TailRecursionElimination.cpp revision cdbd99262286e96729007ac535cd430ecb3d38ac
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately preceeds the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Constants.h"
57#include "llvm/DerivedTypes.h"
58#include "llvm/Function.h"
59#include "llvm/Instructions.h"
60#include "llvm/Pass.h"
61#include "llvm/Analysis/CaptureTracking.h"
62#include "llvm/Analysis/InlineCost.h"
63#include "llvm/Analysis/InstructionSimplify.h"
64#include "llvm/Analysis/Loads.h"
65#include "llvm/Support/CallSite.h"
66#include "llvm/Support/CFG.h"
67#include "llvm/ADT/Statistic.h"
68using namespace llvm;
69
70STATISTIC(NumEliminated, "Number of tail calls removed");
71STATISTIC(NumAccumAdded, "Number of accumulators introduced");
72
73namespace {
74  struct TailCallElim : public FunctionPass {
75    static char ID; // Pass identification, replacement for typeid
76    TailCallElim() : FunctionPass(ID) {
77      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
78    }
79
80    virtual bool runOnFunction(Function &F);
81
82  private:
83    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
84                               bool &TailCallsAreMarkedTail,
85                               SmallVector<PHINode*, 8> &ArgumentPHIs,
86                               bool CannotTailCallElimCallsMarkedTail);
87    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
88    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
89  };
90}
91
92char TailCallElim::ID = 0;
93INITIALIZE_PASS(TailCallElim, "tailcallelim",
94                "Tail Call Elimination", false, false)
95
96// Public interface to the TailCallElimination pass
97FunctionPass *llvm::createTailCallEliminationPass() {
98  return new TailCallElim();
99}
100
101/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
102/// callees of this function.  We only do very simple analysis right now, this
103/// could be expanded in the future to use mod/ref information for particular
104/// call sites if desired.
105static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
106  // FIXME: do simple 'address taken' analysis.
107  return true;
108}
109
110/// CheckForEscapingAllocas - Scan the specified basic block for alloca
111/// instructions.  If it contains any that might be accessed by calls, return
112/// true.
113static bool CheckForEscapingAllocas(BasicBlock *BB,
114                                    bool &CannotTCETailMarkedCall) {
115  bool RetVal = false;
116  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
117    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
118      RetVal |= AllocaMightEscapeToCalls(AI);
119
120      // If this alloca is in the body of the function, or if it is a variable
121      // sized allocation, we cannot tail call eliminate calls marked 'tail'
122      // with this mechanism.
123      if (BB != &BB->getParent()->getEntryBlock() ||
124          !isa<ConstantInt>(AI->getArraySize()))
125        CannotTCETailMarkedCall = true;
126    }
127  return RetVal;
128}
129
130bool TailCallElim::runOnFunction(Function &F) {
131  // If this function is a varargs function, we won't be able to PHI the args
132  // right, so don't even try to convert it...
133  if (F.getFunctionType()->isVarArg()) return false;
134
135  BasicBlock *OldEntry = 0;
136  bool TailCallsAreMarkedTail = false;
137  SmallVector<PHINode*, 8> ArgumentPHIs;
138  bool MadeChange = false;
139
140  bool FunctionContainsEscapingAllocas = false;
141
142  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
143  // marked with the 'tail' attribute, because doing so would cause the stack
144  // size to increase (real TCE would deallocate variable sized allocas, TCE
145  // doesn't).
146  bool CannotTCETailMarkedCall = false;
147
148  // Loop over the function, looking for any returning blocks, and keeping track
149  // of whether this function has any non-trivially used allocas.
150  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
151    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
152      break;
153
154    FunctionContainsEscapingAllocas |=
155      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
156  }
157
158  /// FIXME: The code generator produces really bad code when an 'escaping
159  /// alloca' is changed from being a static alloca to being a dynamic alloca.
160  /// Until this is resolved, disable this transformation if that would ever
161  /// happen.  This bug is PR962.
162  if (FunctionContainsEscapingAllocas)
163    return false;
164
165  // Second pass, change any tail calls to loops.
166  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
167    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
168      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
169                                          ArgumentPHIs,CannotTCETailMarkedCall);
170
171  // If we eliminated any tail recursions, it's possible that we inserted some
172  // silly PHI nodes which just merge an initial value (the incoming operand)
173  // with themselves.  Check to see if we did and clean up our mess if so.  This
174  // occurs when a function passes an argument straight through to its tail
175  // call.
176  if (!ArgumentPHIs.empty()) {
177    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
178      PHINode *PN = ArgumentPHIs[i];
179
180      // If the PHI Node is a dynamic constant, replace it with the value it is.
181      if (Value *PNV = SimplifyInstruction(PN)) {
182        PN->replaceAllUsesWith(PNV);
183        PN->eraseFromParent();
184      }
185    }
186  }
187
188  // Finally, if this function contains no non-escaping allocas, mark all calls
189  // in the function as eligible for tail calls (there is no stack memory for
190  // them to access).
191  if (!FunctionContainsEscapingAllocas)
192    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
193      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
194        if (CallInst *CI = dyn_cast<CallInst>(I)) {
195          CI->setTailCall();
196          MadeChange = true;
197        }
198
199  return MadeChange;
200}
201
202
203/// CanMoveAboveCall - Return true if it is safe to move the specified
204/// instruction from after the call to before the call, assuming that all
205/// instructions between the call and this instruction are movable.
206///
207bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
208  // FIXME: We can move load/store/call/free instructions above the call if the
209  // call does not mod/ref the memory location being processed.
210  if (I->mayHaveSideEffects())  // This also handles volatile loads.
211    return false;
212
213  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
214    // Loads may always be moved above calls without side effects.
215    if (CI->mayHaveSideEffects()) {
216      // Non-volatile loads may be moved above a call with side effects if it
217      // does not write to memory and the load provably won't trap.
218      // FIXME: Writes to memory only matter if they may alias the pointer
219      // being loaded from.
220      if (CI->mayWriteToMemory() ||
221          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
222                                       L->getAlignment()))
223        return false;
224    }
225  }
226
227  // Otherwise, if this is a side-effect free instruction, check to make sure
228  // that it does not use the return value of the call.  If it doesn't use the
229  // return value of the call, it must only use things that are defined before
230  // the call, or movable instructions between the call and the instruction
231  // itself.
232  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
233    if (I->getOperand(i) == CI)
234      return false;
235  return true;
236}
237
238// isDynamicConstant - Return true if the specified value is the same when the
239// return would exit as it was when the initial iteration of the recursive
240// function was executed.
241//
242// We currently handle static constants and arguments that are not modified as
243// part of the recursion.
244//
245static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
246  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
247
248  // Check to see if this is an immutable argument, if so, the value
249  // will be available to initialize the accumulator.
250  if (Argument *Arg = dyn_cast<Argument>(V)) {
251    // Figure out which argument number this is...
252    unsigned ArgNo = 0;
253    Function *F = CI->getParent()->getParent();
254    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
255      ++ArgNo;
256
257    // If we are passing this argument into call as the corresponding
258    // argument operand, then the argument is dynamically constant.
259    // Otherwise, we cannot transform this function safely.
260    if (CI->getArgOperand(ArgNo) == Arg)
261      return true;
262  }
263
264  // Switch cases are always constant integers. If the value is being switched
265  // on and the return is only reachable from one of its cases, it's
266  // effectively constant.
267  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
268    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
269      if (SI->getCondition() == V)
270        return SI->getDefaultDest() != RI->getParent();
271
272  // Not a constant or immutable argument, we can't safely transform.
273  return false;
274}
275
276// getCommonReturnValue - Check to see if the function containing the specified
277// tail call consistently returns the same runtime-constant value at all exit
278// points except for IgnoreRI.  If so, return the returned value.
279//
280static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
281  Function *F = CI->getParent()->getParent();
282  Value *ReturnedValue = 0;
283
284  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
285    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
286    if (RI == 0 || RI == IgnoreRI) continue;
287
288    // We can only perform this transformation if the value returned is
289    // evaluatable at the start of the initial invocation of the function,
290    // instead of at the end of the evaluation.
291    //
292    Value *RetOp = RI->getOperand(0);
293    if (!isDynamicConstant(RetOp, CI, RI))
294      return 0;
295
296    if (ReturnedValue && RetOp != ReturnedValue)
297      return 0;     // Cannot transform if differing values are returned.
298    ReturnedValue = RetOp;
299  }
300  return ReturnedValue;
301}
302
303/// CanTransformAccumulatorRecursion - If the specified instruction can be
304/// transformed using accumulator recursion elimination, return the constant
305/// which is the start of the accumulator value.  Otherwise return null.
306///
307Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
308                                                      CallInst *CI) {
309  if (!I->isAssociative() || !I->isCommutative()) return 0;
310  assert(I->getNumOperands() == 2 &&
311         "Associative/commutative operations should have 2 args!");
312
313  // Exactly one operand should be the result of the call instruction.
314  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
315      (I->getOperand(0) != CI && I->getOperand(1) != CI))
316    return 0;
317
318  // The only user of this instruction we allow is a single return instruction.
319  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
320    return 0;
321
322  // Ok, now we have to check all of the other return instructions in this
323  // function.  If they return non-constants or differing values, then we cannot
324  // transform the function safely.
325  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
326}
327
328bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
329                                         bool &TailCallsAreMarkedTail,
330                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
331                                       bool CannotTailCallElimCallsMarkedTail) {
332  BasicBlock *BB = Ret->getParent();
333  Function *F = BB->getParent();
334
335  if (&BB->front() == Ret) // Make sure there is something before the ret...
336    return false;
337
338  // Scan backwards from the return, checking to see if there is a tail call in
339  // this block.  If so, set CI to it.
340  CallInst *CI;
341  BasicBlock::iterator BBI = Ret;
342  while (1) {
343    CI = dyn_cast<CallInst>(BBI);
344    if (CI && CI->getCalledFunction() == F)
345      break;
346
347    if (BBI == BB->begin())
348      return false;          // Didn't find a potential tail call.
349    --BBI;
350  }
351
352  // If this call is marked as a tail call, and if there are dynamic allocas in
353  // the function, we cannot perform this optimization.
354  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
355    return false;
356
357  // As a special case, detect code like this:
358  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
359  // and disable this xform in this case, because the code generator will
360  // lower the call to fabs into inline code.
361  if (BB == &F->getEntryBlock() &&
362      &BB->front() == CI && &*++BB->begin() == Ret &&
363      callIsSmall(F)) {
364    // A single-block function with just a call and a return. Check that
365    // the arguments match.
366    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
367                           E = CallSite(CI).arg_end();
368    Function::arg_iterator FI = F->arg_begin(),
369                           FE = F->arg_end();
370    for (; I != E && FI != FE; ++I, ++FI)
371      if (*I != &*FI) break;
372    if (I == E && FI == FE)
373      return false;
374  }
375
376  // If we are introducing accumulator recursion to eliminate operations after
377  // the call instruction that are both associative and commutative, the initial
378  // value for the accumulator is placed in this variable.  If this value is set
379  // then we actually perform accumulator recursion elimination instead of
380  // simple tail recursion elimination.  If the operation is an LLVM instruction
381  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
382  // we are handling the case when the return instruction returns a constant C
383  // which is different to the constant returned by other return instructions
384  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
385  // special case of accumulator recursion, the operation being "return C".
386  Value *AccumulatorRecursionEliminationInitVal = 0;
387  Instruction *AccumulatorRecursionInstr = 0;
388
389  // Ok, we found a potential tail call.  We can currently only transform the
390  // tail call if all of the instructions between the call and the return are
391  // movable to above the call itself, leaving the call next to the return.
392  // Check that this is the case now.
393  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI) {
394    if (CanMoveAboveCall(BBI, CI)) continue;
395
396    // If we can't move the instruction above the call, it might be because it
397    // is an associative and commutative operation that could be tranformed
398    // using accumulator recursion elimination.  Check to see if this is the
399    // case, and if so, remember the initial accumulator value for later.
400    if ((AccumulatorRecursionEliminationInitVal =
401                           CanTransformAccumulatorRecursion(BBI, CI))) {
402      // Yes, this is accumulator recursion.  Remember which instruction
403      // accumulates.
404      AccumulatorRecursionInstr = BBI;
405    } else {
406      return false;   // Otherwise, we cannot eliminate the tail recursion!
407    }
408  }
409
410  // We can only transform call/return pairs that either ignore the return value
411  // of the call and return void, ignore the value of the call and return a
412  // constant, return the value returned by the tail call, or that are being
413  // accumulator recursion variable eliminated.
414  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
415      !isa<UndefValue>(Ret->getReturnValue()) &&
416      AccumulatorRecursionEliminationInitVal == 0 &&
417      !getCommonReturnValue(0, CI)) {
418    // One case remains that we are able to handle: the current return
419    // instruction returns a constant, and all other return instructions
420    // return a different constant.
421    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
422      return false; // Current return instruction does not return a constant.
423    // Check that all other return instructions return a common constant.  If
424    // so, record it in AccumulatorRecursionEliminationInitVal.
425    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
426    if (!AccumulatorRecursionEliminationInitVal)
427      return false;
428  }
429
430  // OK! We can transform this tail call.  If this is the first one found,
431  // create the new entry block, allowing us to branch back to the old entry.
432  if (OldEntry == 0) {
433    OldEntry = &F->getEntryBlock();
434    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
435    NewEntry->takeName(OldEntry);
436    OldEntry->setName("tailrecurse");
437    BranchInst::Create(OldEntry, NewEntry);
438
439    // If this tail call is marked 'tail' and if there are any allocas in the
440    // entry block, move them up to the new entry block.
441    TailCallsAreMarkedTail = CI->isTailCall();
442    if (TailCallsAreMarkedTail)
443      // Move all fixed sized allocas from OldEntry to NewEntry.
444      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
445             NEBI = NewEntry->begin(); OEBI != E; )
446        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
447          if (isa<ConstantInt>(AI->getArraySize()))
448            AI->moveBefore(NEBI);
449
450    // Now that we have created a new block, which jumps to the entry
451    // block, insert a PHI node for each argument of the function.
452    // For now, we initialize each PHI to only have the real arguments
453    // which are passed in.
454    Instruction *InsertPos = OldEntry->begin();
455    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
456         I != E; ++I) {
457      PHINode *PN = PHINode::Create(I->getType(),
458                                    I->getName() + ".tr", InsertPos);
459      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
460      PN->addIncoming(I, NewEntry);
461      ArgumentPHIs.push_back(PN);
462    }
463  }
464
465  // If this function has self recursive calls in the tail position where some
466  // are marked tail and some are not, only transform one flavor or another.  We
467  // have to choose whether we move allocas in the entry block to the new entry
468  // block or not, so we can't make a good choice for both.  NOTE: We could do
469  // slightly better here in the case that the function has no entry block
470  // allocas.
471  if (TailCallsAreMarkedTail && !CI->isTailCall())
472    return false;
473
474  // Ok, now that we know we have a pseudo-entry block WITH all of the
475  // required PHI nodes, add entries into the PHI node for the actual
476  // parameters passed into the tail-recursive call.
477  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
478    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
479
480  // If we are introducing an accumulator variable to eliminate the recursion,
481  // do so now.  Note that we _know_ that no subsequent tail recursion
482  // eliminations will happen on this function because of the way the
483  // accumulator recursion predicate is set up.
484  //
485  if (AccumulatorRecursionEliminationInitVal) {
486    Instruction *AccRecInstr = AccumulatorRecursionInstr;
487    // Start by inserting a new PHI node for the accumulator.
488    PHINode *AccPN =
489      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
490                      "accumulator.tr", OldEntry->begin());
491
492    // Loop over all of the predecessors of the tail recursion block.  For the
493    // real entry into the function we seed the PHI with the initial value,
494    // computed earlier.  For any other existing branches to this block (due to
495    // other tail recursions eliminated) the accumulator is not modified.
496    // Because we haven't added the branch in the current block to OldEntry yet,
497    // it will not show up as a predecessor.
498    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
499         PI != PE; ++PI) {
500      BasicBlock *P = *PI;
501      if (P == &F->getEntryBlock())
502        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
503      else
504        AccPN->addIncoming(AccPN, P);
505    }
506
507    if (AccRecInstr) {
508      // Add an incoming argument for the current block, which is computed by
509      // our associative and commutative accumulator instruction.
510      AccPN->addIncoming(AccRecInstr, BB);
511
512      // Next, rewrite the accumulator recursion instruction so that it does not
513      // use the result of the call anymore, instead, use the PHI node we just
514      // inserted.
515      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
516    } else {
517      // Add an incoming argument for the current block, which is just the
518      // constant returned by the current return instruction.
519      AccPN->addIncoming(Ret->getReturnValue(), BB);
520    }
521
522    // Finally, rewrite any return instructions in the program to return the PHI
523    // node instead of the "initval" that they do currently.  This loop will
524    // actually rewrite the return value we are destroying, but that's ok.
525    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
526      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
527        RI->setOperand(0, AccPN);
528    ++NumAccumAdded;
529  }
530
531  // Now that all of the PHI nodes are in place, remove the call and
532  // ret instructions, replacing them with an unconditional branch.
533  BranchInst::Create(OldEntry, Ret);
534  BB->getInstList().erase(Ret);  // Remove return.
535  BB->getInstList().erase(CI);   // Remove call.
536  ++NumEliminated;
537  return true;
538}
539