TailRecursionElimination.cpp revision b5d84d13bc338efc4eeed87d19c49dfaed38e036
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Constants.h"
57#include "llvm/DerivedTypes.h"
58#include "llvm/Function.h"
59#include "llvm/Instructions.h"
60#include "llvm/Pass.h"
61#include "llvm/Analysis/CaptureTracking.h"
62#include "llvm/Analysis/InlineCost.h"
63#include "llvm/Analysis/Loads.h"
64#include "llvm/Support/CallSite.h"
65#include "llvm/Support/CFG.h"
66#include "llvm/ADT/Statistic.h"
67using namespace llvm;
68
69STATISTIC(NumEliminated, "Number of tail calls removed");
70STATISTIC(NumAccumAdded, "Number of accumulators introduced");
71
72namespace {
73  struct TailCallElim : public FunctionPass {
74    static char ID; // Pass identification, replacement for typeid
75    TailCallElim() : FunctionPass(ID) {}
76
77    virtual bool runOnFunction(Function &F);
78
79  private:
80    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
81                               bool &TailCallsAreMarkedTail,
82                               SmallVector<PHINode*, 8> &ArgumentPHIs,
83                               bool CannotTailCallElimCallsMarkedTail);
84    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
85    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
86  };
87}
88
89char TailCallElim::ID = 0;
90INITIALIZE_PASS(TailCallElim, "tailcallelim",
91                "Tail Call Elimination", false, false);
92
93// Public interface to the TailCallElimination pass
94FunctionPass *llvm::createTailCallEliminationPass() {
95  return new TailCallElim();
96}
97
98/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
99/// callees of this function.  We only do very simple analysis right now, this
100/// could be expanded in the future to use mod/ref information for particular
101/// call sites if desired.
102static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
103  // FIXME: do simple 'address taken' analysis.
104  return true;
105}
106
107/// CheckForEscapingAllocas - Scan the specified basic block for alloca
108/// instructions.  If it contains any that might be accessed by calls, return
109/// true.
110static bool CheckForEscapingAllocas(BasicBlock *BB,
111                                    bool &CannotTCETailMarkedCall) {
112  bool RetVal = false;
113  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
114    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
115      RetVal |= AllocaMightEscapeToCalls(AI);
116
117      // If this alloca is in the body of the function, or if it is a variable
118      // sized allocation, we cannot tail call eliminate calls marked 'tail'
119      // with this mechanism.
120      if (BB != &BB->getParent()->getEntryBlock() ||
121          !isa<ConstantInt>(AI->getArraySize()))
122        CannotTCETailMarkedCall = true;
123    }
124  return RetVal;
125}
126
127bool TailCallElim::runOnFunction(Function &F) {
128  // If this function is a varargs function, we won't be able to PHI the args
129  // right, so don't even try to convert it...
130  if (F.getFunctionType()->isVarArg()) return false;
131
132  BasicBlock *OldEntry = 0;
133  bool TailCallsAreMarkedTail = false;
134  SmallVector<PHINode*, 8> ArgumentPHIs;
135  bool MadeChange = false;
136
137  bool FunctionContainsEscapingAllocas = false;
138
139  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
140  // marked with the 'tail' attribute, because doing so would cause the stack
141  // size to increase (real TCE would deallocate variable sized allocas, TCE
142  // doesn't).
143  bool CannotTCETailMarkedCall = false;
144
145  // Loop over the function, looking for any returning blocks, and keeping track
146  // of whether this function has any non-trivially used allocas.
147  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
148    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
149      break;
150
151    FunctionContainsEscapingAllocas |=
152      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
153  }
154
155  /// FIXME: The code generator produces really bad code when an 'escaping
156  /// alloca' is changed from being a static alloca to being a dynamic alloca.
157  /// Until this is resolved, disable this transformation if that would ever
158  /// happen.  This bug is PR962.
159  if (FunctionContainsEscapingAllocas)
160    return false;
161
162  // Second pass, change any tail calls to loops.
163  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
164    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
165      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
166                                          ArgumentPHIs,CannotTCETailMarkedCall);
167
168  // If we eliminated any tail recursions, it's possible that we inserted some
169  // silly PHI nodes which just merge an initial value (the incoming operand)
170  // with themselves.  Check to see if we did and clean up our mess if so.  This
171  // occurs when a function passes an argument straight through to its tail
172  // call.
173  if (!ArgumentPHIs.empty()) {
174    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
175      PHINode *PN = ArgumentPHIs[i];
176
177      // If the PHI Node is a dynamic constant, replace it with the value it is.
178      if (Value *PNV = PN->hasConstantValue()) {
179        PN->replaceAllUsesWith(PNV);
180        PN->eraseFromParent();
181      }
182    }
183  }
184
185  // Finally, if this function contains no non-escaping allocas, mark all calls
186  // in the function as eligible for tail calls (there is no stack memory for
187  // them to access).
188  if (!FunctionContainsEscapingAllocas)
189    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
190      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
191        if (CallInst *CI = dyn_cast<CallInst>(I)) {
192          CI->setTailCall();
193          MadeChange = true;
194        }
195
196  return MadeChange;
197}
198
199
200/// CanMoveAboveCall - Return true if it is safe to move the specified
201/// instruction from after the call to before the call, assuming that all
202/// instructions between the call and this instruction are movable.
203///
204bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
205  // FIXME: We can move load/store/call/free instructions above the call if the
206  // call does not mod/ref the memory location being processed.
207  if (I->mayHaveSideEffects())  // This also handles volatile loads.
208    return false;
209
210  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
211    // Loads may always be moved above calls without side effects.
212    if (CI->mayHaveSideEffects()) {
213      // Non-volatile loads may be moved above a call with side effects if it
214      // does not write to memory and the load provably won't trap.
215      // FIXME: Writes to memory only matter if they may alias the pointer
216      // being loaded from.
217      if (CI->mayWriteToMemory() ||
218          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
219                                       L->getAlignment()))
220        return false;
221    }
222  }
223
224  // Otherwise, if this is a side-effect free instruction, check to make sure
225  // that it does not use the return value of the call.  If it doesn't use the
226  // return value of the call, it must only use things that are defined before
227  // the call, or movable instructions between the call and the instruction
228  // itself.
229  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
230    if (I->getOperand(i) == CI)
231      return false;
232  return true;
233}
234
235// isDynamicConstant - Return true if the specified value is the same when the
236// return would exit as it was when the initial iteration of the recursive
237// function was executed.
238//
239// We currently handle static constants and arguments that are not modified as
240// part of the recursion.
241//
242static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
243  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
244
245  // Check to see if this is an immutable argument, if so, the value
246  // will be available to initialize the accumulator.
247  if (Argument *Arg = dyn_cast<Argument>(V)) {
248    // Figure out which argument number this is...
249    unsigned ArgNo = 0;
250    Function *F = CI->getParent()->getParent();
251    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
252      ++ArgNo;
253
254    // If we are passing this argument into call as the corresponding
255    // argument operand, then the argument is dynamically constant.
256    // Otherwise, we cannot transform this function safely.
257    if (CI->getArgOperand(ArgNo) == Arg)
258      return true;
259  }
260
261  // Switch cases are always constant integers. If the value is being switched
262  // on and the return is only reachable from one of its cases, it's
263  // effectively constant.
264  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
265    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
266      if (SI->getCondition() == V)
267        return SI->getDefaultDest() != RI->getParent();
268
269  // Not a constant or immutable argument, we can't safely transform.
270  return false;
271}
272
273// getCommonReturnValue - Check to see if the function containing the specified
274// tail call consistently returns the same runtime-constant value at all exit
275// points except for IgnoreRI.  If so, return the returned value.
276//
277static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
278  Function *F = CI->getParent()->getParent();
279  Value *ReturnedValue = 0;
280
281  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
282    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
283    if (RI == 0 || RI == IgnoreRI) continue;
284
285    // We can only perform this transformation if the value returned is
286    // evaluatable at the start of the initial invocation of the function,
287    // instead of at the end of the evaluation.
288    //
289    Value *RetOp = RI->getOperand(0);
290    if (!isDynamicConstant(RetOp, CI, RI))
291      return 0;
292
293    if (ReturnedValue && RetOp != ReturnedValue)
294      return 0;     // Cannot transform if differing values are returned.
295    ReturnedValue = RetOp;
296  }
297  return ReturnedValue;
298}
299
300/// CanTransformAccumulatorRecursion - If the specified instruction can be
301/// transformed using accumulator recursion elimination, return the constant
302/// which is the start of the accumulator value.  Otherwise return null.
303///
304Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
305                                                      CallInst *CI) {
306  if (!I->isAssociative() || !I->isCommutative()) return 0;
307  assert(I->getNumOperands() == 2 &&
308         "Associative/commutative operations should have 2 args!");
309
310  // Exactly one operand should be the result of the call instruction.
311  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
312      (I->getOperand(0) != CI && I->getOperand(1) != CI))
313    return 0;
314
315  // The only user of this instruction we allow is a single return instruction.
316  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
317    return 0;
318
319  // Ok, now we have to check all of the other return instructions in this
320  // function.  If they return non-constants or differing values, then we cannot
321  // transform the function safely.
322  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
323}
324
325bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
326                                         bool &TailCallsAreMarkedTail,
327                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
328                                       bool CannotTailCallElimCallsMarkedTail) {
329  BasicBlock *BB = Ret->getParent();
330  Function *F = BB->getParent();
331
332  if (&BB->front() == Ret) // Make sure there is something before the ret...
333    return false;
334
335  // Scan backwards from the return, checking to see if there is a tail call in
336  // this block.  If so, set CI to it.
337  CallInst *CI;
338  BasicBlock::iterator BBI = Ret;
339  while (1) {
340    CI = dyn_cast<CallInst>(BBI);
341    if (CI && CI->getCalledFunction() == F)
342      break;
343
344    if (BBI == BB->begin())
345      return false;          // Didn't find a potential tail call.
346    --BBI;
347  }
348
349  // If this call is marked as a tail call, and if there are dynamic allocas in
350  // the function, we cannot perform this optimization.
351  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
352    return false;
353
354  // As a special case, detect code like this:
355  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
356  // and disable this xform in this case, because the code generator will
357  // lower the call to fabs into inline code.
358  if (BB == &F->getEntryBlock() &&
359      &BB->front() == CI && &*++BB->begin() == Ret &&
360      callIsSmall(F)) {
361    // A single-block function with just a call and a return. Check that
362    // the arguments match.
363    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
364                           E = CallSite(CI).arg_end();
365    Function::arg_iterator FI = F->arg_begin(),
366                           FE = F->arg_end();
367    for (; I != E && FI != FE; ++I, ++FI)
368      if (*I != &*FI) break;
369    if (I == E && FI == FE)
370      return false;
371  }
372
373  // If we are introducing accumulator recursion to eliminate operations after
374  // the call instruction that are both associative and commutative, the initial
375  // value for the accumulator is placed in this variable.  If this value is set
376  // then we actually perform accumulator recursion elimination instead of
377  // simple tail recursion elimination.  If the operation is an LLVM instruction
378  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
379  // we are handling the case when the return instruction returns a constant C
380  // which is different to the constant returned by other return instructions
381  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
382  // special case of accumulator recursion, the operation being "return C".
383  Value *AccumulatorRecursionEliminationInitVal = 0;
384  Instruction *AccumulatorRecursionInstr = 0;
385
386  // Ok, we found a potential tail call.  We can currently only transform the
387  // tail call if all of the instructions between the call and the return are
388  // movable to above the call itself, leaving the call next to the return.
389  // Check that this is the case now.
390  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI) {
391    if (CanMoveAboveCall(BBI, CI)) continue;
392
393    // If we can't move the instruction above the call, it might be because it
394    // is an associative and commutative operation that could be tranformed
395    // using accumulator recursion elimination.  Check to see if this is the
396    // case, and if so, remember the initial accumulator value for later.
397    if ((AccumulatorRecursionEliminationInitVal =
398                           CanTransformAccumulatorRecursion(BBI, CI))) {
399      // Yes, this is accumulator recursion.  Remember which instruction
400      // accumulates.
401      AccumulatorRecursionInstr = BBI;
402    } else {
403      return false;   // Otherwise, we cannot eliminate the tail recursion!
404    }
405  }
406
407  // We can only transform call/return pairs that either ignore the return value
408  // of the call and return void, ignore the value of the call and return a
409  // constant, return the value returned by the tail call, or that are being
410  // accumulator recursion variable eliminated.
411  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
412      !isa<UndefValue>(Ret->getReturnValue()) &&
413      AccumulatorRecursionEliminationInitVal == 0 &&
414      !getCommonReturnValue(0, CI)) {
415    // One case remains that we are able to handle: the current return
416    // instruction returns a constant, and all other return instructions
417    // return a different constant.
418    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
419      return false; // Current return instruction does not return a constant.
420    // Check that all other return instructions return a common constant.  If
421    // so, record it in AccumulatorRecursionEliminationInitVal.
422    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
423    if (!AccumulatorRecursionEliminationInitVal)
424      return false;
425  }
426
427  // OK! We can transform this tail call.  If this is the first one found,
428  // create the new entry block, allowing us to branch back to the old entry.
429  if (OldEntry == 0) {
430    OldEntry = &F->getEntryBlock();
431    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
432    NewEntry->takeName(OldEntry);
433    OldEntry->setName("tailrecurse");
434    BranchInst::Create(OldEntry, NewEntry);
435
436    // If this tail call is marked 'tail' and if there are any allocas in the
437    // entry block, move them up to the new entry block.
438    TailCallsAreMarkedTail = CI->isTailCall();
439    if (TailCallsAreMarkedTail)
440      // Move all fixed sized allocas from OldEntry to NewEntry.
441      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
442             NEBI = NewEntry->begin(); OEBI != E; )
443        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
444          if (isa<ConstantInt>(AI->getArraySize()))
445            AI->moveBefore(NEBI);
446
447    // Now that we have created a new block, which jumps to the entry
448    // block, insert a PHI node for each argument of the function.
449    // For now, we initialize each PHI to only have the real arguments
450    // which are passed in.
451    Instruction *InsertPos = OldEntry->begin();
452    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
453         I != E; ++I) {
454      PHINode *PN = PHINode::Create(I->getType(),
455                                    I->getName() + ".tr", InsertPos);
456      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
457      PN->addIncoming(I, NewEntry);
458      ArgumentPHIs.push_back(PN);
459    }
460  }
461
462  // If this function has self recursive calls in the tail position where some
463  // are marked tail and some are not, only transform one flavor or another.  We
464  // have to choose whether we move allocas in the entry block to the new entry
465  // block or not, so we can't make a good choice for both.  NOTE: We could do
466  // slightly better here in the case that the function has no entry block
467  // allocas.
468  if (TailCallsAreMarkedTail && !CI->isTailCall())
469    return false;
470
471  // Ok, now that we know we have a pseudo-entry block WITH all of the
472  // required PHI nodes, add entries into the PHI node for the actual
473  // parameters passed into the tail-recursive call.
474  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
475    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
476
477  // If we are introducing an accumulator variable to eliminate the recursion,
478  // do so now.  Note that we _know_ that no subsequent tail recursion
479  // eliminations will happen on this function because of the way the
480  // accumulator recursion predicate is set up.
481  //
482  if (AccumulatorRecursionEliminationInitVal) {
483    Instruction *AccRecInstr = AccumulatorRecursionInstr;
484    // Start by inserting a new PHI node for the accumulator.
485    PHINode *AccPN =
486      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
487                      "accumulator.tr", OldEntry->begin());
488
489    // Loop over all of the predecessors of the tail recursion block.  For the
490    // real entry into the function we seed the PHI with the initial value,
491    // computed earlier.  For any other existing branches to this block (due to
492    // other tail recursions eliminated) the accumulator is not modified.
493    // Because we haven't added the branch in the current block to OldEntry yet,
494    // it will not show up as a predecessor.
495    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
496         PI != PE; ++PI) {
497      BasicBlock *P = *PI;
498      if (P == &F->getEntryBlock())
499        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
500      else
501        AccPN->addIncoming(AccPN, P);
502    }
503
504    if (AccRecInstr) {
505      // Add an incoming argument for the current block, which is computed by
506      // our associative and commutative accumulator instruction.
507      AccPN->addIncoming(AccRecInstr, BB);
508
509      // Next, rewrite the accumulator recursion instruction so that it does not
510      // use the result of the call anymore, instead, use the PHI node we just
511      // inserted.
512      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
513    } else {
514      // Add an incoming argument for the current block, which is just the
515      // constant returned by the current return instruction.
516      AccPN->addIncoming(Ret->getReturnValue(), BB);
517    }
518
519    // Finally, rewrite any return instructions in the program to return the PHI
520    // node instead of the "initval" that they do currently.  This loop will
521    // actually rewrite the return value we are destroying, but that's ok.
522    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
523      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
524        RI->setOperand(0, AccPN);
525    ++NumAccumAdded;
526  }
527
528  // Now that all of the PHI nodes are in place, remove the call and
529  // ret instructions, replacing them with an unconditional branch.
530  BranchInst::Create(OldEntry, Ret);
531  BB->getInstList().erase(Ret);  // Remove return.
532  BB->getInstList().erase(CI);   // Remove call.
533  ++NumEliminated;
534  return true;
535}
536