TailRecursionElimination.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative expression to use an accumulator variable,
20//     thus compiling the typical naive factorial or 'fib' implementation into
21//     efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access theier caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar.h"
54#include "llvm/Constants.h"
55#include "llvm/DerivedTypes.h"
56#include "llvm/Function.h"
57#include "llvm/Instructions.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CFG.h"
60#include "llvm/ADT/Statistic.h"
61using namespace llvm;
62
63namespace {
64  Statistic NumEliminated("tailcallelim", "Number of tail calls removed");
65  Statistic NumAccumAdded("tailcallelim","Number of accumulators introduced");
66
67  struct TailCallElim : public FunctionPass {
68    virtual bool runOnFunction(Function &F);
69
70  private:
71    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
72                               bool &TailCallsAreMarkedTail,
73                               std::vector<PHINode*> &ArgumentPHIs,
74                               bool CannotTailCallElimCallsMarkedTail);
75    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
76    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
77  };
78  RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
79}
80
81// Public interface to the TailCallElimination pass
82FunctionPass *llvm::createTailCallEliminationPass() {
83  return new TailCallElim();
84}
85
86
87/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
88/// callees of this function.  We only do very simple analysis right now, this
89/// could be expanded in the future to use mod/ref information for particular
90/// call sites if desired.
91static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
92  // FIXME: do simple 'address taken' analysis.
93  return true;
94}
95
96/// FunctionContainsAllocas - Scan the specified basic block for alloca
97/// instructions.  If it contains any that might be accessed by calls, return
98/// true.
99static bool CheckForEscapingAllocas(BasicBlock *BB,
100                                    bool &CannotTCETailMarkedCall) {
101  bool RetVal = false;
102  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
103    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
104      RetVal |= AllocaMightEscapeToCalls(AI);
105
106      // If this alloca is in the body of the function, or if it is a variable
107      // sized allocation, we cannot tail call eliminate calls marked 'tail'
108      // with this mechanism.
109      if (BB != &BB->getParent()->front() ||
110          !isa<ConstantInt>(AI->getArraySize()))
111        CannotTCETailMarkedCall = true;
112    }
113  return RetVal;
114}
115
116bool TailCallElim::runOnFunction(Function &F) {
117  // If this function is a varargs function, we won't be able to PHI the args
118  // right, so don't even try to convert it...
119  if (F.getFunctionType()->isVarArg()) return false;
120
121  BasicBlock *OldEntry = 0;
122  bool TailCallsAreMarkedTail = false;
123  std::vector<PHINode*> ArgumentPHIs;
124  bool MadeChange = false;
125
126  bool FunctionContainsEscapingAllocas = false;
127
128  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
129  // marked with the 'tail' attribute, because doing so would cause the stack
130  // size to increase (real TCE would deallocate variable sized allocas, TCE
131  // doesn't).
132  bool CannotTCETailMarkedCall = false;
133
134  // Loop over the function, looking for any returning blocks, and keeping track
135  // of whether this function has any non-trivially used allocas.
136  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
137    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
138      break;
139
140    FunctionContainsEscapingAllocas |=
141      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
142  }
143
144  /// FIXME: The code generator produces really bad code when an 'escaping
145  /// alloca' is changed from being a static alloca to being a dynamic alloca.
146  /// Until this is resolved, disable this transformation if that would ever
147  /// happen.  This bug is PR962.
148  if (FunctionContainsEscapingAllocas)
149    return false;
150
151
152  // Second pass, change any tail calls to loops.
153  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
154    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
155      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
156                                          ArgumentPHIs,CannotTCETailMarkedCall);
157
158  // If we eliminated any tail recursions, it's possible that we inserted some
159  // silly PHI nodes which just merge an initial value (the incoming operand)
160  // with themselves.  Check to see if we did and clean up our mess if so.  This
161  // occurs when a function passes an argument straight through to its tail
162  // call.
163  if (!ArgumentPHIs.empty()) {
164    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
165      PHINode *PN = ArgumentPHIs[i];
166
167      // If the PHI Node is a dynamic constant, replace it with the value it is.
168      if (Value *PNV = PN->hasConstantValue()) {
169        PN->replaceAllUsesWith(PNV);
170        PN->eraseFromParent();
171      }
172    }
173  }
174
175  // Finally, if this function contains no non-escaping allocas, mark all calls
176  // in the function as eligible for tail calls (there is no stack memory for
177  // them to access).
178  if (!FunctionContainsEscapingAllocas)
179    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
180      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
181        if (CallInst *CI = dyn_cast<CallInst>(I))
182          CI->setTailCall();
183
184  return MadeChange;
185}
186
187
188/// CanMoveAboveCall - Return true if it is safe to move the specified
189/// instruction from after the call to before the call, assuming that all
190/// instructions between the call and this instruction are movable.
191///
192bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
193  // FIXME: We can move load/store/call/free instructions above the call if the
194  // call does not mod/ref the memory location being processed.
195  if (I->mayWriteToMemory() || isa<LoadInst>(I))
196    return false;
197
198  // Otherwise, if this is a side-effect free instruction, check to make sure
199  // that it does not use the return value of the call.  If it doesn't use the
200  // return value of the call, it must only use things that are defined before
201  // the call, or movable instructions between the call and the instruction
202  // itself.
203  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
204    if (I->getOperand(i) == CI)
205      return false;
206  return true;
207}
208
209// isDynamicConstant - Return true if the specified value is the same when the
210// return would exit as it was when the initial iteration of the recursive
211// function was executed.
212//
213// We currently handle static constants and arguments that are not modified as
214// part of the recursion.
215//
216static bool isDynamicConstant(Value *V, CallInst *CI) {
217  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
218
219  // Check to see if this is an immutable argument, if so, the value
220  // will be available to initialize the accumulator.
221  if (Argument *Arg = dyn_cast<Argument>(V)) {
222    // Figure out which argument number this is...
223    unsigned ArgNo = 0;
224    Function *F = CI->getParent()->getParent();
225    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
226      ++ArgNo;
227
228    // If we are passing this argument into call as the corresponding
229    // argument operand, then the argument is dynamically constant.
230    // Otherwise, we cannot transform this function safely.
231    if (CI->getOperand(ArgNo+1) == Arg)
232      return true;
233  }
234  // Not a constant or immutable argument, we can't safely transform.
235  return false;
236}
237
238// getCommonReturnValue - Check to see if the function containing the specified
239// return instruction and tail call consistently returns the same
240// runtime-constant value at all exit points.  If so, return the returned value.
241//
242static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
243  Function *F = TheRI->getParent()->getParent();
244  Value *ReturnedValue = 0;
245
246  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
247    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
248      if (RI != TheRI) {
249        Value *RetOp = RI->getOperand(0);
250
251        // We can only perform this transformation if the value returned is
252        // evaluatable at the start of the initial invocation of the function,
253        // instead of at the end of the evaluation.
254        //
255        if (!isDynamicConstant(RetOp, CI))
256          return 0;
257
258        if (ReturnedValue && RetOp != ReturnedValue)
259          return 0;     // Cannot transform if differing values are returned.
260        ReturnedValue = RetOp;
261      }
262  return ReturnedValue;
263}
264
265/// CanTransformAccumulatorRecursion - If the specified instruction can be
266/// transformed using accumulator recursion elimination, return the constant
267/// which is the start of the accumulator value.  Otherwise return null.
268///
269Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
270                                                      CallInst *CI) {
271  if (!I->isAssociative()) return 0;
272  assert(I->getNumOperands() == 2 &&
273         "Associative operations should have 2 args!");
274
275  // Exactly one operand should be the result of the call instruction...
276  if (I->getOperand(0) == CI && I->getOperand(1) == CI ||
277      I->getOperand(0) != CI && I->getOperand(1) != CI)
278    return 0;
279
280  // The only user of this instruction we allow is a single return instruction.
281  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
282    return 0;
283
284  // Ok, now we have to check all of the other return instructions in this
285  // function.  If they return non-constants or differing values, then we cannot
286  // transform the function safely.
287  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
288}
289
290bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
291                                         bool &TailCallsAreMarkedTail,
292                                         std::vector<PHINode*> &ArgumentPHIs,
293                                       bool CannotTailCallElimCallsMarkedTail) {
294  BasicBlock *BB = Ret->getParent();
295  Function *F = BB->getParent();
296
297  if (&BB->front() == Ret) // Make sure there is something before the ret...
298    return false;
299
300  // Scan backwards from the return, checking to see if there is a tail call in
301  // this block.  If so, set CI to it.
302  CallInst *CI;
303  BasicBlock::iterator BBI = Ret;
304  while (1) {
305    CI = dyn_cast<CallInst>(BBI);
306    if (CI && CI->getCalledFunction() == F)
307      break;
308
309    if (BBI == BB->begin())
310      return false;          // Didn't find a potential tail call.
311    --BBI;
312  }
313
314  // If this call is marked as a tail call, and if there are dynamic allocas in
315  // the function, we cannot perform this optimization.
316  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
317    return false;
318
319  // If we are introducing accumulator recursion to eliminate associative
320  // operations after the call instruction, this variable contains the initial
321  // value for the accumulator.  If this value is set, we actually perform
322  // accumulator recursion elimination instead of simple tail recursion
323  // elimination.
324  Value *AccumulatorRecursionEliminationInitVal = 0;
325  Instruction *AccumulatorRecursionInstr = 0;
326
327  // Ok, we found a potential tail call.  We can currently only transform the
328  // tail call if all of the instructions between the call and the return are
329  // movable to above the call itself, leaving the call next to the return.
330  // Check that this is the case now.
331  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
332    if (!CanMoveAboveCall(BBI, CI)) {
333      // If we can't move the instruction above the call, it might be because it
334      // is an associative operation that could be tranformed using accumulator
335      // recursion elimination.  Check to see if this is the case, and if so,
336      // remember the initial accumulator value for later.
337      if ((AccumulatorRecursionEliminationInitVal =
338                             CanTransformAccumulatorRecursion(BBI, CI))) {
339        // Yes, this is accumulator recursion.  Remember which instruction
340        // accumulates.
341        AccumulatorRecursionInstr = BBI;
342      } else {
343        return false;   // Otherwise, we cannot eliminate the tail recursion!
344      }
345    }
346
347  // We can only transform call/return pairs that either ignore the return value
348  // of the call and return void, ignore the value of the call and return a
349  // constant, return the value returned by the tail call, or that are being
350  // accumulator recursion variable eliminated.
351  if (Ret->getNumOperands() != 0 && Ret->getReturnValue() != CI &&
352      !isa<UndefValue>(Ret->getReturnValue()) &&
353      AccumulatorRecursionEliminationInitVal == 0 &&
354      !getCommonReturnValue(Ret, CI))
355    return false;
356
357  // OK! We can transform this tail call.  If this is the first one found,
358  // create the new entry block, allowing us to branch back to the old entry.
359  if (OldEntry == 0) {
360    OldEntry = &F->getEntryBlock();
361    std::string OldName = OldEntry->getName(); OldEntry->setName("tailrecurse");
362    BasicBlock *NewEntry = new BasicBlock(OldName, F, OldEntry);
363    new BranchInst(OldEntry, NewEntry);
364
365    // If this tail call is marked 'tail' and if there are any allocas in the
366    // entry block, move them up to the new entry block.
367    TailCallsAreMarkedTail = CI->isTailCall();
368    if (TailCallsAreMarkedTail)
369      // Move all fixed sized allocas from OldEntry to NewEntry.
370      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
371             NEBI = NewEntry->begin(); OEBI != E; )
372        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
373          if (isa<ConstantInt>(AI->getArraySize()))
374            AI->moveBefore(NEBI);
375
376    // Now that we have created a new block, which jumps to the entry
377    // block, insert a PHI node for each argument of the function.
378    // For now, we initialize each PHI to only have the real arguments
379    // which are passed in.
380    Instruction *InsertPos = OldEntry->begin();
381    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
382         I != E; ++I) {
383      PHINode *PN = new PHINode(I->getType(), I->getName()+".tr", InsertPos);
384      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
385      PN->addIncoming(I, NewEntry);
386      ArgumentPHIs.push_back(PN);
387    }
388  }
389
390  // If this function has self recursive calls in the tail position where some
391  // are marked tail and some are not, only transform one flavor or another.  We
392  // have to choose whether we move allocas in the entry block to the new entry
393  // block or not, so we can't make a good choice for both.  NOTE: We could do
394  // slightly better here in the case that the function has no entry block
395  // allocas.
396  if (TailCallsAreMarkedTail && !CI->isTailCall())
397    return false;
398
399  // Ok, now that we know we have a pseudo-entry block WITH all of the
400  // required PHI nodes, add entries into the PHI node for the actual
401  // parameters passed into the tail-recursive call.
402  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
403    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
404
405  // If we are introducing an accumulator variable to eliminate the recursion,
406  // do so now.  Note that we _know_ that no subsequent tail recursion
407  // eliminations will happen on this function because of the way the
408  // accumulator recursion predicate is set up.
409  //
410  if (AccumulatorRecursionEliminationInitVal) {
411    Instruction *AccRecInstr = AccumulatorRecursionInstr;
412    // Start by inserting a new PHI node for the accumulator.
413    PHINode *AccPN = new PHINode(AccRecInstr->getType(), "accumulator.tr",
414                                 OldEntry->begin());
415
416    // Loop over all of the predecessors of the tail recursion block.  For the
417    // real entry into the function we seed the PHI with the initial value,
418    // computed earlier.  For any other existing branches to this block (due to
419    // other tail recursions eliminated) the accumulator is not modified.
420    // Because we haven't added the branch in the current block to OldEntry yet,
421    // it will not show up as a predecessor.
422    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
423         PI != PE; ++PI) {
424      if (*PI == &F->getEntryBlock())
425        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
426      else
427        AccPN->addIncoming(AccPN, *PI);
428    }
429
430    // Add an incoming argument for the current block, which is computed by our
431    // associative accumulator instruction.
432    AccPN->addIncoming(AccRecInstr, BB);
433
434    // Next, rewrite the accumulator recursion instruction so that it does not
435    // use the result of the call anymore, instead, use the PHI node we just
436    // inserted.
437    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
438
439    // Finally, rewrite any return instructions in the program to return the PHI
440    // node instead of the "initval" that they do currently.  This loop will
441    // actually rewrite the return value we are destroying, but that's ok.
442    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
443      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
444        RI->setOperand(0, AccPN);
445    ++NumAccumAdded;
446  }
447
448  // Now that all of the PHI nodes are in place, remove the call and
449  // ret instructions, replacing them with an unconditional branch.
450  new BranchInst(OldEntry, Ret);
451  BB->getInstList().erase(Ret);  // Remove return.
452  BB->getInstList().erase(CI);   // Remove call.
453  ++NumEliminated;
454  return true;
455}
456