TailRecursionElimination.cpp revision a94d6e87c4c49f2e81b01d66d8bfb591277f8f96
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/BasicBlockUtils.h"
56#include "llvm/Transforms/Utils/Local.h"
57#include "llvm/Constants.h"
58#include "llvm/DerivedTypes.h"
59#include "llvm/Function.h"
60#include "llvm/Instructions.h"
61#include "llvm/IntrinsicInst.h"
62#include "llvm/Module.h"
63#include "llvm/Pass.h"
64#include "llvm/Analysis/CaptureTracking.h"
65#include "llvm/Analysis/InlineCost.h"
66#include "llvm/Analysis/InstructionSimplify.h"
67#include "llvm/Analysis/Loads.h"
68#include "llvm/Support/CallSite.h"
69#include "llvm/Support/CFG.h"
70#include "llvm/Support/Debug.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/ADT/Statistic.h"
73#include "llvm/ADT/STLExtras.h"
74using namespace llvm;
75
76STATISTIC(NumEliminated, "Number of tail calls removed");
77STATISTIC(NumRetDuped,   "Number of return duplicated");
78STATISTIC(NumAccumAdded, "Number of accumulators introduced");
79
80namespace {
81  struct TailCallElim : public FunctionPass {
82    static char ID; // Pass identification, replacement for typeid
83    TailCallElim() : FunctionPass(ID) {
84      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
85    }
86
87    virtual bool runOnFunction(Function &F);
88
89  private:
90    CallInst *FindTRECandidate(Instruction *I,
91                               bool CannotTailCallElimCallsMarkedTail);
92    bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
93                                    BasicBlock *&OldEntry,
94                                    bool &TailCallsAreMarkedTail,
95                                    SmallVector<PHINode*, 8> &ArgumentPHIs,
96                                    bool CannotTailCallElimCallsMarkedTail);
97    bool FoldReturnAndProcessPred(BasicBlock *BB,
98                                  ReturnInst *Ret, BasicBlock *&OldEntry,
99                                  bool &TailCallsAreMarkedTail,
100                                  SmallVector<PHINode*, 8> &ArgumentPHIs,
101                                  bool CannotTailCallElimCallsMarkedTail);
102    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
103                               bool &TailCallsAreMarkedTail,
104                               SmallVector<PHINode*, 8> &ArgumentPHIs,
105                               bool CannotTailCallElimCallsMarkedTail);
106    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
107    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
108  };
109}
110
111char TailCallElim::ID = 0;
112INITIALIZE_PASS(TailCallElim, "tailcallelim",
113                "Tail Call Elimination", false, false)
114
115// Public interface to the TailCallElimination pass
116FunctionPass *llvm::createTailCallEliminationPass() {
117  return new TailCallElim();
118}
119
120/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
121/// callees of this function.  We only do very simple analysis right now, this
122/// could be expanded in the future to use mod/ref information for particular
123/// call sites if desired.
124static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
125  // FIXME: do simple 'address taken' analysis.
126  return true;
127}
128
129/// CheckForEscapingAllocas - Scan the specified basic block for alloca
130/// instructions.  If it contains any that might be accessed by calls, return
131/// true.
132static bool CheckForEscapingAllocas(BasicBlock *BB,
133                                    bool &CannotTCETailMarkedCall) {
134  bool RetVal = false;
135  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
136    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
137      RetVal |= AllocaMightEscapeToCalls(AI);
138
139      // If this alloca is in the body of the function, or if it is a variable
140      // sized allocation, we cannot tail call eliminate calls marked 'tail'
141      // with this mechanism.
142      if (BB != &BB->getParent()->getEntryBlock() ||
143          !isa<ConstantInt>(AI->getArraySize()))
144        CannotTCETailMarkedCall = true;
145    }
146  return RetVal;
147}
148
149bool TailCallElim::runOnFunction(Function &F) {
150  // If this function is a varargs function, we won't be able to PHI the args
151  // right, so don't even try to convert it...
152  if (F.getFunctionType()->isVarArg()) return false;
153
154  BasicBlock *OldEntry = 0;
155  bool TailCallsAreMarkedTail = false;
156  SmallVector<PHINode*, 8> ArgumentPHIs;
157  bool MadeChange = false;
158  bool FunctionContainsEscapingAllocas = false;
159
160  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
161  // marked with the 'tail' attribute, because doing so would cause the stack
162  // size to increase (real TCE would deallocate variable sized allocas, TCE
163  // doesn't).
164  bool CannotTCETailMarkedCall = false;
165
166  // Loop over the function, looking for any returning blocks, and keeping track
167  // of whether this function has any non-trivially used allocas.
168  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
169    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
170      break;
171
172    FunctionContainsEscapingAllocas |=
173      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
174  }
175
176  /// FIXME: The code generator produces really bad code when an 'escaping
177  /// alloca' is changed from being a static alloca to being a dynamic alloca.
178  /// Until this is resolved, disable this transformation if that would ever
179  /// happen.  This bug is PR962.
180  if (FunctionContainsEscapingAllocas)
181    return false;
182
183  // Second pass, change any tail calls to loops.
184  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
185    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
186      bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
187                                          ArgumentPHIs,CannotTCETailMarkedCall);
188      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
189        Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
190                                          TailCallsAreMarkedTail, ArgumentPHIs,
191                                          CannotTCETailMarkedCall);
192      MadeChange |= Change;
193    }
194  }
195
196  // If we eliminated any tail recursions, it's possible that we inserted some
197  // silly PHI nodes which just merge an initial value (the incoming operand)
198  // with themselves.  Check to see if we did and clean up our mess if so.  This
199  // occurs when a function passes an argument straight through to its tail
200  // call.
201  if (!ArgumentPHIs.empty()) {
202    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
203      PHINode *PN = ArgumentPHIs[i];
204
205      // If the PHI Node is a dynamic constant, replace it with the value it is.
206      if (Value *PNV = SimplifyInstruction(PN)) {
207        PN->replaceAllUsesWith(PNV);
208        PN->eraseFromParent();
209      }
210    }
211  }
212
213  // Finally, if this function contains no non-escaping allocas, or calls
214  // setjmp, mark all calls in the function as eligible for tail calls
215  //(there is no stack memory for them to access).
216  if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice())
217    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
218      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
219        if (CallInst *CI = dyn_cast<CallInst>(I)) {
220          CI->setTailCall();
221          MadeChange = true;
222        }
223
224  return MadeChange;
225}
226
227
228/// CanMoveAboveCall - Return true if it is safe to move the specified
229/// instruction from after the call to before the call, assuming that all
230/// instructions between the call and this instruction are movable.
231///
232bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
233  // FIXME: We can move load/store/call/free instructions above the call if the
234  // call does not mod/ref the memory location being processed.
235  if (I->mayHaveSideEffects())  // This also handles volatile loads.
236    return false;
237
238  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
239    // Loads may always be moved above calls without side effects.
240    if (CI->mayHaveSideEffects()) {
241      // Non-volatile loads may be moved above a call with side effects if it
242      // does not write to memory and the load provably won't trap.
243      // FIXME: Writes to memory only matter if they may alias the pointer
244      // being loaded from.
245      if (CI->mayWriteToMemory() ||
246          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
247                                       L->getAlignment()))
248        return false;
249    }
250  }
251
252  // Otherwise, if this is a side-effect free instruction, check to make sure
253  // that it does not use the return value of the call.  If it doesn't use the
254  // return value of the call, it must only use things that are defined before
255  // the call, or movable instructions between the call and the instruction
256  // itself.
257  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
258    if (I->getOperand(i) == CI)
259      return false;
260  return true;
261}
262
263// isDynamicConstant - Return true if the specified value is the same when the
264// return would exit as it was when the initial iteration of the recursive
265// function was executed.
266//
267// We currently handle static constants and arguments that are not modified as
268// part of the recursion.
269//
270static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
271  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
272
273  // Check to see if this is an immutable argument, if so, the value
274  // will be available to initialize the accumulator.
275  if (Argument *Arg = dyn_cast<Argument>(V)) {
276    // Figure out which argument number this is...
277    unsigned ArgNo = 0;
278    Function *F = CI->getParent()->getParent();
279    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
280      ++ArgNo;
281
282    // If we are passing this argument into call as the corresponding
283    // argument operand, then the argument is dynamically constant.
284    // Otherwise, we cannot transform this function safely.
285    if (CI->getArgOperand(ArgNo) == Arg)
286      return true;
287  }
288
289  // Switch cases are always constant integers. If the value is being switched
290  // on and the return is only reachable from one of its cases, it's
291  // effectively constant.
292  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
293    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
294      if (SI->getCondition() == V)
295        return SI->getDefaultDest() != RI->getParent();
296
297  // Not a constant or immutable argument, we can't safely transform.
298  return false;
299}
300
301// getCommonReturnValue - Check to see if the function containing the specified
302// tail call consistently returns the same runtime-constant value at all exit
303// points except for IgnoreRI.  If so, return the returned value.
304//
305static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
306  Function *F = CI->getParent()->getParent();
307  Value *ReturnedValue = 0;
308
309  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
310    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
311    if (RI == 0 || RI == IgnoreRI) continue;
312
313    // We can only perform this transformation if the value returned is
314    // evaluatable at the start of the initial invocation of the function,
315    // instead of at the end of the evaluation.
316    //
317    Value *RetOp = RI->getOperand(0);
318    if (!isDynamicConstant(RetOp, CI, RI))
319      return 0;
320
321    if (ReturnedValue && RetOp != ReturnedValue)
322      return 0;     // Cannot transform if differing values are returned.
323    ReturnedValue = RetOp;
324  }
325  return ReturnedValue;
326}
327
328/// CanTransformAccumulatorRecursion - If the specified instruction can be
329/// transformed using accumulator recursion elimination, return the constant
330/// which is the start of the accumulator value.  Otherwise return null.
331///
332Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
333                                                      CallInst *CI) {
334  if (!I->isAssociative() || !I->isCommutative()) return 0;
335  assert(I->getNumOperands() == 2 &&
336         "Associative/commutative operations should have 2 args!");
337
338  // Exactly one operand should be the result of the call instruction.
339  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
340      (I->getOperand(0) != CI && I->getOperand(1) != CI))
341    return 0;
342
343  // The only user of this instruction we allow is a single return instruction.
344  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
345    return 0;
346
347  // Ok, now we have to check all of the other return instructions in this
348  // function.  If they return non-constants or differing values, then we cannot
349  // transform the function safely.
350  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
351}
352
353static Instruction *FirstNonDbg(BasicBlock::iterator I) {
354  while (isa<DbgInfoIntrinsic>(I))
355    ++I;
356  return &*I;
357}
358
359CallInst*
360TailCallElim::FindTRECandidate(Instruction *TI,
361                               bool CannotTailCallElimCallsMarkedTail) {
362  BasicBlock *BB = TI->getParent();
363  Function *F = BB->getParent();
364
365  if (&BB->front() == TI) // Make sure there is something before the terminator.
366    return 0;
367
368  // Scan backwards from the return, checking to see if there is a tail call in
369  // this block.  If so, set CI to it.
370  CallInst *CI = 0;
371  BasicBlock::iterator BBI = TI;
372  while (true) {
373    CI = dyn_cast<CallInst>(BBI);
374    if (CI && CI->getCalledFunction() == F)
375      break;
376
377    if (BBI == BB->begin())
378      return 0;          // Didn't find a potential tail call.
379    --BBI;
380  }
381
382  // If this call is marked as a tail call, and if there are dynamic allocas in
383  // the function, we cannot perform this optimization.
384  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
385    return 0;
386
387  // As a special case, detect code like this:
388  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
389  // and disable this xform in this case, because the code generator will
390  // lower the call to fabs into inline code.
391  if (BB == &F->getEntryBlock() &&
392      FirstNonDbg(BB->front()) == CI &&
393      FirstNonDbg(llvm::next(BB->begin())) == TI &&
394      callIsSmall(CI)) {
395    // A single-block function with just a call and a return. Check that
396    // the arguments match.
397    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
398                           E = CallSite(CI).arg_end();
399    Function::arg_iterator FI = F->arg_begin(),
400                           FE = F->arg_end();
401    for (; I != E && FI != FE; ++I, ++FI)
402      if (*I != &*FI) break;
403    if (I == E && FI == FE)
404      return 0;
405  }
406
407  return CI;
408}
409
410bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
411                                       BasicBlock *&OldEntry,
412                                       bool &TailCallsAreMarkedTail,
413                                       SmallVector<PHINode*, 8> &ArgumentPHIs,
414                                       bool CannotTailCallElimCallsMarkedTail) {
415  // If we are introducing accumulator recursion to eliminate operations after
416  // the call instruction that are both associative and commutative, the initial
417  // value for the accumulator is placed in this variable.  If this value is set
418  // then we actually perform accumulator recursion elimination instead of
419  // simple tail recursion elimination.  If the operation is an LLVM instruction
420  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
421  // we are handling the case when the return instruction returns a constant C
422  // which is different to the constant returned by other return instructions
423  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
424  // special case of accumulator recursion, the operation being "return C".
425  Value *AccumulatorRecursionEliminationInitVal = 0;
426  Instruction *AccumulatorRecursionInstr = 0;
427
428  // Ok, we found a potential tail call.  We can currently only transform the
429  // tail call if all of the instructions between the call and the return are
430  // movable to above the call itself, leaving the call next to the return.
431  // Check that this is the case now.
432  BasicBlock::iterator BBI = CI;
433  for (++BBI; &*BBI != Ret; ++BBI) {
434    if (CanMoveAboveCall(BBI, CI)) continue;
435
436    // If we can't move the instruction above the call, it might be because it
437    // is an associative and commutative operation that could be transformed
438    // using accumulator recursion elimination.  Check to see if this is the
439    // case, and if so, remember the initial accumulator value for later.
440    if ((AccumulatorRecursionEliminationInitVal =
441                           CanTransformAccumulatorRecursion(BBI, CI))) {
442      // Yes, this is accumulator recursion.  Remember which instruction
443      // accumulates.
444      AccumulatorRecursionInstr = BBI;
445    } else {
446      return false;   // Otherwise, we cannot eliminate the tail recursion!
447    }
448  }
449
450  // We can only transform call/return pairs that either ignore the return value
451  // of the call and return void, ignore the value of the call and return a
452  // constant, return the value returned by the tail call, or that are being
453  // accumulator recursion variable eliminated.
454  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
455      !isa<UndefValue>(Ret->getReturnValue()) &&
456      AccumulatorRecursionEliminationInitVal == 0 &&
457      !getCommonReturnValue(0, CI)) {
458    // One case remains that we are able to handle: the current return
459    // instruction returns a constant, and all other return instructions
460    // return a different constant.
461    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
462      return false; // Current return instruction does not return a constant.
463    // Check that all other return instructions return a common constant.  If
464    // so, record it in AccumulatorRecursionEliminationInitVal.
465    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
466    if (!AccumulatorRecursionEliminationInitVal)
467      return false;
468  }
469
470  BasicBlock *BB = Ret->getParent();
471  Function *F = BB->getParent();
472
473  // OK! We can transform this tail call.  If this is the first one found,
474  // create the new entry block, allowing us to branch back to the old entry.
475  if (OldEntry == 0) {
476    OldEntry = &F->getEntryBlock();
477    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
478    NewEntry->takeName(OldEntry);
479    OldEntry->setName("tailrecurse");
480    BranchInst::Create(OldEntry, NewEntry);
481
482    // If this tail call is marked 'tail' and if there are any allocas in the
483    // entry block, move them up to the new entry block.
484    TailCallsAreMarkedTail = CI->isTailCall();
485    if (TailCallsAreMarkedTail)
486      // Move all fixed sized allocas from OldEntry to NewEntry.
487      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
488             NEBI = NewEntry->begin(); OEBI != E; )
489        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
490          if (isa<ConstantInt>(AI->getArraySize()))
491            AI->moveBefore(NEBI);
492
493    // Now that we have created a new block, which jumps to the entry
494    // block, insert a PHI node for each argument of the function.
495    // For now, we initialize each PHI to only have the real arguments
496    // which are passed in.
497    Instruction *InsertPos = OldEntry->begin();
498    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
499         I != E; ++I) {
500      PHINode *PN = PHINode::Create(I->getType(), 2,
501                                    I->getName() + ".tr", InsertPos);
502      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
503      PN->addIncoming(I, NewEntry);
504      ArgumentPHIs.push_back(PN);
505    }
506  }
507
508  // If this function has self recursive calls in the tail position where some
509  // are marked tail and some are not, only transform one flavor or another.  We
510  // have to choose whether we move allocas in the entry block to the new entry
511  // block or not, so we can't make a good choice for both.  NOTE: We could do
512  // slightly better here in the case that the function has no entry block
513  // allocas.
514  if (TailCallsAreMarkedTail && !CI->isTailCall())
515    return false;
516
517  // Ok, now that we know we have a pseudo-entry block WITH all of the
518  // required PHI nodes, add entries into the PHI node for the actual
519  // parameters passed into the tail-recursive call.
520  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
521    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
522
523  // If we are introducing an accumulator variable to eliminate the recursion,
524  // do so now.  Note that we _know_ that no subsequent tail recursion
525  // eliminations will happen on this function because of the way the
526  // accumulator recursion predicate is set up.
527  //
528  if (AccumulatorRecursionEliminationInitVal) {
529    Instruction *AccRecInstr = AccumulatorRecursionInstr;
530    // Start by inserting a new PHI node for the accumulator.
531    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
532    PHINode *AccPN =
533      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
534                      std::distance(PB, PE) + 1,
535                      "accumulator.tr", OldEntry->begin());
536
537    // Loop over all of the predecessors of the tail recursion block.  For the
538    // real entry into the function we seed the PHI with the initial value,
539    // computed earlier.  For any other existing branches to this block (due to
540    // other tail recursions eliminated) the accumulator is not modified.
541    // Because we haven't added the branch in the current block to OldEntry yet,
542    // it will not show up as a predecessor.
543    for (pred_iterator PI = PB; PI != PE; ++PI) {
544      BasicBlock *P = *PI;
545      if (P == &F->getEntryBlock())
546        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
547      else
548        AccPN->addIncoming(AccPN, P);
549    }
550
551    if (AccRecInstr) {
552      // Add an incoming argument for the current block, which is computed by
553      // our associative and commutative accumulator instruction.
554      AccPN->addIncoming(AccRecInstr, BB);
555
556      // Next, rewrite the accumulator recursion instruction so that it does not
557      // use the result of the call anymore, instead, use the PHI node we just
558      // inserted.
559      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
560    } else {
561      // Add an incoming argument for the current block, which is just the
562      // constant returned by the current return instruction.
563      AccPN->addIncoming(Ret->getReturnValue(), BB);
564    }
565
566    // Finally, rewrite any return instructions in the program to return the PHI
567    // node instead of the "initval" that they do currently.  This loop will
568    // actually rewrite the return value we are destroying, but that's ok.
569    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
570      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
571        RI->setOperand(0, AccPN);
572    ++NumAccumAdded;
573  }
574
575  // Now that all of the PHI nodes are in place, remove the call and
576  // ret instructions, replacing them with an unconditional branch.
577  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
578  NewBI->setDebugLoc(CI->getDebugLoc());
579
580  BB->getInstList().erase(Ret);  // Remove return.
581  BB->getInstList().erase(CI);   // Remove call.
582  ++NumEliminated;
583  return true;
584}
585
586bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
587                                       ReturnInst *Ret, BasicBlock *&OldEntry,
588                                       bool &TailCallsAreMarkedTail,
589                                       SmallVector<PHINode*, 8> &ArgumentPHIs,
590                                       bool CannotTailCallElimCallsMarkedTail) {
591  bool Change = false;
592
593  // If the return block contains nothing but the return and PHI's,
594  // there might be an opportunity to duplicate the return in its
595  // predecessors and perform TRC there. Look for predecessors that end
596  // in unconditional branch and recursive call(s).
597  SmallVector<BranchInst*, 8> UncondBranchPreds;
598  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
599    BasicBlock *Pred = *PI;
600    TerminatorInst *PTI = Pred->getTerminator();
601    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
602      if (BI->isUnconditional())
603        UncondBranchPreds.push_back(BI);
604  }
605
606  while (!UncondBranchPreds.empty()) {
607    BranchInst *BI = UncondBranchPreds.pop_back_val();
608    BasicBlock *Pred = BI->getParent();
609    if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
610      DEBUG(dbgs() << "FOLDING: " << *BB
611            << "INTO UNCOND BRANCH PRED: " << *Pred);
612      EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
613                                 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
614                                 CannotTailCallElimCallsMarkedTail);
615      ++NumRetDuped;
616      Change = true;
617    }
618  }
619
620  return Change;
621}
622
623bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
624                                         bool &TailCallsAreMarkedTail,
625                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
626                                       bool CannotTailCallElimCallsMarkedTail) {
627  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
628  if (!CI)
629    return false;
630
631  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
632                                    ArgumentPHIs,
633                                    CannotTailCallElimCallsMarkedTail);
634}
635