TailRecursionElimination.cpp revision 9ee17208115482441953127615231c59a2f4d052
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative expression to use an accumulator variable,
20//     thus compiling the typical naive factorial or 'fib' implementation into
21//     efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Constants.h"
57#include "llvm/DerivedTypes.h"
58#include "llvm/Function.h"
59#include "llvm/Instructions.h"
60#include "llvm/Pass.h"
61#include "llvm/Analysis/CaptureTracking.h"
62#include "llvm/Support/CFG.h"
63#include "llvm/ADT/Statistic.h"
64using namespace llvm;
65
66STATISTIC(NumEliminated, "Number of tail calls removed");
67STATISTIC(NumAccumAdded, "Number of accumulators introduced");
68
69namespace {
70  struct TailCallElim : public FunctionPass {
71    static char ID; // Pass identification, replacement for typeid
72    TailCallElim() : FunctionPass(&ID) {}
73
74    virtual bool runOnFunction(Function &F);
75
76  private:
77    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
78                               bool &TailCallsAreMarkedTail,
79                               SmallVector<PHINode*, 8> &ArgumentPHIs,
80                               bool CannotTailCallElimCallsMarkedTail);
81    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
82    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
83  };
84}
85
86char TailCallElim::ID = 0;
87static RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
88
89// Public interface to the TailCallElimination pass
90FunctionPass *llvm::createTailCallEliminationPass() {
91  return new TailCallElim();
92}
93
94/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
95/// callees of this function.  We only do very simple analysis right now, this
96/// could be expanded in the future to use mod/ref information for particular
97/// call sites if desired.
98static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
99  // FIXME: do simple 'address taken' analysis.
100  return true;
101}
102
103/// CheckForEscapingAllocas - Scan the specified basic block for alloca
104/// instructions.  If it contains any that might be accessed by calls, return
105/// true.
106static bool CheckForEscapingAllocas(BasicBlock *BB,
107                                    bool &CannotTCETailMarkedCall) {
108  bool RetVal = false;
109  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
110    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
111      RetVal |= AllocaMightEscapeToCalls(AI);
112
113      // If this alloca is in the body of the function, or if it is a variable
114      // sized allocation, we cannot tail call eliminate calls marked 'tail'
115      // with this mechanism.
116      if (BB != &BB->getParent()->getEntryBlock() ||
117          !isa<ConstantInt>(AI->getArraySize()))
118        CannotTCETailMarkedCall = true;
119    }
120  return RetVal;
121}
122
123bool TailCallElim::runOnFunction(Function &F) {
124  // If this function is a varargs function, we won't be able to PHI the args
125  // right, so don't even try to convert it...
126  if (F.getFunctionType()->isVarArg()) return false;
127
128  BasicBlock *OldEntry = 0;
129  bool TailCallsAreMarkedTail = false;
130  SmallVector<PHINode*, 8> ArgumentPHIs;
131  bool MadeChange = false;
132
133  bool FunctionContainsEscapingAllocas = false;
134
135  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
136  // marked with the 'tail' attribute, because doing so would cause the stack
137  // size to increase (real TCE would deallocate variable sized allocas, TCE
138  // doesn't).
139  bool CannotTCETailMarkedCall = false;
140
141  // Loop over the function, looking for any returning blocks, and keeping track
142  // of whether this function has any non-trivially used allocas.
143  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
144    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
145      break;
146
147    FunctionContainsEscapingAllocas |=
148      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
149  }
150
151  /// FIXME: The code generator produces really bad code when an 'escaping
152  /// alloca' is changed from being a static alloca to being a dynamic alloca.
153  /// Until this is resolved, disable this transformation if that would ever
154  /// happen.  This bug is PR962.
155  if (FunctionContainsEscapingAllocas)
156    return false;
157
158  // Second pass, change any tail calls to loops.
159  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
160    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
161      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
162                                          ArgumentPHIs,CannotTCETailMarkedCall);
163
164  // If we eliminated any tail recursions, it's possible that we inserted some
165  // silly PHI nodes which just merge an initial value (the incoming operand)
166  // with themselves.  Check to see if we did and clean up our mess if so.  This
167  // occurs when a function passes an argument straight through to its tail
168  // call.
169  if (!ArgumentPHIs.empty()) {
170    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
171      PHINode *PN = ArgumentPHIs[i];
172
173      // If the PHI Node is a dynamic constant, replace it with the value it is.
174      if (Value *PNV = PN->hasConstantValue()) {
175        PN->replaceAllUsesWith(PNV);
176        PN->eraseFromParent();
177      }
178    }
179  }
180
181  // Finally, if this function contains no non-escaping allocas, mark all calls
182  // in the function as eligible for tail calls (there is no stack memory for
183  // them to access).
184  if (!FunctionContainsEscapingAllocas)
185    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
186      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
187        if (CallInst *CI = dyn_cast<CallInst>(I)) {
188          CI->setTailCall();
189          MadeChange = true;
190        }
191
192  return MadeChange;
193}
194
195
196/// CanMoveAboveCall - Return true if it is safe to move the specified
197/// instruction from after the call to before the call, assuming that all
198/// instructions between the call and this instruction are movable.
199///
200bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
201  // FIXME: We can move load/store/call/free instructions above the call if the
202  // call does not mod/ref the memory location being processed.
203  if (I->mayHaveSideEffects())  // This also handles volatile loads.
204    return false;
205
206  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
207    // Loads may always be moved above calls without side effects.
208    if (CI->mayHaveSideEffects()) {
209      // Non-volatile loads may be moved above a call with side effects if it
210      // does not write to memory and the load provably won't trap.
211      // FIXME: Writes to memory only matter if they may alias the pointer
212      // being loaded from.
213      if (CI->mayWriteToMemory() ||
214          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
215                                       L->getAlignment()))
216        return false;
217    }
218  }
219
220  // Otherwise, if this is a side-effect free instruction, check to make sure
221  // that it does not use the return value of the call.  If it doesn't use the
222  // return value of the call, it must only use things that are defined before
223  // the call, or movable instructions between the call and the instruction
224  // itself.
225  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
226    if (I->getOperand(i) == CI)
227      return false;
228  return true;
229}
230
231// isDynamicConstant - Return true if the specified value is the same when the
232// return would exit as it was when the initial iteration of the recursive
233// function was executed.
234//
235// We currently handle static constants and arguments that are not modified as
236// part of the recursion.
237//
238static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
239  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
240
241  // Check to see if this is an immutable argument, if so, the value
242  // will be available to initialize the accumulator.
243  if (Argument *Arg = dyn_cast<Argument>(V)) {
244    // Figure out which argument number this is...
245    unsigned ArgNo = 0;
246    Function *F = CI->getParent()->getParent();
247    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
248      ++ArgNo;
249
250    // If we are passing this argument into call as the corresponding
251    // argument operand, then the argument is dynamically constant.
252    // Otherwise, we cannot transform this function safely.
253    if (CI->getOperand(ArgNo+1) == Arg)
254      return true;
255  }
256
257  // Switch cases are always constant integers. If the value is being switched
258  // on and the return is only reachable from one of its cases, it's
259  // effectively constant.
260  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
261    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
262      if (SI->getCondition() == V)
263        return SI->getDefaultDest() != RI->getParent();
264
265  // Not a constant or immutable argument, we can't safely transform.
266  return false;
267}
268
269// getCommonReturnValue - Check to see if the function containing the specified
270// return instruction and tail call consistently returns the same
271// runtime-constant value at all exit points.  If so, return the returned value.
272//
273static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
274  Function *F = TheRI->getParent()->getParent();
275  Value *ReturnedValue = 0;
276
277  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
278    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
279      if (RI != TheRI) {
280        Value *RetOp = RI->getOperand(0);
281
282        // We can only perform this transformation if the value returned is
283        // evaluatable at the start of the initial invocation of the function,
284        // instead of at the end of the evaluation.
285        //
286        if (!isDynamicConstant(RetOp, CI, RI))
287          return 0;
288
289        if (ReturnedValue && RetOp != ReturnedValue)
290          return 0;     // Cannot transform if differing values are returned.
291        ReturnedValue = RetOp;
292      }
293  return ReturnedValue;
294}
295
296/// CanTransformAccumulatorRecursion - If the specified instruction can be
297/// transformed using accumulator recursion elimination, return the constant
298/// which is the start of the accumulator value.  Otherwise return null.
299///
300Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
301                                                      CallInst *CI) {
302  if (!I->isAssociative()) return 0;
303  assert(I->getNumOperands() == 2 &&
304         "Associative operations should have 2 args!");
305
306  // Exactly one operand should be the result of the call instruction...
307  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
308      (I->getOperand(0) != CI && I->getOperand(1) != CI))
309    return 0;
310
311  // The only user of this instruction we allow is a single return instruction.
312  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
313    return 0;
314
315  // Ok, now we have to check all of the other return instructions in this
316  // function.  If they return non-constants or differing values, then we cannot
317  // transform the function safely.
318  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
319}
320
321bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
322                                         bool &TailCallsAreMarkedTail,
323                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
324                                       bool CannotTailCallElimCallsMarkedTail) {
325  BasicBlock *BB = Ret->getParent();
326  Function *F = BB->getParent();
327
328  if (&BB->front() == Ret) // Make sure there is something before the ret...
329    return false;
330
331  // If the return is in the entry block, then making this transformation would
332  // turn infinite recursion into an infinite loop.  This transformation is ok
333  // in theory, but breaks some code like:
334  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
335  // disable this xform in this case, because the code generator will lower the
336  // call to fabs into inline code.
337  if (BB == &F->getEntryBlock())
338    return false;
339
340  // Scan backwards from the return, checking to see if there is a tail call in
341  // this block.  If so, set CI to it.
342  CallInst *CI;
343  BasicBlock::iterator BBI = Ret;
344  while (1) {
345    CI = dyn_cast<CallInst>(BBI);
346    if (CI && CI->getCalledFunction() == F)
347      break;
348
349    if (BBI == BB->begin())
350      return false;          // Didn't find a potential tail call.
351    --BBI;
352  }
353
354  // If this call is marked as a tail call, and if there are dynamic allocas in
355  // the function, we cannot perform this optimization.
356  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
357    return false;
358
359  // If we are introducing accumulator recursion to eliminate associative
360  // operations after the call instruction, this variable contains the initial
361  // value for the accumulator.  If this value is set, we actually perform
362  // accumulator recursion elimination instead of simple tail recursion
363  // elimination.
364  Value *AccumulatorRecursionEliminationInitVal = 0;
365  Instruction *AccumulatorRecursionInstr = 0;
366
367  // Ok, we found a potential tail call.  We can currently only transform the
368  // tail call if all of the instructions between the call and the return are
369  // movable to above the call itself, leaving the call next to the return.
370  // Check that this is the case now.
371  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
372    if (!CanMoveAboveCall(BBI, CI)) {
373      // If we can't move the instruction above the call, it might be because it
374      // is an associative operation that could be tranformed using accumulator
375      // recursion elimination.  Check to see if this is the case, and if so,
376      // remember the initial accumulator value for later.
377      if ((AccumulatorRecursionEliminationInitVal =
378                             CanTransformAccumulatorRecursion(BBI, CI))) {
379        // Yes, this is accumulator recursion.  Remember which instruction
380        // accumulates.
381        AccumulatorRecursionInstr = BBI;
382      } else {
383        return false;   // Otherwise, we cannot eliminate the tail recursion!
384      }
385    }
386
387  // We can only transform call/return pairs that either ignore the return value
388  // of the call and return void, ignore the value of the call and return a
389  // constant, return the value returned by the tail call, or that are being
390  // accumulator recursion variable eliminated.
391  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
392      !isa<UndefValue>(Ret->getReturnValue()) &&
393      AccumulatorRecursionEliminationInitVal == 0 &&
394      !getCommonReturnValue(Ret, CI))
395    return false;
396
397  // OK! We can transform this tail call.  If this is the first one found,
398  // create the new entry block, allowing us to branch back to the old entry.
399  if (OldEntry == 0) {
400    OldEntry = &F->getEntryBlock();
401    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
402    NewEntry->takeName(OldEntry);
403    OldEntry->setName("tailrecurse");
404    BranchInst::Create(OldEntry, NewEntry);
405
406    // If this tail call is marked 'tail' and if there are any allocas in the
407    // entry block, move them up to the new entry block.
408    TailCallsAreMarkedTail = CI->isTailCall();
409    if (TailCallsAreMarkedTail)
410      // Move all fixed sized allocas from OldEntry to NewEntry.
411      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
412             NEBI = NewEntry->begin(); OEBI != E; )
413        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
414          if (isa<ConstantInt>(AI->getArraySize()))
415            AI->moveBefore(NEBI);
416
417    // Now that we have created a new block, which jumps to the entry
418    // block, insert a PHI node for each argument of the function.
419    // For now, we initialize each PHI to only have the real arguments
420    // which are passed in.
421    Instruction *InsertPos = OldEntry->begin();
422    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
423         I != E; ++I) {
424      PHINode *PN = PHINode::Create(I->getType(),
425                                    I->getName() + ".tr", InsertPos);
426      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
427      PN->addIncoming(I, NewEntry);
428      ArgumentPHIs.push_back(PN);
429    }
430  }
431
432  // If this function has self recursive calls in the tail position where some
433  // are marked tail and some are not, only transform one flavor or another.  We
434  // have to choose whether we move allocas in the entry block to the new entry
435  // block or not, so we can't make a good choice for both.  NOTE: We could do
436  // slightly better here in the case that the function has no entry block
437  // allocas.
438  if (TailCallsAreMarkedTail && !CI->isTailCall())
439    return false;
440
441  // Ok, now that we know we have a pseudo-entry block WITH all of the
442  // required PHI nodes, add entries into the PHI node for the actual
443  // parameters passed into the tail-recursive call.
444  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
445    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
446
447  // If we are introducing an accumulator variable to eliminate the recursion,
448  // do so now.  Note that we _know_ that no subsequent tail recursion
449  // eliminations will happen on this function because of the way the
450  // accumulator recursion predicate is set up.
451  //
452  if (AccumulatorRecursionEliminationInitVal) {
453    Instruction *AccRecInstr = AccumulatorRecursionInstr;
454    // Start by inserting a new PHI node for the accumulator.
455    PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
456                                     OldEntry->begin());
457
458    // Loop over all of the predecessors of the tail recursion block.  For the
459    // real entry into the function we seed the PHI with the initial value,
460    // computed earlier.  For any other existing branches to this block (due to
461    // other tail recursions eliminated) the accumulator is not modified.
462    // Because we haven't added the branch in the current block to OldEntry yet,
463    // it will not show up as a predecessor.
464    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
465         PI != PE; ++PI) {
466      if (*PI == &F->getEntryBlock())
467        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
468      else
469        AccPN->addIncoming(AccPN, *PI);
470    }
471
472    // Add an incoming argument for the current block, which is computed by our
473    // associative accumulator instruction.
474    AccPN->addIncoming(AccRecInstr, BB);
475
476    // Next, rewrite the accumulator recursion instruction so that it does not
477    // use the result of the call anymore, instead, use the PHI node we just
478    // inserted.
479    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
480
481    // Finally, rewrite any return instructions in the program to return the PHI
482    // node instead of the "initval" that they do currently.  This loop will
483    // actually rewrite the return value we are destroying, but that's ok.
484    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
485      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
486        RI->setOperand(0, AccPN);
487    ++NumAccumAdded;
488  }
489
490  // Now that all of the PHI nodes are in place, remove the call and
491  // ret instructions, replacing them with an unconditional branch.
492  BranchInst::Create(OldEntry, Ret);
493  BB->getInstList().erase(Ret);  // Remove return.
494  BB->getInstList().erase(CI);   // Remove call.
495  ++NumEliminated;
496  return true;
497}
498