes are in place, remove the call and
441  // ret instructions, replacing them with an unconditional branch.
442  new BranchInst(OldEntry, Ret);
443  BB->getInstList().erase(Ret);  // Remove return.
444  BB->getInstList().erase(CI);   // Remove call.
445  ++NumEliminated;
446  return true;
447}
448