TailRecursionElimination.cpp revision a8b9df7bd96e0b0bc6dec448d30b7d72180b6595
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Constants.h"
57#include "llvm/DerivedTypes.h"
58#include "llvm/Function.h"
59#include "llvm/Instructions.h"
60#include "llvm/Pass.h"
61#include "llvm/Analysis/CaptureTracking.h"
62#include "llvm/Analysis/InlineCost.h"
63#include "llvm/Analysis/Loads.h"
64#include "llvm/Support/CallSite.h"
65#include "llvm/Support/CFG.h"
66#include "llvm/ADT/Statistic.h"
67using namespace llvm;
68
69STATISTIC(NumEliminated, "Number of tail calls removed");
70STATISTIC(NumAccumAdded, "Number of accumulators introduced");
71
72namespace {
73  struct TailCallElim : public FunctionPass {
74    static char ID; // Pass identification, replacement for typeid
75    TailCallElim() : FunctionPass(&ID) {}
76
77    virtual bool runOnFunction(Function &F);
78
79  private:
80    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
81                               bool &TailCallsAreMarkedTail,
82                               SmallVector<PHINode*, 8> &ArgumentPHIs,
83                               bool CannotTailCallElimCallsMarkedTail);
84    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
85    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
86  };
87}
88
89char TailCallElim::ID = 0;
90static RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
91
92// Public interface to the TailCallElimination pass
93FunctionPass *llvm::createTailCallEliminationPass() {
94  return new TailCallElim();
95}
96
97/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
98/// callees of this function.  We only do very simple analysis right now, this
99/// could be expanded in the future to use mod/ref information for particular
100/// call sites if desired.
101static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
102  // FIXME: do simple 'address taken' analysis.
103  return true;
104}
105
106/// CheckForEscapingAllocas - Scan the specified basic block for alloca
107/// instructions.  If it contains any that might be accessed by calls, return
108/// true.
109static bool CheckForEscapingAllocas(BasicBlock *BB,
110                                    bool &CannotTCETailMarkedCall) {
111  bool RetVal = false;
112  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
113    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
114      RetVal |= AllocaMightEscapeToCalls(AI);
115
116      // If this alloca is in the body of the function, or if it is a variable
117      // sized allocation, we cannot tail call eliminate calls marked 'tail'
118      // with this mechanism.
119      if (BB != &BB->getParent()->getEntryBlock() ||
120          !isa<ConstantInt>(AI->getArraySize()))
121        CannotTCETailMarkedCall = true;
122    }
123  return RetVal;
124}
125
126bool TailCallElim::runOnFunction(Function &F) {
127  // If this function is a varargs function, we won't be able to PHI the args
128  // right, so don't even try to convert it...
129  if (F.getFunctionType()->isVarArg()) return false;
130
131  BasicBlock *OldEntry = 0;
132  bool TailCallsAreMarkedTail = false;
133  SmallVector<PHINode*, 8> ArgumentPHIs;
134  bool MadeChange = false;
135
136  bool FunctionContainsEscapingAllocas = false;
137
138  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
139  // marked with the 'tail' attribute, because doing so would cause the stack
140  // size to increase (real TCE would deallocate variable sized allocas, TCE
141  // doesn't).
142  bool CannotTCETailMarkedCall = false;
143
144  // Loop over the function, looking for any returning blocks, and keeping track
145  // of whether this function has any non-trivially used allocas.
146  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
147    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
148      break;
149
150    FunctionContainsEscapingAllocas |=
151      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
152  }
153
154  /// FIXME: The code generator produces really bad code when an 'escaping
155  /// alloca' is changed from being a static alloca to being a dynamic alloca.
156  /// Until this is resolved, disable this transformation if that would ever
157  /// happen.  This bug is PR962.
158  if (FunctionContainsEscapingAllocas)
159    return false;
160
161  // Second pass, change any tail calls to loops.
162  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
163    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
164      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
165                                          ArgumentPHIs,CannotTCETailMarkedCall);
166
167  // If we eliminated any tail recursions, it's possible that we inserted some
168  // silly PHI nodes which just merge an initial value (the incoming operand)
169  // with themselves.  Check to see if we did and clean up our mess if so.  This
170  // occurs when a function passes an argument straight through to its tail
171  // call.
172  if (!ArgumentPHIs.empty()) {
173    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
174      PHINode *PN = ArgumentPHIs[i];
175
176      // If the PHI Node is a dynamic constant, replace it with the value it is.
177      if (Value *PNV = PN->hasConstantValue()) {
178        PN->replaceAllUsesWith(PNV);
179        PN->eraseFromParent();
180      }
181    }
182  }
183
184  // Finally, if this function contains no non-escaping allocas, mark all calls
185  // in the function as eligible for tail calls (there is no stack memory for
186  // them to access).
187  if (!FunctionContainsEscapingAllocas)
188    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
189      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
190        if (CallInst *CI = dyn_cast<CallInst>(I)) {
191          CI->setTailCall();
192          MadeChange = true;
193        }
194
195  return MadeChange;
196}
197
198
199/// CanMoveAboveCall - Return true if it is safe to move the specified
200/// instruction from after the call to before the call, assuming that all
201/// instructions between the call and this instruction are movable.
202///
203bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
204  // FIXME: We can move load/store/call/free instructions above the call if the
205  // call does not mod/ref the memory location being processed.
206  if (I->mayHaveSideEffects())  // This also handles volatile loads.
207    return false;
208
209  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
210    // Loads may always be moved above calls without side effects.
211    if (CI->mayHaveSideEffects()) {
212      // Non-volatile loads may be moved above a call with side effects if it
213      // does not write to memory and the load provably won't trap.
214      // FIXME: Writes to memory only matter if they may alias the pointer
215      // being loaded from.
216      if (CI->mayWriteToMemory() ||
217          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
218                                       L->getAlignment()))
219        return false;
220    }
221  }
222
223  // Otherwise, if this is a side-effect free instruction, check to make sure
224  // that it does not use the return value of the call.  If it doesn't use the
225  // return value of the call, it must only use things that are defined before
226  // the call, or movable instructions between the call and the instruction
227  // itself.
228  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
229    if (I->getOperand(i) == CI)
230      return false;
231  return true;
232}
233
234// isDynamicConstant - Return true if the specified value is the same when the
235// return would exit as it was when the initial iteration of the recursive
236// function was executed.
237//
238// We currently handle static constants and arguments that are not modified as
239// part of the recursion.
240//
241static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
242  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
243
244  // Check to see if this is an immutable argument, if so, the value
245  // will be available to initialize the accumulator.
246  if (Argument *Arg = dyn_cast<Argument>(V)) {
247    // Figure out which argument number this is...
248    unsigned ArgNo = 0;
249    Function *F = CI->getParent()->getParent();
250    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
251      ++ArgNo;
252
253    // If we are passing this argument into call as the corresponding
254    // argument operand, then the argument is dynamically constant.
255    // Otherwise, we cannot transform this function safely.
256    if (CI->getArgOperand(ArgNo) == Arg)
257      return true;
258  }
259
260  // Switch cases are always constant integers. If the value is being switched
261  // on and the return is only reachable from one of its cases, it's
262  // effectively constant.
263  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
264    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
265      if (SI->getCondition() == V)
266        return SI->getDefaultDest() != RI->getParent();
267
268  // Not a constant or immutable argument, we can't safely transform.
269  return false;
270}
271
272// getCommonReturnValue - Check to see if the function containing the specified
273// tail call consistently returns the same runtime-constant value at all exit
274// points except for IgnoreRI.  If so, return the returned value.
275//
276static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
277  Function *F = CI->getParent()->getParent();
278  Value *ReturnedValue = 0;
279
280  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
281    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
282      if (RI != IgnoreRI) {
283        Value *RetOp = RI->getOperand(0);
284
285        // We can only perform this transformation if the value returned is
286        // evaluatable at the start of the initial invocation of the function,
287        // instead of at the end of the evaluation.
288        //
289        if (!isDynamicConstant(RetOp, CI, RI))
290          return 0;
291
292        if (ReturnedValue && RetOp != ReturnedValue)
293          return 0;     // Cannot transform if differing values are returned.
294        ReturnedValue = RetOp;
295      }
296  return ReturnedValue;
297}
298
299/// CanTransformAccumulatorRecursion - If the specified instruction can be
300/// transformed using accumulator recursion elimination, return the constant
301/// which is the start of the accumulator value.  Otherwise return null.
302///
303Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
304                                                      CallInst *CI) {
305  if (!I->isAssociative() || !I->isCommutative()) return 0;
306  assert(I->getNumOperands() == 2 &&
307         "Associative/commutative operations should have 2 args!");
308
309  // Exactly one operand should be the result of the call instruction...
310  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
311      (I->getOperand(0) != CI && I->getOperand(1) != CI))
312    return 0;
313
314  // The only user of this instruction we allow is a single return instruction.
315  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
316    return 0;
317
318  // Ok, now we have to check all of the other return instructions in this
319  // function.  If they return non-constants or differing values, then we cannot
320  // transform the function safely.
321  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
322}
323
324bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
325                                         bool &TailCallsAreMarkedTail,
326                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
327                                       bool CannotTailCallElimCallsMarkedTail) {
328  BasicBlock *BB = Ret->getParent();
329  Function *F = BB->getParent();
330
331  if (&BB->front() == Ret) // Make sure there is something before the ret...
332    return false;
333
334  // Scan backwards from the return, checking to see if there is a tail call in
335  // this block.  If so, set CI to it.
336  CallInst *CI;
337  BasicBlock::iterator BBI = Ret;
338  while (1) {
339    CI = dyn_cast<CallInst>(BBI);
340    if (CI && CI->getCalledFunction() == F)
341      break;
342
343    if (BBI == BB->begin())
344      return false;          // Didn't find a potential tail call.
345    --BBI;
346  }
347
348  // If this call is marked as a tail call, and if there are dynamic allocas in
349  // the function, we cannot perform this optimization.
350  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
351    return false;
352
353  // As a special case, detect code like this:
354  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
355  // and disable this xform in this case, because the code generator will
356  // lower the call to fabs into inline code.
357  if (BB == &F->getEntryBlock() &&
358      &BB->front() == CI && &*++BB->begin() == Ret &&
359      callIsSmall(F)) {
360    // A single-block function with just a call and a return. Check that
361    // the arguments match.
362    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
363                           E = CallSite(CI).arg_end();
364    Function::arg_iterator FI = F->arg_begin(),
365                           FE = F->arg_end();
366    for (; I != E && FI != FE; ++I, ++FI)
367      if (*I != &*FI) break;
368    if (I == E && FI == FE)
369      return false;
370  }
371
372  // If we are introducing accumulator recursion to eliminate operations after
373  // the call instruction that are both associative and commutative, the initial
374  // value for the accumulator is placed in this variable.  If this value is set
375  // then we actually perform accumulator recursion elimination instead of
376  // simple tail recursion elimination.
377  Value *AccumulatorRecursionEliminationInitVal = 0;
378  Instruction *AccumulatorRecursionInstr = 0;
379
380  // Ok, we found a potential tail call.  We can currently only transform the
381  // tail call if all of the instructions between the call and the return are
382  // movable to above the call itself, leaving the call next to the return.
383  // Check that this is the case now.
384  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
385    if (!CanMoveAboveCall(BBI, CI)) {
386      // If we can't move the instruction above the call, it might be because it
387      // is an associative and commutative operation that could be tranformed
388      // using accumulator recursion elimination.  Check to see if this is the
389      // case, and if so, remember the initial accumulator value for later.
390      if ((AccumulatorRecursionEliminationInitVal =
391                             CanTransformAccumulatorRecursion(BBI, CI))) {
392        // Yes, this is accumulator recursion.  Remember which instruction
393        // accumulates.
394        AccumulatorRecursionInstr = BBI;
395      } else {
396        return false;   // Otherwise, we cannot eliminate the tail recursion!
397      }
398    }
399
400  // We can only transform call/return pairs that either ignore the return value
401  // of the call and return void, ignore the value of the call and return a
402  // constant, return the value returned by the tail call, or that are being
403  // accumulator recursion variable eliminated.
404  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
405      !isa<UndefValue>(Ret->getReturnValue()) &&
406      AccumulatorRecursionEliminationInitVal == 0 &&
407      !getCommonReturnValue(0, CI))
408    return false;
409
410  // OK! We can transform this tail call.  If this is the first one found,
411  // create the new entry block, allowing us to branch back to the old entry.
412  if (OldEntry == 0) {
413    OldEntry = &F->getEntryBlock();
414    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
415    NewEntry->takeName(OldEntry);
416    OldEntry->setName("tailrecurse");
417    BranchInst::Create(OldEntry, NewEntry);
418
419    // If this tail call is marked 'tail' and if there are any allocas in the
420    // entry block, move them up to the new entry block.
421    TailCallsAreMarkedTail = CI->isTailCall();
422    if (TailCallsAreMarkedTail)
423      // Move all fixed sized allocas from OldEntry to NewEntry.
424      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
425             NEBI = NewEntry->begin(); OEBI != E; )
426        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
427          if (isa<ConstantInt>(AI->getArraySize()))
428            AI->moveBefore(NEBI);
429
430    // Now that we have created a new block, which jumps to the entry
431    // block, insert a PHI node for each argument of the function.
432    // For now, we initialize each PHI to only have the real arguments
433    // which are passed in.
434    Instruction *InsertPos = OldEntry->begin();
435    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
436         I != E; ++I) {
437      PHINode *PN = PHINode::Create(I->getType(),
438                                    I->getName() + ".tr", InsertPos);
439      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
440      PN->addIncoming(I, NewEntry);
441      ArgumentPHIs.push_back(PN);
442    }
443  }
444
445  // If this function has self recursive calls in the tail position where some
446  // are marked tail and some are not, only transform one flavor or another.  We
447  // have to choose whether we move allocas in the entry block to the new entry
448  // block or not, so we can't make a good choice for both.  NOTE: We could do
449  // slightly better here in the case that the function has no entry block
450  // allocas.
451  if (TailCallsAreMarkedTail && !CI->isTailCall())
452    return false;
453
454  // Ok, now that we know we have a pseudo-entry block WITH all of the
455  // required PHI nodes, add entries into the PHI node for the actual
456  // parameters passed into the tail-recursive call.
457  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
458    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
459
460  // If we are introducing an accumulator variable to eliminate the recursion,
461  // do so now.  Note that we _know_ that no subsequent tail recursion
462  // eliminations will happen on this function because of the way the
463  // accumulator recursion predicate is set up.
464  //
465  if (AccumulatorRecursionEliminationInitVal) {
466    Instruction *AccRecInstr = AccumulatorRecursionInstr;
467    // Start by inserting a new PHI node for the accumulator.
468    PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
469                                     OldEntry->begin());
470
471    // Loop over all of the predecessors of the tail recursion block.  For the
472    // real entry into the function we seed the PHI with the initial value,
473    // computed earlier.  For any other existing branches to this block (due to
474    // other tail recursions eliminated) the accumulator is not modified.
475    // Because we haven't added the branch in the current block to OldEntry yet,
476    // it will not show up as a predecessor.
477    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
478         PI != PE; ++PI) {
479      BasicBlock *P = *PI;
480      if (P == &F->getEntryBlock())
481        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
482      else
483        AccPN->addIncoming(AccPN, P);
484    }
485
486    // Add an incoming argument for the current block, which is computed by our
487    // associative and commutative accumulator instruction.
488    AccPN->addIncoming(AccRecInstr, BB);
489
490    // Next, rewrite the accumulator recursion instruction so that it does not
491    // use the result of the call anymore, instead, use the PHI node we just
492    // inserted.
493    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
494
495    // Finally, rewrite any return instructions in the program to return the PHI
496    // node instead of the "initval" that they do currently.  This loop will
497    // actually rewrite the return value we are destroying, but that's ok.
498    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
499      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
500        RI->setOperand(0, AccPN);
501    ++NumAccumAdded;
502  }
503
504  // Now that all of the PHI nodes are in place, remove the call and
505  // ret instructions, replacing them with an unconditional branch.
506  BranchInst::Create(OldEntry, Ret);
507  BB->getInstList().erase(Ret);  // Remove return.
508  BB->getInstList().erase(CI);   // Remove call.
509  ++NumEliminated;
510  return true;
511}
512